B-splines

Make curves out of multiple Bezier curves

degree \(R = 2 \)

2 control polygons \((a_1, a_2, a_3) \& (b_1, b_2, b_3)\)

\[a_2 = b_1 \]

Our curve is connected

what is velocity at \(a_3 = b_1 \)?

left: \[2(a_3 - a_2) \]

right: \[2(b_3 - b_2) \]

\(a_2, a_3 = b_1 \), \(b_2 \) nonlinear than smooth

in general \(a_3 - a_2 \neq b_3 - b_2 \)

we may have a speed bump! why?
Solution

Trace C_a at different rate from C_b

\[\text{pick n st } (n - 0, k(a_3 - a_1)) = \frac{1}{2-n}(b_2 - b_1) \]

Let's think of point $a_3 = b_2$ determined by $(0, n, 2)$

- knot seq $(0, n, 2) = (u_0, u_1, u_2)$
- $d_0 = a_1$
- control points d_0, d_1, d_2, d_3
- $d_1 = a_2$
- $d_2 = b_2$
- $d_3 = b_3$

Algorithm

\[C(u) \]

\[\text{set } d = \left(\frac{u_1 - u_0}{u_2 - u_0} \right) d_2 + \left(\frac{u_2 - u_1}{u_2 - u_0} \right) d_1 \]

if $u_0 \leq u \leq u_1$ then

\[C(d_0, d_1, d)(u) \]

if $u_1 < u \leq u_2$ then

\[C(d_1, d_2, d_3)(u) \]
Control points \(d_0, \ldots, d_5 \) de Boor points
Beginpoints \(b_1, \ldots, b_5 \)
Knots \(u_0, \ldots, u_6 \) \(u_i \leq u_{i+1} \) \(u_i \neq u_{i+1} \)

\[
b_i = \left(\frac{u_i - u_{i-1}}{u_{i+n} - u_{i-1}} \right) d_{i+n} + \left(\frac{u_{i+n} - u_i}{u_{i+n} - u_{i-1}} \right) d_i
\]

Note \(b_1 = d_0 \) iff \(u_0 = u_1 \) \& \(b_5 = d_5 \) iff \(u_5 = u_6 \)

Alg for each \(b_i \):
1. \(b_i \rightarrow b_{i+1} \)
2. Make gradient Begin
Bézier Triangle

\(\partial \rightarrow \mathbb{R} \)
\(\partial \rightarrow \mathbb{R}^2 \)

\(P \in \partial \)
\(P = (\alpha, \beta, \gamma), \quad \alpha + \beta + \gamma = 1 \)
\(\alpha, \beta, \gamma \geq 0 \)

\(p \rightarrow \mathbb{R}^3 \)
\(P_i = (\alpha_i, \beta_i, \gamma_i) \in \partial \)
\(P_j \)
\(P_k \)
\(T' = \langle P_j, P_k, P \rangle \)
\(P' \in (\alpha, \beta, \gamma) \in \partial \)