A nearly-\(m \log n\) time solver for SDD linear systems

Ioannis Koutis
CSD-UPRRP
ioannis.koutis@upr.edu

Gary L. Miller
CSD-CMU
glmiller@cs.cmu.edu

Richard Peng
CSD-CMU
yangp@cs.cmu.edu

August 22, 2011

Abstract

We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an \(n \times n\) symmetric diagonally dominant matrix \(A\) with \(m\) non-zero entries and a vector \(b\) such that \(A\bar{x} = b\) for some (unknown) vector \(\bar{x}\), our algorithm computes a vector \(x\) such that \(\|x - \bar{x}\|_A < \epsilon\|\bar{x}\|_A\) in time \(\tilde{O}(m \log n \log(1/\epsilon))\).

The solver utilizes in a standard way a ‘preconditioning’ chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis, Miller, Peng, FOCS 2010], allowing for stronger preconditioning properties. We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time \(\tilde{O}(m \log n)\), a factor of \(\tilde{O}(\log n)\) faster than the algorithm in [Abraham, Bartal, Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.

1 Introduction

Solvers for symmetric diagonally dominant (SDD)\(^3\) systems are a crucial component of the fastest known algorithms for a multitude of problems that include (i) Computing the first non-trivial (Fiedler) eigenvector of the graph, with well known applications to the sparsest-cut problem [Fie73, ST96, Chu97]; (ii) Generating spectral sparsifiers that also act as cut-preserving sparsifiers [SS08]; (iii) Solving linear systems derived from elliptic finite element discretizations of a significant class of partial differential equations [BHV04]; (iv) Generalized lossy flow problems [SD08]; (v) Generating random spanning trees [KM09]; (vi) Faster maximum flow algorithms [CKM11]; and (vii) Several optimization problems in computer vision [KMST09b, KMT11] and graphics [MP08, JMD07].

These algorithmic advances were largely motivated by the seminal work of Spielman and Teng who gave the first nearly-linear time solver for SDD systems [ST04, EEST05, ST06]. The running time of their solver is a large number of polylogarithmic factors away from the obvious linear time lower bound. In recent work, building upon further work of Spielman and Srivastava [SS08], we presented a simpler and faster SDD solver with a run time of \(\tilde{O}(m \log^2 n \log \epsilon^{-1})\), where \(m\) is the number of nonzero entries, \(n\) is the number of variables, and \(\epsilon\) is a standard measure of the approximation error [KMP10a].

It has been conjectured that the algorithm of [KMP10a] is not optimal [Spi10b, Ten10, Spi10a]. In this paper we give an affirmative answer by presenting a solver that runs in \(\tilde{O}(m \log n \log \epsilon^{-1})\) time.

\(^{*}\)Partially supported by the National Science Foundation under grant number CCF-1018463.

\(^{1}\)|·|\(_A\) denotes the \(A\)-norm

\(^{2}\)The \(\tilde{O}\) notation hides a \((\log \log n)^2\) factor

\(^{3}\)A system \(Ax = b\) is SDD when \(A\) is symmetric and \(A_{ii} \geq \sum_{j \neq i} |A_{ij}|\)
The $O(\log n)$ speedup of the SDD solver applies to all algorithms listed above, and we believe that it will prove to be quite important in practice, as applications of SDD solvers frequently involve massive graphs [Ten10].

1.1 Overview of our techniques

The key to all known near-linear work SDD solvers is spectral graph sparsification, which on a given input graph G constructs a sparser graph H such that G and H are ‘spectrally similar’ in the condition number sense, defined in Section 2. Spectral graph sparsification can be seen as a significant strengthening of the notion of cut-preserving sparsification [BK96].

The new solver follows the framework of recursive preconditioned Chebyshev iterations [ST06, KMP10a]. The iterations are driven by a so-called preconditioning chain $\{G_1, H_1, G_2, H_2, \ldots, \}$ of graphs, where H_i is a spectral sparsifier for G_i and G_{i+1} is generated by contracting H_i via a greedy elimination of degree 1 and 2 nodes. The total work of the solver includes the time for constructing the chain, and the work spent on actual iterations which is a function on the preconditioning quality of the chain. The preconditioning quality of the chain in turn depends on the guarantees of the sparsification algorithm.

More concretely, all sparsification routines that have been used in SDD solvers conform to the same template; on input a graph G with n vertices and m edges returns a graph H with $n + O(m \log^2 n)/\kappa$ edges such that the condition number of the Laplacians of G and H is κ. In all known SDD solvers the factor $O(\log^c n)$ appears directly in the running time of the SDD solver. In particular the solver of [KMP10b] was based on a sparsification routine for which $c = 2$. The optimism that SDD systems can be solved in time $O(m \log n \log \epsilon^{-1})$ has mainly been based on the result of Kolla et al. [KMST09a] who proved that there is a polynomial (but far from nearly-linear) time algorithm that returns a sparsifier with $c = 1$. However, our new solver is instead based on a slight modification and a deeper analysis of the sparsification algorithm in [KMP10a] which enables a subtler chain construction.

The incremental sparsification algorithm in [KMP10a] computes and keeps in H a properly scaled copy of a low-stretch spanning tree of G, and adds to H a number of off-tree samples from G. The key enabling observation in the new analysis is that the total stretch of the off-tree edges is essentially invariant under sparsification. In other words, the total stretch of the off-tree edges in H_i is at most equal to that in G_i. The total stretch is invariant under the graph contraction process as well. The elimination process that generates G_{i+1} from H_i naturally generates a spanning tree for G_{i+1}. The total stretch of the off-tree edges in G_{i+1} is at most equal to that in H_i. This effectively allows us to compute only one low-stretch spanning tree for the first graph in the chain, and keep the same tree for the rest of the chain. This is a significant departure from previous constructions, where a low-stretch spanning tree had to be calculated for each G_i.

The ability to keep the same low-stretch spanning tree for the whole chain, allows us to prove that Laplacians of spine-heavy graphs, i.e. graphs with a spanning tree with average stretch $O(1/\log n)$, can be solved in linear time. This average stretch is a factor of $O(\log^2 n)$ smaller than what is true for general graphs. We reduce the first general graph G_1 into a spine-heavy graph G_2 by scaling-up the edges of its low-stretch spanning tree by a factor of $O(\log^2 n)$. This results in the construction of a preconditioner chain with a skewed set of conditioner numbers. That is, the condition number of the pair (G_i, H_i) is a fixed constant with the exception of (G_1, H_1) for which it is $O(\log^2 n)$. In all previous solvers the condition number for the pair (G_i, H_i) was a uniform function of the size of G_i.

An additional significant departure from previous constructions is in the way that the number of edges decreases between subsequent G_i’s in the chain. For example, in the [KMP10a] chain the number of edges in G_{i+1} is always at least a factor of $O(\log^2 n)$ smaller than the number of edges in G_i. In the chain presented in this paper irregular decreases are possible; for example a big drop in the number of edges may occur between G_2 and G_3 and the progress may stagnate for a while after G_3, until it starts again.

In order to analyze this new chain we view the graphs H_i as multi-graphs or graphs of samples. In
the sampling procedure that generates H_i, some off-tree edges of G_i can be sampled multiple times, and so H_i is naturally a multi-graph, where the weight of a ‘traditional’ edge e is split among a number of parallel multi-edges with the same endpoints. The progress of the overall sparsification in the chain is then monitored in terms of the number of multi-edges in the H_i’s. In other words, when the algorithm appears to be stagnated in terms of the edge count in the G_i’s, progress is still happening by ‘thinning’ the off-tree edges. The details are given in Section 4.

The final bottleneck to getting an $O(m \log n)$ algorithm for very sparse systems is the $\tilde{O}(m \log n + n \log^2 n)$ running time of the algorithm for constructing a low-stretch spanning tree [ABN08, EEST05]. We address the problem by noting that it suffices to find a low-stretch spanning tree on a graph with edge weights that are roughly powers of 2. In this special setting, the shortest path like ball/cone growing routines in [ABN08, EEST05] can be sped up in a way similar to the technique used in [OMSW10]. We also slightly improve the result of [OMSW10], which may be of independent interest.

2 Background and notation

A matrix A is symmetric diagonally dominant if it is symmetric and $A_{ii} \geq \sum_{j \neq i} |A_{ij}|$. It is well understood that any linear system whose matrix is SDD is easily reducible to a system whose matrix is the Laplacian of a weighted graph with positive weights [Gre96]. The Laplacian matrix of a graph $G = (V, E, w)$ is the matrix defined as

$$L_G(i, j) = -w_{i,j}$$

and

$$L_G(i, i) = \sum_{j \neq i} w_{i,j}.$$

There is a one-to-one correspondence between graphs and Laplacians which allows us to extend some algebraic operations to graphs. Concretely, if G and H are graphs, we will denote by $G + H$ the graph whose Laplacian is $L_G + L_H$, and by cG the graph whose Laplacian is cL_G.

Definition 2.1 [Spectral ordering of graphs]

We define a partial ordering \preceq of graphs by letting

$$G \preceq H \text{ if and only if } x^T L_G x \leq x^T L_H x,$$

for all real vectors x. •

If there is a constant c such that $G \preceq cH \preceq \kappa G$, we say that the condition of the pair (G, H) is κ. In our proofs we will find useful to view a graph $G = (V, E, w)$ as a graph with multiple edges.

Definition 2.2 [Graph of samples]

A graph $G = (V, E, w)$ is called a graph of samples, when each edge e of weight w_e is considered as a sum of a set \mathcal{L}_e of parallel edges, each of weight $w_l = w_e/|\mathcal{L}_e|$. When needed we will emphasize the fact that a graph is viewed as having parallel edges, by using the notation $G = (V, \mathcal{L}, w)$. •

Definition 2.3 [Stretch of edge by tree]

Let $T = (V, E_T, w)$ be a tree. For $e \in E_T$ let $w'_e = 1/w_e$. Let e be an edge not necessarily in E_T, of weight w_e. If the unique path connecting the endpoints of e in T consists of edges $e_1 \ldots e_k$, the stretch of e by T is defined to be

$$\text{stretch}_T(e) = \frac{\sum_{i=1}^k w'_{e_i}}{w'_e}. •$$

A key to our results is viewing graphs as resistive electrical networks [DS00]. More concretely, if $G = (V, \mathcal{L}, w)$ each $l \in \mathcal{L}$ corresponds to a resistor of capacity $1/w_l$ connecting the two endpoints of \mathcal{L}. We
denote by \(R_G(e) \) the effective resistance between the endpoints of \(e \) in \(G \). The effective resistance on trees is easy to calculate; we have \(R_T(e) = \sum_{i=1}^{k} 1/w(e_i) \). Thus
\[
\text{stretch}_T(e) = w_e R_T(e).
\]
We extend the definition to \(l \in \mathcal{L}_e \) in the natural way
\[
\text{stretch}_T(l) = w_l R_T(e),
\]
and note that \(\text{stretch}_T(e) = \sum_{l \in \mathcal{L}_e} \text{stretch}_T(l) \).

This definition can also be extended to set of edges. Thus \(\text{stretch}_T(E) \) denotes the vector of stretch values of all edges in \(E \). We also let \(\text{stretch}_T(G) \) denote the vector of stretch for edges in \(E_G - E_T \).

Definition 2.4 [Total Off-Tree Stretch]

Let \(G = (V, E_G, w) \) be a graph, \(T = (V, E_T, w) \) be a spanning tree of \(G \). We define
\[
|\text{stretch}_T(G)| = \sum_{e \in E_G - E_T} \text{stretch}_T(e).
\]

3 Incremental Sparsifier

In their remarkable work [SS08], Spielman and Srivastava analyzed a spectral sparsification algorithm based on a simple sampling procedure. The sampling probabilities were proportional to the effective resistances \(R_G(e) \) of the edges on the input graph \(G \). Our solver in [KMP10a] was based on an incremental sparsification algorithm which used upper bounds on the effective resistances, that are more easily calculated. In this section we give a more careful analysis of the incremental sparsifier algorithm given in [KMP10a].

We start by reviewing the basic **Sample** procedure. The procedure takes as input a weighted graph \(G \) and frequencies \(p_e' \) for each edge \(e \). These frequencies are normalized to probabilities \(p_e \) summing to 1. It then picks in \(q \) rounds exactly \(q \) **samples** which are weighted copies of the edges. The probability that given edge \(e \) is picked in a given round is \(p_e \). The weight of the corresponding sample is set so that the expected weight of the edge \(e \) after sampling is equal to its actual weight in the input graph. The details are given in the following pseudocode.

Sample

Input: Graph \(G = (V, E, w) \), \(p' : E \to \mathbb{R}^+ \), real \(\xi \).

Output: Graph \(G' = (V, \mathcal{L}, w') \).

1: \(t := \sum_e p_e' \)
2: \(q := C \cdot \log t \log(1/\xi) \) (* \(C \) is an explicitly known constant *)
3: \(p_e := p_e'/t \)
4: \(G' := (V, \mathcal{L}, w') \) with \(\mathcal{L} = \emptyset \)
5: for \(q \) times do
6: Sample one \(e \in E \) with probability of picking \(e \) being \(p_e \)
7: Add sample of \(e, l \) to \(\mathcal{L}_e \) with weight \(w'_j = w_e/(p_e q) \) (* Recall that \(\mathcal{L} = \bigcup_{e \in E} \mathcal{L}_e \) *)
8: end for
9: return \(G' \)

The following Theorem characterizes the quality of \(G' \) as a spectral sparsifier for \(G \) and it was proved in [KMP10a].
Theorem 3.1 (Oversampling) Let $G = (V, E, w)$ be a graph. Assuming that $p'_e \geq w_e R_G(e)$ for each edge $e \in E$, and $\xi \in \Omega(1/n)$, the graph $G' = \text{SAMPLE}(G, p', \xi)$ satisfies

$$G \preceq 2G' \preceq 3G$$

with probability at least $1 - \xi$.

Suppose we are given a spanning tree T of $G = (V, E, w)$. The incremental sparsification algorithm of [KMP10a] was based on two key observations: (a) By Rayleigh’s monotonicity law [DS00] we have $R_T(e) \geq R_G(e)$ because T is a subgraph of G. Hence the numbers $\text{stretch}_T(e)$ satisfy the condition of Theorem 3.1 and they can be used in Sample. (b) Scaling up the edges of T in G by a factor of κ gives a new graph G' where the stretches of the off-tree are smaller by a factor of κ relative to those in G. This forces SAMPLE (when applied on G') to sample more often edges from T, and return a graph with a smaller number of off-tree edges. In other words, the scale-up factor κ allows us to control the number of off-tree edges. Of course this comes at the cost of incurring condition κ between G and G'.

In this paper we follow the same approach, but also modify INCREMENTALSPARSIFY so that the output graph is a union of a copy of T and the off-tree samples picked by SAMPLE. To emphasize this, we will denote the edge set of the output graph by $E_T \cup \mathcal{L}$. The details are given in the following algorithm.

INCREMENTALSPARSIFY

Input: Graph $G = (V, E, w)$, edge-set E_T of spanning tree T, reals $\kappa > 1$, $0 < \xi < 1$

Output: Graph $H = (V, E_T \cup \mathcal{L})$ or FAIL

1: Calculate $\text{stretch}_T(G)$
2: if $|\text{stretch}_T(G)| \leq 1$ then
3: return $2T$
4: end if
5: $T' := \kappa T$.
6: $G' := G + (\kappa - 1)T$ (* G' is the graph obtained from G by replacing T by T' *)
7: $\hat{t} := |\text{stretch}_T(G')|$ (* $\hat{t} = |\text{stretch}_T(G)|/\kappa$ *)
8: $t = \hat{t} + n - 1$ (* total stretch including tree edges *)
9: $\tilde{H} = (V, \tilde{\mathcal{L}}) := \text{SAMPLE}(G', \text{stretch}_T(E'), \xi)$
10: if $\sum_{e \in E_T} |\tilde{\mathcal{L}}_e| \geq 2(\hat{t}/t)C_s \log t \log(1/\xi)$ (* C_s is the constant in SAMPLE *)
11: return FAIL
12: end
13: $\mathcal{L} := \tilde{\mathcal{L}} - \bigcup_{e \in E_T} \tilde{\mathcal{L}}_e$.
14: $H := H + 3T'$
15: return $4H$

Theorem 3.2 Let G be a graph with n vertices and m edges and T be a spanning tree of G. Then for $\xi \in \Omega(1/n)$, INCREMENTALSPARSIFY(G, E_T, κ, ξ) computes with probability at least $1 - 2\xi$ a graph $H = (V, E_T \cup \mathcal{L})$ such that

- $G \preceq H \preceq 54\kappa G$
- $|\mathcal{L}| \leq 2\hat{t}C_S \log t \log(1/\xi)$

where $\hat{t} = \text{stretch}_T(G)/\kappa$, $t = \hat{t} + n - 1$, and C_S is the constant in SAMPLE. The algorithm can be implemented to run in $\tilde{O}(n \log n + \hat{t} \log^2 n \log(1/\xi))$.

5
Proof We first suppose that $|\text{stretch}_T(G)| \leq 1$ holds. Thus $G/2 \leq T \leq G$, by well known facts [BH03]. Therefore returning $H = 2T$ satisfies the claims. Now assume that the condition is not true. Since in Step 6 the weight of each tree edge is increased by at most a factor of κ, we have $G \leq G' \leq \kappa G$.

INCREMENTALSPLARIFY sets $p_e' = 1$ if $e \in E_T$ and $\text{stretch}_T(e)/\kappa$ otherwise, and invokes SAMPLE to compute a graph \tilde{H} such that with probability at least $1 - \xi$, we get

$$ G \leq G' \leq 2\tilde{H} \leq 3G' \leq 3\kappa G. \quad (3.1) $$

We now bound the number $|\mathcal{L}|$ of off-tree samples drawn by SAMPLE. For the number t used in SAMPLE we have $t = \hat{t} + n - 1$ and $q = C_s t \log t \log(1/\xi)$ is the number samples drawn by SAMPLE. Let X_i be a random variable which is 1 if the i^{th} sample picked by SAMPLE is a non-tree edge and 0 otherwise. The total number of non-tree samples is the random variable $X = \sum_{i=1}^q X_i$, and its expected value can be calculated using the fact $\Pr(X_i = 1) = \hat{t}/t$:

$$ E[X] = q/t = t(C_s t \log t \log(1/\xi))/t = C_s t \log t \log(1/\xi). $$

Step 12 assures that H does not contain more than $2E[X]$ edges so the claim about the number of off-tree samples is automatically satisfied. A standard form of Chernoff’s inequality is:

$$ Pr[X > (1 + \delta)E[X]] < \exp(-\delta^2 E[X]) $$

$$ Pr[X < (1 - \delta)E[X]] < \exp(-\delta^2 E[X]). $$

Letting $\delta = 1$, and since $\hat{t} > 1, C_s > 2$ we get $Pr[X > 2E[X]] < (\exp(-2E[X]) < 1/n^2$. So, the probability that the algorithm returns a FAIL is at most $1/n^2$. It follows that the probability that an output of SAMPLE satisfies inequality 3.1 and doesn’t get rejected by INCREMENTALSPLARIFY is at least $1 - \xi - 1/n^2$.

We now concentrate on the edges of T. Any fixed edge $e \in E_T$ is sampled with probability $1/t$ in SAMPLE. Let X_e denote the random variable equal to number of times e is sampled. Since there are $q = C_s t \log t \log(1/\xi)$ iterations of sampling, we have $E[X_e] = q/t \geq C_s \log n$. By the Chernoff inequalities above, setting $\delta = 1/2$ we get that

$$ Pr[X_e > (3/2)E[X_e]] \leq \exp(-(C_s/4) \log n) $$

and

$$ Pr[X_e < (1/2)E[X_e]] \leq \exp(-(C_s/4) \log n). $$

By setting C_s to be large enough we get $\exp(-(C_s/4) \log n) < n^{-4}$. So with probability at least $1 - 1/n^2$ there is no edge $e \in E_T$ such that $X_e > (3/2)E[X_e]$ or $X_e < (1/2)E[X_e]$. Therefore we get that with probability at least $1 - 1/n^2$ all the edges $e \in E_T$ in \tilde{H} have weights at most three times larger than their weights in $(H/2)$, and

$$ G \leq \tilde{H} \leq H \leq 18\tilde{H} \leq 54\kappa G. $$

Overall, the probability that the output H of INCREMENTALSPLARIFY satisfies the claim about the condition number is at least $1 - \xi - 2/n^2 \geq 1 - 2/\xi$.

We now consider the time complexity. We first compute the effective resistance of each non-tree edge by the tree. This can be done using Tarjan’s off-line LCA algorithm [Tar79], which takes $O(m)$ time [GT83]. We next call SAMPLE, which draws a number of samples. Since the samples from E_T don’t affect the output of INCREMENTALSPLARIFY we can implement SAMPLE to exploit this; we split the interval $[0, 1]$ to two non-overlapping intervals with length corresponding to the probability of picking an edge from E_T and $E - E_T$. We further split the second interval by assigning each edge in $E - E_T$ with a sub-interval
of length corresponding to its probability, so that no two intervals overlap. At each sampling iteration we pick a random value in \([0, 1]\) and in \(O(1)\) time we decide if the value falls in the interval associated with \(E - E_T\). If no, we do nothing. If yes, we do a binary search taking \(O(\log n)\) time in order to find the sub-interval that contains the value. With the given input \(\text{SAMPLE}\) draws at most \(\tilde{O}(\ell \log n \log(1/\xi))\) samples from \(E - E_T\) and for each such sample it does \(O(\log n)\) work. It also does \(O(n \log n \log(1/\xi))\) work rejecting the samples from \(E_T\). Thus the cost of the call to \(\text{SAMPLE}\) is \(\tilde{O}((n \log n + \ell \log^2 n) \log(1/\xi))\). ■

Since the weights of the tree-edges \(E_T\) in \(H\) are different than those in \(G\), we will use \(T_H\) to denote the spanning tree of \(H\) whose edge-set is \(E_T\). We now show a key property of \(\text{INCREMENTALSPARSFY}\).

Lemma 3.3 (Uniform Sample Stretch) Let \(H = (V, E_T \cup \mathcal{L}, w) := \text{INCREMENTALSPARSFY}(G, E_T, \kappa, \xi)\), and \(C_S, t\) as defined in Theorem 3.2. For all \(l \in \mathcal{L}\), we have

\[
\text{stretch}_{T_H}(l) = \frac{1}{3C_S \log t \log(1/\xi)}.
\]

Proof Let \(T' = \kappa T\). Consider an arbitrary non-tree edge \(e\) of \(G'\) defined in Step 5 of \(\text{INCREMENTALSPARSFY}\). The probability of it being sampled is:

\[
p'_e = \frac{1}{t} \cdot w_e \cdot R_{T'}(e)
\]

where \(R_{T'}(e)\) is the effective resistance of \(e\) in \(T'\) and \(t = n - 1 + s_{T'}(G') = n - 1 + \text{stretch}_{T}(G)/\kappa\) is the total stretch of all \(G'\) edges by \(T'\). If \(e\) is picked, the corresponding sample \(l\) has weight \(w_e\) scaled up by a factor of \(1/p'_e\), but then divided by \(q\) at the end. This gives

\[
w_l = \frac{w_e}{p'_e} \cdot \frac{1}{q} = \frac{w_e}{R_{T'}(e)/t} \cdot \frac{1}{C_S t \log t \log(1/\xi)}
\]

So the stretch of \(l\) with respect to \(T'\) is independent from \(w_e\) and equal to

\[
\text{stretch}_{T'}(e) = w_l R_{T'}(e) = \frac{1}{C_S \log t \log(1/\xi)}.
\]

Finally note that \(T_H = 3T'\). This proves the claim. ■

4 Solving using Incremental Sparsifiers

We follow the framework of the solvers in [ST06] and [KMP10a] which consist of two phases. The preconditioning phase builds a chain of graphs \(\mathcal{C} = \{G_1, H_1, G_2, \ldots, H_d\}\) starting with \(G_1 = G\), along with a corresponding list of positive numbers \(K = \{\kappa_1, \ldots, \kappa_{d-1}\}\) where \(\kappa_i\) is an upper bound on the condition number of the pair \((G_i, H_i)\). The process for building \(\mathcal{C}\) alternates between calls to a sparsification routine (in our case \(\text{INCREMENTALSPARSFY}\)) which constructs \(H_i\) from \(G_i\) and a routine \(\text{GREEDYELIMINATION}\) which constructs \(G_{i+1}\) from \(B_i\), by applying a greedy elimination of degree 1 and 2 nodes. The preconditioning phase is independent from the \(b\)-side of the system \(L_A x = b\). The solve phase passes \(\mathcal{C}, b\) and a number of iterations \(t\) (depending on a desired error \(\epsilon\)) to the recursive preconditioning algorithm \(R-P-\text{CHEBYSHEV}\), described in [ST06] or in the appendix of [KMP10a].

We first give pseudocode for \(\text{GREEDYELIMINATION}\), which deviates slightly from the standard presentation where the input and output are the two graphs \(G\) and \(\tilde{G}\), to include a spanning tree of the graphs.
GreedyElimination

Input: Graph $G = (V, E, w)$, Spanning tree T of G

Output: Graph $\hat{G} = (\hat{V}, \hat{E}, \hat{w})$, Spanning tree \hat{T} of \hat{G}

1: $\hat{G} := G$
2: $E_{\hat{T}} := E_T$
3: repeat
4: greedily remove all degree-1 nodes from \hat{G}
5: if $\text{deg}_{\hat{G}}(v) = 2$ and $(v, u_1), (v, u_2) \in E_{\hat{G}}$ then
6: $w' := (1/w(u_1, v) + 1/w(u_2, v))^{-1}$
7: $w'' := w(u_1, u_2)$ (* it may be the case that $w'' = 0$ *)
8: replace the path (u_1, v, u_2) by an edge e of weight w' in \hat{G}
9: if (u_1, v) or (v, u_2) are not in \hat{T} then
10: Let $\hat{T} = \{ \hat{T} \} - \{(u_1, v), (v, u_2), (u_1, u_2)\}$
11: else
12: Let $\hat{T} = \{ \hat{T} \cup e \} - \{(u_1, v), (v, u_2), (u_1, u_2)\}$
13: end if
14: end if
15: until there are no nodes of degree 1 or 2 in \hat{G}
16: return \hat{G}

Of course we still need to prove that the output \hat{T} is indeed a spanning tree. We prove the claim in the following Lemma that also examines the effect of GreedyElimination to the total stretch of the off-tree edges.

Lemma 4.1 Let $(\hat{G}, \hat{T}) := \text{GreedyElimination}(G, T)$. The output \hat{T} is a spanning tree of \hat{G}, and

$$|\text{stretch}_T(\hat{G})| \leq |\text{stretch}_T(G)|.$$

Proof We prove the claim inductively by showing that it holds for all the pairs (\hat{G}_i, \hat{T}_i) throughout the loop, where (\hat{G}_i, \hat{T}_i) denotes the pair (\hat{G}, \hat{T}) after the i^{th} elimination during the course of the algorithm. The base of the induction is the input pair (G, T) and so the claim holds for it.

When a degree-1 node gets eliminated the corresponding edge is necessarily in E_T by the inductive hypothesis. Its elimination doesn’t affect the stretch of any off-tree edge. So, it is clear that if (\hat{G}_i, \hat{T}_i) satisfy the claim then after the elimination of a degree-1 node $(\hat{G}_{i+1}, \hat{T}_{i+1})$ will also satisfy the claim.

By the inductive hypothesis about \hat{T}_i if $(v, u_1), (v, u_2)$ are eliminated then at least one of the two edges must be in \hat{T}_i. We first consider the case where one of the two (say (v, u_2)) is not in \hat{T}_i. Both u_1 and u_2 must be connected to the rest of \hat{G}_i through edges of \hat{T}_i different than (u_1, v) and (v, u_2). Hence \hat{T}_{i+1} is a spanning tree of \hat{G}_{i+1}. Observe that we eliminate at most two non-tree edges from \hat{G}_i: (v, u_2) and (u_1, u_2) with corresponding weights $w(v, u_2)$ and w'' respectively. Let $\hat{T}[e]$ denote the unique tree-path between the endpoints of e in \hat{T}. The contribution of the two eliminated edges to the total stretch is equal to

$$s_1 = w(v, u_2)R_{\hat{T}_i}((v, u_2)) + w''R_{\hat{T}_i}((u_1, u_2)).$$

The two eliminated edges get replaced by the edge (u_1, u_2) with weight $w' + w''$. The contribution of the new edge to the total stretch in \hat{G}_{i+1} is equal to

$$s_2 = w'R_{\hat{T}_{i+1}}((u_1, u_2)) + w''R_{\hat{T}_{i+1}}((u_1, u_2)).$$
We have \(R_{\tilde{G}_{i+1}}((u_1, u_2)) = R_{\tilde{G}_i}((u_1, u_2)) < R_{\tilde{G}_i}((v, u_2)) \) since all the edges in the tree-path of \((u_1, u_2)\) are not affected by the elimination. We also have \(w(v, u_2) > w', \) hence \(s_1 > s_2. \) The claim follows from the fact that no other edges are affected by the elimination, so

\[
| \text{stretch}_{\tilde{G}_i}(\hat{G}_i) | - | \text{stretch}_{\tilde{G}_{i+1}}(\hat{G}_{i+1}) | = s_1 - s_2 > 0.
\]

We now consider the case where both edges eliminated in Steps 5-13 are in \(\hat{T}_i. \) It is clear that \(\hat{T}_{i+1} \) is a spanning tree of \(\hat{G}_{i+1}. \) Consider any off-tree edge \(e \) not in \(\hat{T}_{i+1}. \) One of its two endpoints must be different than either \(u_1 \) or \(u_2, \) so its endpoints and weight \(w_e \) are the same in \(\hat{T}_i. \) However the elimination of \(v \) may affect the stretch of \(e \) if \(\hat{T}_i[e] \) goes through \(v. \) Let

\[
\tau = (\sum_{e' \in \hat{T}_i[e]} 1/w_{e'}) - (1/w(u_1, v) + 1/w(u_2, v))
\]

\[
= (\sum_{e' \in \hat{T}_{i+1}[e]} 1/w_{e'}) - \left((1/w(u_1, v) + 1/w(u_2, v))^{-1} + w_e \right)^{-1}.
\]

We have

\[
\frac{\text{stretch}_{\hat{T}_i}(e)}{\text{stretch}_{\hat{T}_{i+1}}(e)} = \frac{w_e \sum_{e' \in \hat{T}_i[e]} 1/w_{e'}}{w_e \sum_{e' \in \hat{T}_{i+1}[e]} 1/w_{e'}} = \frac{(1/w(u_1, v) + 1/w(u_2, v)) + \tau}{\left((1/w(u_1, v) + 1/w(u_2, v))^{-1} + w_e \right)^{-1} + \tau} \geq 1.
\]

Since individual edge stretches only decrease, the total stretch also decreases and the claim follows. ■

Definition 4.2 [Good Preconditioning Chain]

*Let \(C = \{ G = G_1, H_1, G_2, \ldots, G_d \} \) be a chain of graphs and \(K = \{ \kappa_1, \kappa_2, \ldots, \kappa_{d-1} \} \) a list of numbers. We say that \(\{ C, K \} \) is a good preconditioning chain for \(G, \) if there exist a list of numbers \(U = \{ \mu_1, \mu_2, \ldots, \mu_d \} \) such that:

1. \(G_i \preceq H_i \preceq \kappa_i G_i. \)
2. \(G_{i+1} = \text{GreedyElimination}(H_i). \)
3. \(\mu_i \) is at least the number of edges in \(G_i. \)
4. \(\mu_1, \mu_2 \leq m, \) where \(m \) is the number of edges in \(G = G_1. \)
5. \(\mu_i/\mu_{i+1} \geq \left[c_r \sqrt{\kappa_i} \right] \) for all \(i > 1 \) where \(c_r \) is an explicitly known constant.
6. \(\kappa_i \geq \kappa_{i+1}. \)
7. \(\mu_d \) is a smaller than a fixed constant.*

Spielman and Teng [ST06] analyzed the recursive preconditioned Chebyshev iteration R-P-CHEBYSHEV that can be found in the appendix of [KMP10a] and showed that the solution of an arbitrary SDD system can be reduced to the computation of a good preconditioning chain. This is captured more concretely by the following Lemma which is adapted from Theorem 5.5 in [ST06].

Lemma 4.3 *Let \(A \) be an SDD matrix with \(A = L_G + D \) where \(D \) is a diagonal matrix with non-negative elements, and \(L_G \) is the Laplacian of a graph \(G. \) Given a good preconditioning chain \(\{ C, K \} \) for \(G, \) a vector \(x \) such that \(||x - A^+b||_A < \epsilon ||A^+b||_A \) can be computed in time \(O(m \sqrt{\kappa_1} + m \sqrt{\kappa_1 \kappa_2}) \log(1/\epsilon)). \)"
Before we proceed to the algorithm for building the chain we will need a modified version of a result by Abraham, Bartal, and Neiman [ABN08], which we prove in Section 5.

Theorem 4.4 There is an algorithm \textsc{LowStretchTree} that, given a graph $G = (V, E, w)$, outputs a spanning tree T of G such that

$$\sum_{e \in E} \text{stretch}_T(e) \leq O(m \log n \log^3 n).$$

The algorithm runs in $O(m \log n + n \log n \log \log n)$ time.

Algorithm \textsc{BuildChain} generates the chain of graphs.

\begin{algorithm}
\textbf{Input:} Graph G, scalar p with $0 < p < 1$

\textbf{Output:} Chain of graphs $C = \{G = G_1, H_1, G_2, \ldots, G_d\}$, List of numbers K.

\begin{algorithmic}
\STATE \textstyle{\left(\text{c}_{\text{stop}} \text{ and } \kappa_c \text{ are explicitly known constants}\right)}
\STATE $G_1 := G$
\STATE $T := \textsc{LowStretchTree}(G)$
\STATE $H_1 := G_1 + \tilde{O}(\log^2 n) T$
\STATE $G_2 := H_1$
\STATE $K := \emptyset$; $C := \emptyset$; $i := 2$
\STATE $\xi := 2 \log n$
\STATE $E_{T_2} := E_T$
\STATE $\textbf{while } n_i > c_{\text{stop}} \textbf{ do}$
\STATE \hspace{1em} $H_i := (V_i, E_{T_i} \cup L_i) := \textsc{IncrementalSparsify}(G_i, E_{T_i}, \kappa_c, p\xi)$
\STATE \hspace{1em} $\{G_{i+1}, T_{i+1}\} := \textsc{GreedyElimination}(H_i, T_i)$
\STATE \hspace{1em} $C = C \cup \{G_i, H_i\}$
\STATE \hspace{1em} $i := i + 1$
\STATE $\textbf{end while}$
\STATE $K = \{\tilde{O}(\log^2 n), \kappa_c, \kappa_c, \ldots, \kappa_c\}$
\STATE $\textbf{return} \ \{C, K\}$
\end{algorithmic}
\end{algorithm}

It remains to show that our algorithm indeed generates a good preconditioning chain.

Lemma 4.5 Given a graph G, \textsc{BuildChain}(G, p) produces with probability at least $1 - p$, a good preconditioning chain $\{C, K\}$ for G, such that $\kappa_1 = \tilde{O}(\log^2 n)$ and for all $i \geq 2$, $\kappa_i = \kappa_c$ for some constant κ_c. The algorithm runs in time proportional to the running time of \textsc{LowStretchTree}(G).

Proof Let l_1 denote the number of edges in G and $l_i = |L_i|$ the number of off-tree samples for $i > 1$. We prove by induction on i that:

\begin{enumerate}[(a)]
\item $l_{i+1} \leq 2l_i/\kappa_c$.
\item $\text{stretch}_{T_{i+1}}(G_{i+1}) \leq l_i/(C_S \log t_i \log(1/(p\xi))) = \kappa_c \hat{t}_i$, where C_S, \hat{t}_i and t_i are as defined in Theorem 3.2 for the graph G_i.
\end{enumerate}

For the base case of $i = 1$, by picking a sufficiently large scaling factor $\kappa_1 = \tilde{O}(\log^2 n)$ in Step 4, we can satisfy claim (b). By Theorem 3.2 it follows that $l_2 \leq 2l_1/\kappa_c$, hence (a) holds. For the inductive argument,
Lemma 3.3 shows that $\text{stretch}_{E_k}(H_i)$ is at most $l_i/(C_S \log t_i \log(1/(p\xi)))$. Then claim (b) follows from Lemma 4.1 and claim (a) from Theorem 3.2.

We now exhibit the list of numbers $\mathcal{U} = \{\mu_1, \mu_2 \ldots \mu_d\}$ required by Definition 4.2. A key property of GreedyElimination is that if G is a graph with $n - 1 + j$ edges, the output \hat{G} of GreedyElimination(G) has at most $2j - 2$ vertices and $3j - 3$ edges [ST06]. Hence the graph G_{i+1} returned by GreedyElimination(H_i) has at most $6l_i/\kappa_c$ edges. Therefore setting $\mu_i = 6l_i/\kappa_c$ gives an upper bound on the number of edges in G_{i+1} and:

$$\frac{\mu_i}{\mu_{i+1}} = \frac{6l_i/\kappa_c}{6l_{i+1}/\kappa_c} \geq \frac{3l_{i+1}}{6l_{i+1}/\kappa_c} \geq \frac{\kappa_c^2}{2}.$$

At the same time we have $G_i \preceq H_i \preceq 54\kappa_c G_i$. By picking κ_c to be large enough we can satisfy all the requirements for the preconditioning chain.

The probability that H_i has the above properties is by construction at least $1 - p/(2\log n)$. Since there are at most $2\log n$ levels in the chain, the probability that the requirements hold for all i is then at least

$$(1 - p/(2\log n))^{2\log n} > 1 - p.$$

Finally note that each call to IncrementalSparsify takes $\tilde{O}(\mu_i \log n \log(1/p))$ time. Since μ_i decreases geometrically with i, the claim about the running time follows.\hfill\square

Theorem 4.6 On input an $n \times n$ symmetric diagonally dominant matrix A with m non-zero entries and a vector b, a vector x satisfying $||x - A^+ b||_A < \epsilon ||A^+ b||_A$ can be computed in expected time $\tilde{O}(m \log n \log(1/\epsilon))$.

5 Speeding Up Low Stretch Spanning Tree Construction

We improve the running time of the algorithm for finding a low stretch spanning tree given in [EEST05, ABN08] by a factor of $\log n$, while retaining the $O(m \log n \log \log^3 n)$ bound on total stretch given in [ABN08]. Specifically, we claim the following Theorem.

Theorem 5.1 There is an algorithm LowStretchTree that given a graph $G = (V, E, w)$, outputs a spanning tree T of G in $O(m \log n + n \log n \log \log n)$ time such that

$$\sum_{e \in E} \text{stretch}_T(e) \leq O(m \log n \log \log^3 n).$$

We first show that if the graph only has k distinct edge weights, Dijkstra’s algorithm can be modified to run in $O(m + n \log k)$ time. Our approach is identical to the algorithm described in [OMSW10]. However, we obtain a slight improvement in running time over the $O(m \log \frac{mk}{n})$ bound given in [OMSW10].

The low stretch spanning tree algorithm in [EEST05, ABN08] makes use of Dijkstra’s, as well as intermediate stages of it in the routines BallCut and ConeCut. We first improve the underlying data structure used by these routines.

Lemma 5.2 There is a data structure that given a list of non-negative values $L = \{l_1 \ldots l_k\}$ (the distinct edge lengths), maintains a set of keys (distances) starting with $\{0\}$ under the following operations:

1. **FindMin()**: returns the element with minimum key.
2. **DeleteMin()**: delete the element with minimum key.
3. **Insert(j)**: insert the minimum key plus l_j into the set of keys.
4. **DecreaseKey**(*v, j*): decrease the key of *v* to the minimum key plus *l*.

Insert and **DecreaseKey** have \(O(1)\) amortized cost and **DeleteMin** has \(O(\log k)\) amortized cost.

Proof We maintain \(k\) queues \(Q_1 \ldots Q_k\) containing the keys with the invariant that the keys stored in them are in non-decreasing order. We also maintain a Fibonacci heap as described in [FT87] containing the first element of all non-empty queues. Since the number of elements in this heap is at most \(k\), we can perform **Insert** and **DecreaseKey** in \(O(1)\) and **DeleteMin** in \(O(\log k)\) amortized time on these elements. The invariant then allows us to support **FindMin** in \(O(1)\) time.

Since \(l_k \geq 0\), the new key introduced by **Insert** or **DecreaseKey** is always at least the minimum key. Therefore the minimum key is non-decreasing throughout the operations. So if we only append keys generated by adding \(l_j\) to the minimum key to the end of \(Q_j\), the invariant that the queues are monotonically non-decreasing is maintained. Specifically, **Insert**(\(j\)) can be performed by appending a new entry to the tail of \(Q_j\).

For **DecreaseKey**(\(v, j\)), suppose \(v\) is currently stored in queue \(Q_i\). We consider two cases:

1. \(v\) has a predecessor in \(Q_i\). Then the key of \(v\) is not the key of \(Q_i\) in the Fibonacci heap and we can remove \(v\) from \(Q_i\) in \(O(1)\) time while keeping the invariant. Then we can insert \(v\) with its new key at the end of \(Q_j\) using one **Insert** operation.

2. \(v\) is currently at the head of \(Q_i\). Then simply decreasing the key of \(v\) would not violate the invariant of all keys in the queues being monotonic. As the new key will be present in the heap containing the first elements of the queues, a decrease key needs to be performed on the Fibonacci heap containing those elements.

DeleteMin can be done by doing a delete min in the Fibonacci heap, and removing the element from the queue containing it. If the queue is still not empty, it can be reinserted into the Fibonacci heap with key equaling to that of its new first element. The amortized cost of this is \(O(\log k) + O(1) = O(\log k)\).

The running times of Dijkstra’s algorithm, **BallCut** and **ConeCut** then follows.

Corollary 5.3 Let \(G\) be a connected weighted graph and \(x_0\) be some vertex. If there are \(k\) distinct values of \(d(u, v)\), Dijkstra’s algorithm can compute \(d(x_0, u)\) for all vertices \(u\) in \(O(m + n \log k)\) time.

Proof Same as the proof of Dijkstra’s algorithm with Fibonacci heap, except the cost of a **DeleteMin** is \(O(\log k)\).

Corollary 4.4 (Corollary 4.3 of [EEST05]) If there are at most \(k\) distinct distances in the graph, then **BallCut** returns ball \(X_0\) such that

\[
\text{cost}(\delta(X_0)) \leq O \left(\frac{m}{r_{\max} - r_{\min}} \right),
\]

in \(O(\text{vol}(X_0) + |V(X_0)| \log k)\) time.

Corollary 5.5 (Lemma 4.2 of [EEST05]) If there are at most \(k\) distinct values in the cone distance \(\rho\), then

For any two values \(0 \leq r_{\min} < r_{\max}\), **ConeCut** finds a real \(r \in [r_{\min}, r_{\max})\) such that

\[
\text{cost}(\delta(B_\rho(r, x_0))) \leq \frac{\text{vol}(L_r) + \tau}{r_{\max} - r_{\min}}.
\]

\[
\max \left[1, \log_2 \left(\frac{m + \tau}{\text{vol}(E(B_\rho(r, r_{\min})) + \tau)} \right) \right],
\]
in $O(\text{vol}(B_\rho(r, x_0)) + |V(B_\rho(r, x_0))| \log k)$ time, where $B_\rho(r, x_0)$ is the set of all vertices v within distance r from x_0 in cone length ρ.

Proof The existence such a L_r follows from Lemma 4.2 of [EEST05] and the running time follows from the bounds given in Lemma 5.2.

We now proceed to show a faster algorithm for constructing low stretch spanning trees by using the data structure from Lemma 5.2. Our presentation is based on the algorithm described in [ABN08], which consists of \textsc{HierarchicalStarPartition} at the top level that makes repeated calls to \textsc{StarPartition}. \textsc{StarPartition} then in turn obtains a desired partition via calls to \textsc{BallCut} and \textsc{ImpConeDecomp} which uses \textsc{ConeCut}. Due to space limitations we refer to these routines without stating their parameters and guarantees.

Lemma 5.6 Given a graph X that has k distinct edge lengths, The version of \textsc{StarPartition} that uses \textsc{ImpConeDecomp} as stated in Corollary 6 of [ABN08] runs in time $O(\text{vol}(|X|) + |V(X)| \log k)$.

Proof Finding radius and calling \textsc{BallCut} takes $O(\text{vol}(|X|) + |V(X)| \log k)$ time. Since the X_is form a partition of the vertices and \textsc{ImpConeDecomp} never reduce the size of a cone, the total cost of all calls to \textsc{ImpConeDecomp} is

$$\sum_i (\text{vol}(X_i) + |V(X_i)| \log k) \leq \text{vol}(X) + |V(X)| \log k.$$

We now need to ensure that all calls to \textsc{StarPartition} are made with a small value of k. This can be done by rounding the edge lengths so that at any iteration of \textsc{HierarchicalStarPartition}, the graph has $O(\log n)$ distinct edge weights.

RoundLengths

Input: Graph $G = (V, E, d)$

Output: Rounded graph $\tilde{G} = (V, E, \tilde{d})$

1. Sort the edge weights of d so that $d(e_1) \leq d(e_2) \leq \cdots \leq d(e_m)$.
2. $i' = 1$
3. for $i = 1 \ldots m$ do
4. if $d(e_i) > 2d(e_{i'})$ then
5. $i' = i$
6. end if
7. $\tilde{d}(e_i) = d(e_{i'})$
8. end for
9. return $\tilde{G} = (V, E, \tilde{d})$

The cost of \textsc{RoundLengths} is dominated by the sorting the edges lengths, which takes $O(m \log m)$ time. Before we examine the cost of constructing low stretch spanning tree on \tilde{G}, we show that for any tree produced in the rounded graph \tilde{G}, taking the same set of edges in G gives a tree with similar average stretch.

Claim 5.7 For each edge e, $\frac{1}{2}d(e) \leq \tilde{d}(e) \leq d(e)$.
Lemma 5.8 Let T be any spanning tree of (V, E), and u, v any pair of vertices, we have

\[
\frac{1}{2} d_T(u, v) \leq \tilde{d}_T(u, v) \leq d_T(u, v).
\]

Proof Summing the bound on a single edge over all edges on the tree path suffices.

Combining these two gives the following Corollary.

Corollary 5.9 For any pair of vertices u, v such that $uv \in E$,

\[
\frac{1}{2} \frac{d_T(u, v)}{d(u, v)} \leq \frac{\tilde{d}_T(u, v)}{d(u, v)} \leq 2 \frac{\tilde{d}_T(u, v)}{d(u, v)}.
\]

Hence calling HierarchicalStarPartition(\tilde{G}, x_0, Q) and taking the same tree in G gives a low stretch spanning tree for G with $O(m \log n \log \log^3 n)$ total stretch. It remains to bound the running time.

Theorem 5.10 HierarchicalStarPartition(\tilde{G}, x_0, Q) runs in $O(m \log m + n \log m \log \log m)$ time on the rounded graph \tilde{G}.

Proof It was shown in [EEST05] that the lengths of all edges considered at some point where the farthest point from x_0 is r is between $r \cdot n^{-3}$ and r. The rounding algorithm ensures that if $\tilde{d}(e_i) \neq \tilde{d}(e_j)$ for some $i < j$, we have $2\tilde{d}(e_i) < \tilde{d}(e_j)$. Therefore in the range $[r, r \cdot n^3]$ (for some value of r), there can only be $O(\log n)$ different edge lengths in \tilde{d}. Lemma 5.6 then gives that each call of StarPartition runs in $O(\text{vol}(X) + |V(X)| \log \log n)$ time. Combining with the fact that each edge appears in at most $O(\log n)$ layers of the recursion (Theorem 5.2 of [EEST05]), we get a total running time of $O(m \log n + n \log n \log \log n)$.

6 Discussion

The output of IncrementalSparsify is a graph of samples with a remarkable property as a direct consequence of Lemma 3.3; its further incremental sparsification can be performed by a mere uniform sampling of its off-tree multi-edges.

This leads naturally to the definition of a smooth sequence of (multi)-graphs on a common set of vertices, with the following properties: (i) it is of logarithmic size, (ii) the first graph is spine-heavy, (iii) every two subsequent graphs have a constant condition number, and (iv) the last graph is a tree. The sequence can be obtained by applying one round of IncrementalSparsify to the spine-heavy graph, and then $O(\log n)$ rounds of uniform sampling.

Smooth sequences of graphs can be useful in an alternative way for building a chain of preconditioners, which separates sparsification from greedy elimination. More concretely, the alternative algorithm first builds a smooth sequence of graphs, starting from the spine-heavy version of the input graph. Then, somewhat roughly speaking, the final chain is obtained by applying a slightly less aggressive version of GreedyElimination to each graph in the sequence; this version eliminates degree-one nodes as usually, but restricts itself to degree-two nodes whose both adjacent edges are in the low-stretch tree. The simplicity of this approach is particularly highlighted in the case of low-diameter unweighted graphs. Solving such graphs has now been essentially reduced to the computation of a BFS tree followed by a number of rounds of uniform sampling.

We believe that smooth sequences of graphs is a notion of independent interest that may found other applications.
References

[DS00] Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, 2000. 2, 3

[Spi10a] Daniel Spielman. Laplacian gems. Nevanlinna Prize Talk, FOCS 2010, October 2010. 1

