Approximate Maximum Flow in Undirected Networks by Christiano, Kelner, Madry, Spielmann, Teng (STOC 2011)

Kurt Mehlhorn

Max Planck Institute for Informatics and Saarland University

September 28, 2011
The Result

- $G = (V, E)$ undirected graph, s source, t sink.
- $u : E \rightarrow \mathbb{R}_{\geq 0}$, edge capacities
- $\epsilon > 0$

Can compute $(1 - \epsilon)$-approximate maximum flow in time $\tilde{O}(mn^{1/3}\epsilon^{-11/3})$.

- approximate minimum cut in similar time bound
- previous best: $\tilde{O}(m\sqrt{n}\epsilon^{-1})$ by Goldberg and Rao (98)
- uses electrical flows
Conversion to Integral Capacities

- \(B = \max_{P \text{ is } s-t \text{ path}} \min_{e \in P} u_e \)
- max bottleneck path in time \(O(m + n \log n) \)
- \(B \leq \text{max flow} \leq mB \).
- replace \(u_e \) by \(\min(u_e, mB) \).
- removing all edges of capacity less than \(\epsilon B/(2m) \) changes max-flow by at most \(\epsilon B/2 \).
- replace \(u_e \) by \(\left\lfloor \frac{u_e}{\epsilon B/2m} \right\rfloor \)

integral capacities in \([1, 2m^2/\epsilon]\)
A High-Level View of the Algorithm

\[F^* = \text{value of maximum flow.} \]

Do binary search on \([1, 2m^2/\epsilon]\). Let \(F\) be the current value of the search.

Have a subroutine \(\text{Flow}(F)\) which

- either finds a flow of value \(F\) that almost satisfies the capacity constraints or fails.
- if \(F \leq F^*\), it is guaranteed to return a flow.

Subroutine is realized via a low-level subroutine \(\text{flow}(F, w)\), which we discuss first. Here, \(w\) is a weight function on the edges.
Electrical Flows and Capacities

Resistances can simulate capacities

Let Q^* be a maximum flow. Orient edges in the direction of the flow, sort the graph topologically, and set

$$p_v = \text{number of nodes after } v \text{ in ordering.}$$

For $e = (u, v)$, set

$$R_e = \frac{Q_e^*}{\Delta_e}.$$

Then Q^* is the resulting flow.
An Observation

Set $R_e = 1/u_e^2$ and let $F \leq F^*$. Let Q be an electrical flow of value F. Then

$$\sum_e (Q_e/u_e)^2 = \sum_e R_e Q_e^2 \leq \sum_e R_e (Q_e^*)^2 = \sum_e (Q_e^*/u_e)^2 \leq m.$$

Define the congestion of e as

$$\text{cong}_e := Q_e/u_e.$$

Then,

$$\frac{1}{m} \sum_e \text{cong}_e^2 \leq 1 \quad \text{and} \quad \max_e \text{cong}_e \leq \sqrt{m}.$$
The Subroutine flow\((F, w)\)

1. Set \(R_e = (w_e + \epsilon W/m)/u_e^2\), where \(W = \sum_e w_e\).
2. Let \(Q\) be an electrical flow of value \(F\).
3. If \(\sum_e R_e Q_e^2 > (1 + \epsilon) W\) declare failure.
4. return \(Q\).

Properties

If \(F \leq F^*\), flow does not fail

If flow succeeds,

\[
\sum_e \frac{w_e}{W}\text{cong}_e \leq 1 + \epsilon \quad \text{and} \quad \max_e \text{cong}_e \leq \rho := \sqrt{\frac{(1 + \epsilon) m}{\epsilon}}.
\]
Proof

Set $R_e = (w_e + \epsilon W/m)/u_e^2$, where $W = \sum_e w_e$. Let Q be an electrical flow of value F. If $F \leq F^*$ then

$$
\sum_e R_e Q_e^2 \leq \sum_e R_e (Q_e^*)^2 = \sum_e (w_e + \frac{\epsilon W}{m}) \left(\frac{Q_e^*}{u_e} \right)^2 \leq (1 + \epsilon) W.
$$

If

$$
\sum_e (w_e + \frac{\epsilon W}{m}) \left(\frac{Q_e}{u_e} \right)^2 = \sum_e R_e Q_e^2 \leq (1 + \epsilon) W
$$

then

$$
\sum_e \frac{w_e}{W} \text{cong}_e^2 \leq 1 + \epsilon \quad \text{and} \quad \max_e \text{cong}_e \leq \sqrt{\frac{(1 + \epsilon) m}{\epsilon}}.
$$
From average squared congestion to average congestion

\[\sum_{e} w_{e} \text{cong}_{e} = \sum_{e} w_{e}^{1/2} \cdot w_{e}^{1/2} \text{cong}_{e} \leq \left(\sum_{e} w_{e} \right)^{1/2} \cdot \left(\sum_{e} w_{e} \text{cong}_{e}^{2} \right)^{1/2} \leq W^{1/2} ((1 + \varepsilon) W)^{1/2} \leq (1 + \varepsilon) W. \]
From flow to Flow

Flow(F)

set $w_e^{(1)} = 1$ for all e;
for $i = 1 \rightarrow T$ do

$Q^{(i)} = \text{flow}(F, w)$;
$\text{cong}_e^{(i)} = Q_e^{(i)}/u_e$ for all e
$w_e^{(i+1)} = w_e^{(i)}(1 + \epsilon \text{cong}_e^{(i)}/\rho)$ for all e;

end for

return

$$Q := \frac{1}{T} \sum_{1 \leq i \leq T} Q^{(i)}$$

{T = O(m^{1/2}\epsilon^{-5/2} \text{ suffices})}
{if call fails, fail}
Properties of Flow

Q is a flow of value F and if $F \leq F^*$, Q exists.

$$Q_e = \frac{1}{T} \sum_{1 \leq i \leq T} Q_e^{(i)} = \frac{1}{T} \sum_{1 \leq i \leq T} u_e \cdot \text{cong}_e^{(i)} = u_e \cdot \text{cong}_e$$

$$W^{(i+1)} = \sum_{e} w_e^{(i)} (1 + \epsilon \text{cong}_e^{(i)}/\rho) \leq (1 + \epsilon(1 + \epsilon)/\rho) W^{(i)}$$

$$W^{(T+1)} \leq \exp(((1 + \epsilon)\epsilon/\rho) T) \cdot m$$
Properties of Flow

\[w_e^{(i+1)} = w_e^{(i)} (1 + \epsilon \text{cong}_e^{(i)}/\rho) \geq w^{(i)} \exp((1 - \epsilon)\epsilon \text{cong}_e^{(i)}/\rho) \]

\[w_e^{(T+1)} \geq \exp((1 - \epsilon)\epsilon \text{cong}_e/\rho) T \]

\[((1 - \epsilon)\epsilon \text{cong}_e/\rho) T \leq \ln m + (\epsilon(1 + \epsilon)/\rho) T \]

\[\text{cong}_e \leq \frac{\rho \ln m}{(1 - \epsilon)\epsilon T} + \frac{1 + \epsilon}{1 - \epsilon} \leq \frac{\epsilon}{(1 - \epsilon)} + \frac{1 + \epsilon}{1 - \epsilon} \leq 1 + 4\epsilon \]

for \(T = (\rho \ln m)/\epsilon^2 = \widetilde{O}(m^{1/2}\epsilon^{-5/2}) \)
Putting it together

\[\tilde{O}(m^{1/2} \epsilon^{-5/2}) \] iterations suffice.

In each iteration we need to solve a SSD system and do linear extra work. Thus an iteration runs in time \(\tilde{O}(m \log 1/\epsilon) \).

Total running time is \(\tilde{O}(m^{3/2} \epsilon^{-5/2}) \).

But, I promised \(\tilde{O}(mn^{1/3} \epsilon^{-11/3}) \). This is reached in two steps:

- step one reduces to \(\tilde{O}(m^{4/3} \epsilon^{-3}) \), and
- step two reduces to \(\tilde{O}(mn^{1/3} \epsilon^{-11/3}) \). (Karger (98) and Bencur/Karger (02))
The First Step

Let H be a huge number; actually $H = (m \ln m)^{1/3} / \epsilon$.

What does $\text{cong}_e \geq H$ imply?

$Q_e/u_e \geq H$ and hence $u_e \leq Q_e/H \leq F/H$. Thus u_e is tiny.

We can afford to delete ϵH edges with huge congestion without sacrificing the approximation guarantee.

Modification of flow: if flow succeeds, i.e., $\mathcal{E}(Q) \leq (1 + \epsilon)W$, and there is an edge e with huge congestion, delete the edge and continue without the edge.

Observe, that change allows us to replace ρ by H in the analysis.
Deleting Huge Edges

If flow succeeds, we have $\mathcal{E}(Q) \leq (1 + \varepsilon)W$.

If e has huge congestion,

$$r_e Q_e^2 \geq \frac{\varepsilon W}{m} \left(\frac{Q_e}{u_e} \right)^2 \geq \frac{\varepsilon H^2}{(1 + \varepsilon)m} (1 + \varepsilon)W \geq \frac{\varepsilon H^2}{(1 + \varepsilon)m} \mathcal{E}(Q).$$

Let $\beta = \frac{\varepsilon H^2}{(1 + \varepsilon)m}$. If e has huge congestion, e accounts for a β fraction of the energy of the flow.

Deletion of a huge edge forces the energy of the flow to increase by a factor $1/(1 - \beta)$.

We have an upper bound on the final energy, namely $(1 + \varepsilon)W^{(T+1)}$. It is not too hard, to derive a lower bound on the energy of the first flow. Putting things together, we obtain a bound on the number of huge edges.
Deleting a Huge Edge II

Deletion of a huge edge increases the energy of the flow by a factor $1/(1 - \beta)$.

Let p be the electrical potentials for flow of value $1/R_{\text{eff}}$. Then $p_s = 1$ and $p_t = 0$. Energy of this flow is equal to $1/R_{\text{eff}}$.

$$\frac{1}{R'_{\text{eff}}} = \inf_{q_s = 1, q_t = 0} \sum_{uv \in E \setminus e} \frac{(q_u - q_v)^2}{r_{uv}} \leq \sum_{uv \in E \setminus e} \frac{(p_u - p_v)^2}{r_{uv}}$$

$$= \sum_{uv \in E} \frac{(p_u - p_v)^2}{r_{uv}} - \Delta_e^2/r_e \leq (1 - \beta) \frac{1}{R_{\text{eff}}}$$

Thus, $\mathcal{E}(Q') = F^2 R'_{\text{eff}} \geq \frac{1}{1-\beta} F^2 R_{\text{eff}} = \mathcal{E}(Q)$.