Springs and Graph Laplacian's

Input: Graph of Springs (Mattress)
\(G = (V, E, K) \)

\(K_{ij} \) = spring constant for edge \(E_{ij} \)

Consider only vertical displacements

\(u_i \) = displacement of \(V_i \)

God: Find solutions to Newton: \(f = ma \)
Find forces for displacement \(u = (u_1, \ldots, u_n) \).

Set force on \(u_i \) by spring \(E_{ij} \)

\[-(u_i - u_j) K_{ij}\]

ie linear spring model.
\[L = L(G) \]

Force vector \(-LU\)

Let \(m_i \) = mass of \(V_i \)

\[M = \begin{pmatrix} m_1 & 0 \\ 0 & m_n \end{pmatrix} \]

\(m_i > 0 \)

View \(u \) as a function of time \(u(t) = \begin{pmatrix} u_1(t) \\ \vdots \\ u_n(t) \end{pmatrix} \)

Acceleration: For \(u_i(t) = \frac{d^2 u_i}{dt^2} \)

\[\frac{du}{dt} = \begin{pmatrix} \frac{du_1}{dt} \\ \vdots \\ \frac{du_n}{dt} \end{pmatrix} \quad \therefore \quad a_i = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \frac{d^2 u}{dt^2} \]

Newton: \(-LU = M(\frac{d^2 u}{dt^2})\)
Two ways to solve:

1) Solve for \(u \) given initial conditions
 say \(u(0) & u'(0) \)

2) Find steady state solutions

Do 2) using Guess and check.

Recall: \(e^{iwt} = \cos \omega t + i \sin \omega t \)

\[
\frac{de^{iwt}}{dt} = i\omega e^{iwt} \equiv -\omega \sin \omega t + i\omega \cos \omega t
\]

\[
= i\omega (\cos \omega t + i \sin \omega t)
\]

\[
\frac{d^2 e^{iwt}}{dt^2} = \frac{d}{dt} \left(i\omega e^{iwt} \right) = i^2 \omega^2 e^{iwt} = -\omega^2 e^{iwt}
\]

\[
\frac{d\cos x}{dx} = -\sin x
\]

\[
\frac{d\sin x}{dx} = \cos x
\]
Guess: $U = e^{i\omega t} x$ some vector x.

$$\frac{d^2 U}{dt^2} = -W^2 e^{i\omega t} x$$

Check:

$$M(-W^2 e^{i\omega t} x) = -L(e^{i\omega t} x)$$

If $W^2 M x = L x$ set $\lambda = W^2$

If $L x = \lambda M x$ is (λ, x) a generalized eigen-pair?

Claim: Eigenvalues of $L x = \lambda M x$ are real non-negative.

Change of variables $Y = M^{-\frac{1}{2}} x$ or $x = M^{-\frac{1}{2}} Y$

$$L M^{-\frac{1}{2}} Y = \lambda M M^{-\frac{1}{2}} Y$$

$$M^{-\frac{1}{2}} L M^{-\frac{1}{2}} Y = \lambda M^{-\frac{1}{2}} M M^{-\frac{1}{2}} Y$$

k' is positive semi-definite
We have found a space of dimension solutions.

\[W_i = \sqrt{\lambda_i} \quad \text{then} \quad X_i \quad \text{the eigenvector} \]

\[u(t) = \alpha_i e^{i\omega t} X_i + \ldots + \alpha_n e^{i\omega t} X_n \]

is a solution.

Consider setting mass = the weight of degree

Eigenpairs \(L X = \lambda D X \) \((\lambda)\) \(L = D - A \)

Change of variable \(Y = D X \)

\((\lambda) \text{iff } (D - A) D Y = \lambda Y \)

\((I - AD)^{-1} Y = \lambda Y \quad M = AD^{-1} \quad \text{transition matrix} \)

for a random walk.

\[Y - MY = \lambda Y \]

\[Y - MY = (\lambda - 1) Y \quad \text{iff} \quad MY = (1 - \lambda) Y \]

If \(0 = \lambda_1 < \lambda_2 \ldots \ldots \leq \lambda_n \) eigenvalues of \((\lambda)\)

then \(0 \leq 1 - \lambda_n \ldots \ldots 1 - \lambda_{n-1} \), 0 eigen of \(MX = \lambda X \).
Differential Eq

\[
\frac{dx}{dt} = Ax \\
A^T = A
\]

\[
\lambda_i \leq \lambda_2 \leq \cdots \leq \lambda_n
\]

\[
x_i \quad = \quad x_n
\]

Guess & check \[c e^{\lambda_i t} x_i = u \]

\[
\frac{du}{dt} = c \lambda_i e^{\lambda_i t} x_i
\]

\[
Au = A c e^{\lambda_i t} x_i = c e^{\lambda_i t} A x_i
\]

\[
= c e^{\lambda_i t} \lambda_i x_i
\]
\[U(t) = c_1 e^{\lambda_1 t} x_1 + \ldots + c_n e^{\lambda_n t} x_n \]

\[U(t) \text{ works!} \]

Def.
\[e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots \]

\[(e^{A_s})(e^{A_t}) = e^{A(s+t)} \quad (e^{A_t})(e^{-A_t}) = I \]

\[\frac{d e^{A_t}}{dt} = A e^{A_t} \]

Suppose \[A = S \Lambda S^{-1} \]

\[e^{A_t} = I + S \Lambda S^{-1} + S \Lambda^2 S^{-1} t^2 + \ldots \]

\[= S \left(I + \Lambda t + \ldots \right) S^{-1} = S e^{\Lambda t} S^{-1} \]
Solve \(\frac{du}{dt} = Au \) initial condition \(u(0) \)

Claim \(e^{At}u(0) \) works

\[
\frac{d}{dt} e^{At}u(0) = Ae^{At}u(0)
\]

Then \(A^T = A \) \(B^T = B \) then \(\text{tr}(e^{A+B}) = \text{tr}(e^A e^B) \)
GOLDEN-THOMPSON INEQUALITY

For $n \times n$ complex matrices, the matrix exponential is defined by Taylor series as

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

For commuting matrices A and B we see that $e^{A+B} = e^A e^B$ by multiplying the Taylor series. This identity is not true for general non-commuting matrices. In fact, it always fails if A and B do not commute, see [2].

Theorem 1 (Golden-Thompson Inequality). For arbitrary self-adjoint matrices A and B, one has

$$\text{tr}(e^{A+B}) \leq \text{tr}(e^A e^B).$$

For a survey of Golden-Thompson and other trace inequalities, see [2]. In the present note, we give a proof of Golden-Thompson inequality following [1] Theorem 9.3.7.

2. A version of Golden-Thompson inequality for three matrices fails:

$$\text{tr}(e^{A+B+C}) \not\leq \text{tr}(e^A e^B e^C).$$

The proof of Golden-Thompson inequality is based on Lie Product Formula:

Theorem 2 (Lie Product Formula). For arbitrary matrices A and B, we have

$$e^{A+B} = \lim_{N \to \infty} (e^{A/N} e^{B/N})^N.$$

Proof. We first compare

$$X_N = e^{(A+B)/N} \quad \text{and} \quad Y_N = e^{A/N} e^{B/N}.$$

As $N \to \infty$, Taylor’s expansion gives

$$X_N = 1 + \frac{A + B}{N} + O(N^{-2}),$$

$$Y_N = \left[1 + \frac{A}{N} + O(N^{-2})\right] \left[1 + \frac{B}{N} + O(N^{-2})\right]$$

$$= 1 + \frac{A}{N} + \frac{B}{N} + O(N^{-2}).$$

This shows that

$$(1) \quad X_N - Y_N = O(N^{-2}).$$
For a proof, see [1] Theorem 2.3.6.

Proposition 3 follows from Weyl’s Majorant Theorem for the function $f(x) = x^m$:

$$|\text{tr}(X^m)| = \left| \sum_{i=1}^{n} \lambda_i^m \right| \leq \sum_{i=1}^{n} |\lambda_i|^m \leq \sum_{i=1}^{n} s_i^m = \text{tr}(|X|^m).$$

\textit{Proof of Golden-Thompson Inequality.} Fix a natural number N and consider

$$X = e^{A/2N}, \quad X = e^{B/2N}.$$

To prove Golden-Thompson Inequality, it suffices to show that

\begin{equation}
\text{tr}((XY)^{2N}) \leq \text{tr}(X^{2N}Y^{2N}). \tag{2}
\end{equation}

Indeed, if (2) holds then, taking limit as $N \to \infty$ we see that the left hand side of (2) converges to $\text{tr}(e^{A+B})$ by Lie Product Formula, while the right hand side equals $\text{tr}(e^{A}e^{B})$.

To prove (2), we use Proposition 3 and note that $|XY|^2 = (XY)^*(XY) = YX^2Y$. We thus have

$$\text{tr}(XY)^{2N} \leq \text{tr}(YX^2Y)^{2N-1} = \text{tr}(X^2Y^2)^{2N-1},$$

where the last equality follows from the trace property $\text{tr}(UV) = \text{tr}(VU)$.

Continuing this procedure for X^2 and Y^2, we obtain

$$\text{tr}(X^2Y^2)^{2N-1} \leq \text{tr}(X^4Y^4)^{2N-2}.$$

After N steps, we arrive at the bound (2). This proves Golden-Thompson Inequality. \qed

\textbf{References}
