The Line Segment Intersection Prob 9/11/08

Input: A set of n line segments
Output: Report all intersections

Naive: \(O(n^2) \)
Goal: \(O(n \log n + |I|) \) Today \(O((n+|I|) \log n) \)

Worst case: \(|I| = \Omega(n^3)\)

Motivation: Map Overlay

Algorithm: sweep line
Optimal: Incremental
Map overlay prob

Segments: \(S = \{s_1, \ldots, s_n\} \) (no vertical seg)

Output: Break all segments into subseg s.t.

Two subseg intersect only at endpoints

Sweep Line Alg

Let \(P = \) endpoints of seg.

\(l = \) horizontal line disjoint from \(PVI \).

\(l \) linearly orders \(S \).

The order only changes a \(S \).

Store order in Balanced BST.

Events \(\leq \) PVI

Idea: sweep \(x \) top to bottom stopping at events.
But we do not know I!

Compute events in I just-in-time.

Claim: If next event is the intersection of S & S', then S & S' are neighbors.

Priority Queue Q_e of events

Inductively: Q_e contains

1) p

2) Neighbors in I below I_0.

Handling Events

\[U(P) = \text{subseg with upper end point } P \]
\[L(P) = \text{"lower"} \]
\[C(P) = \text{"intersection } P. \]

Procedure Handle Event(P point, T tree, Q queue)

1. Use \(C(P) \) form new subseg and add to \(U(P) \) \& \(L(P) \).
2. Use \(L(P) \) delete \((s, T)\)
3. Use \(U(P) \) insert \((s, T)\)
4. A new neighbor add intersection to \(Q \)

Let m # subseg

Alg runs in \(O(m \log n) \) Time

there are at most m delete/inserts into \(T \& Q \)
How many Subseg?

To show: \(\# \text{Subseg} = O(n + |E|) \)

Embedded Planar Graph \((G = (V, E), \varphi: G \rightarrow \mathbb{R}^2)\)

- \(\varphi(e) = \text{path}\)
- \(\varphi(e) \cap \varphi(e') = \text{only endpoints}\)

Euler's Formula \((G, \varphi)\)

\[n_V = \# \text{Vertices} \]
\[n_E = \# \text{Edges} \]
\[n_f = \# \text{connected boundaries (faces)} \]
\[c = \# \text{connected components} \]

Then \(n_f - n_e + n_V = 2c \)

\[\begin{align*}
5 - 4 + 3 &= 2 \cdot 2 = 4 \\
\end{align*} \]
Claim \(3n_f \geq n_e \)

1) add edge until \(G \) in connected
2) each face size in 3.
3) no parallel edges.

\[3n_f \leq 2n_e \]

\[n_f \leq \frac{2}{3} n_e \]

\[\frac{1}{3} n_e - n_e + n_f \geq 2 \]

\[-\frac{1}{3} n_e + n_f \geq 2 \]

\[n_f \geq a + \frac{1}{3} n_e \]

\[3n_f \geq n_e \]

Sweep line is \(O(n + I \log n) \) time

Wrong: we sorted the intersection!