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Adjacency matrix and Laplacian

Intuition, spectral graph drawing

Physical intuition
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Random walks

Graph Partitioning and clustering
Distributions of eigenvalues and compression

Computation



What I’m Skipping
Matrix-tree theorem.
Most of algebraic graph theory.
Special graphs (e.g. Cayley graphs).
Connections to codes and designs.

Lots of work by theorists.

Expanders.



The Adjacency Matrix

0—0—0—0
. 1 if (¢,5) € E
Az, 7) =
(i:7) {O otherwise ((1) (1) (1) 8\
0 1 0 1
\0 0 1 0/

A Is eigenvalue and v is eigenvector if
Av = v

Think of UV & IRV, orevenbetter v : V — IR

Symmetric -> n real eigenvalues and
real eigenvectors form orthonormal basis



Example
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Example: invariant under re-labeling

GO Lo/ L) [ 1Y
1 01 0 —0.618 | _ .| —0.618
01 0 1 0618 | — 0.618

\ 0o 0 10/ \ 1 \ iy
4
-1 -0.618 0.618 1

00 0 o©
\




Example: invariant under re-labeling

<:(0110\(—0.618\ /—0.618\)
1 0 0 0 —1 0618 —1
1 0 0 1 0.618 ' 0.618
\ 0o 0 10/ \ 1 \ iy




Operators and Quadratic Forms

View of A as an operator:

y = Ax (i)=Y ()

View of A as quadratic form:

! Ax = Z x(i)z(j)

(i,7)eE

if Ar =X xr and |z||=1 then zTAx =\



Laplacian: natural quadratic form on graphs
Le= Y (ali) - 2(j))?
(4,J)EE

I, = ) — A where D is diagonal matrix of degrees

/1—1 0 o\

—1 2 —1 0
0 —1 2 —1

\ 0 0 -1 1/
O—0—6—0




Laplacian: fast facts

L.1=0 S0, zero Is an eigenvalue
O0=A1 S A<+ < Ay

If K connected components, 0 = A\ < A\p41

Fiedler (‘73) called A
“algebraic connectivity of a graph”
The further from O, the more connected.



Embedding graph in line (Hall *70)

trivial solution: =1 So, require = L 1

Solution I = v

Atkins, Boman, Hendrickson '97:
Gives correct embedding for graphs like

6 6o o o o



Courant-Fischer definition of eigvals/vecs

\ L ' Lx
1 = min v1 = arg min
x20 xlzx x20 xlzx
R . a2l Lx
)\2 — min = Vo = arg min =
xlvy X xlvy X
(here vy =1)
, xl Lax
AL = min max =
Sofdimk xz€S 2t x
, L Lx
VEp = arg min
rlvi,...,v_1 $T$




Embedding graph in plane (Hall >70)

(,5)eE
trivial solution: @tir=(1,1) So, require Zf(i) =0
degenerate solufion:—Z{&)}-=(v2(i), v2(7))

Also require Zfl(i)fz(i) =0

Solution Z(¢) = (v2(2),v3(2))  up to rotation



A Graph




Drawing of the graph using v,, v;
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Spectral drawing of Streets in Rome
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Spectral drawing of Erdos graph:
edge between co-authors of papers




Dodecahedron

Best embedded by first three eigenvectors



Spectral graph drawing: Tutte justification

Condition for eigenveotor Lxr = \x

Gives (i) for all i

d—)\

g~

A small says x(i) near average of neighbors

Tutte ‘63: If fix outside face, and let every
other vertex be average of neighbors, get
planar embedding of planar graph.



Tutte ‘63 embedding of a graph. /§

Fix outside face.
Edges -> springs.

Vertex at center
of mass of nbrs.

3-connected -> get planar embedding



Fundamental modes: string with fixed ends




Fundamental modes: string with free ends
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Eigenvectors of path graph




Drawing of the graph using v;, v,
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Spectral graph coloring from high eigenvectors

Embedding of dodecahedron by 19t and 20t eigvecs.

Coloring 3-colorable random graphs [Alon-Kahale '97]



Spectral graph drawing: FEM justification

If apply finite element method to solve
Laplace’s equation in the plane
with a Delaunay triangulation

Would get graph Laplacian,
but with some weights on edges

Fundamental solutions are x and y coordinates

(see Strang’s Introduction to Applied Mathematics)
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Isomorphism testing

A, = A3, €igvecs determined up to rotation



Isomorphism testing

Distinguish by
norm in embedding

A, = A3, €igvecs determined up to rotation



Isomorphism testing: difficulties
1. Many vertices can map to same place in
spectral embedding, if only use few eigenvectors.

2. If A, has a high dimensional space, eigvecs
only determined up to basis rotations

Ex.: Strongly regular graphs with only 3 eigenvalues,
of multiplicities 1, (n-1)/2 and (n-1)/2

3. Some pairs have an exponential number of
Isomorphisms.



Isomorphism testing: success
[Babai-Grigoryev-Mount ‘82]

If each eigenvalue has multiplicity O(1), can test
In polynomial time.

|deas:
Partition vertices into classes by norms in embeddings.
Refine partitions using other partitions.
Use vertex classes to split eigenspaces.

Use computational group theory to fuse information,
and produce description of all isomorphisms.



Random Walks



Random walks and PageRank

Adjacency matrix of directed graph:

Al 5) = {1 if (1) € E

0 otherwise

Walk transition matrix: W = AD ™!

Walk distribution at time t: Pt = W'po

PageRank vector p: p=Wp

Eigenvector of Eigenvalue 1



Random walks and PageRank

PageRank vector p: p=Wp

Linear algebra issues:
W is not symmetric, not similar to symmetric,
does not necessarily have n eigenvalues

If no nodes of out-degree O,

Perron-Frobenius Theorem:
Guarantees a unique, positive eigevec p of
eigenvalue 1.

Is there a theoretically interesting spectral theory?



Kleinberg and the singular vectors

Consider eigenvectors of largest eigenvalue of
AAT  anda  ATA
Are left and right singular values of A.

Always exist.

Usually, a more useful theory than eigenvectors,
when not symmetric.

(see Strang’s Intro. to Linear Algebra)



Random walks on Undirected Graphs

W =AD"!

Trivial PageRank Vector: d=Wd 1=1W

Not symmetric, but similiar to
symmetrized walk matrix

D_1/2WD1/2 _ D—l/ZAD—l/Q _ S

W and S have same eigvals,

SV = AV oo W (Dl/%) = A\ (Dl/zv)



Random walk converges at rate 1/1-A_,

For lazy random walk (stay put with prob %2):

|pt<v>w<v>s\/ W) gy

min, d(u)

Where 7t is the stable distribution
For symmetric S  po = Z (vi po) vs
Spo Z Ai (v; po

=Spo=2>\§ v po) v
)



Normalized Laplacian [Chung]
If consider 1-A.__, should look at
L=1-S=D'?LD7'/?

Mo(L) =1 — A1 (W)

Relationship to cuts:
vl Lo , Z(i,j)eE(v(i) — v<]))2

A2 (L) = min = min

vld vI'Dv  vld > d(i)(v(i))?



Cheeger’s Inequality (Jerrum-Sinclair ‘89)
(Alon-Milman ‘85, Diaconis-Stroock ‘91)

T Lo > s (V) —v(4))?

A2(L) = min = min

vld vI'Dv  vld > d(7)(v(2))?

w(9(S))
min (d(S), d(V — 5))

H(S) =

Ao (L )/2<m1n¢ ) < V2o (L
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Cheeger’s Inequality (Jerrum-Sinclair ‘89)
(Alon-Milman ‘85, D

Can find the cut by looking at w

S={i:w



Only need approximate eigenvector
(Mihail ’89)

Can find the cut by looking at w = D~ /2y

S={i:w() <t} forsomet

Guarantee

9(S) < \/ L

(V)

. anczos era.



Normalized Cut

Alternative definition of conductance [Lovasz "96 (?)]
ae d(V)w(9(S))

#o) d(S)d(V — S)
This way, A, is a relaxation [see Hagen-Kahng "92].
I . v(1) — v(1 2
A (L) = min oY iy 2enVl) ~ v0))

vld vI'Dv  vld > (i) (v(i))?

Equivalent to Normalized Cut [Shi-Malik '00]
w(9(5)) | w(9(95))
d(S)  d(V —8)




Spectral Image Segmentation (Shi-Malik ‘00)
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Spectral Image Segmentation (Shi-Malik ‘00)




Spectral Image Segmentation (Shi-Malik ‘00)




Spectral Image Segmentation (Shi-Malik ‘00)




Spectral Image Segmentation (Shi-Malik ‘00)
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The second eigenvector
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Second Eigenvector’s sparsest cut
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Third Eigenvector
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Fourth Eigenvector
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Perspective on Spectral Image Segmentation

Ignoring a lot we know about images.

On non-image data, gives good intuition.

Can we fuse with what we know about images?
Generally, can we fuse with other knowledge?

What about better cut algorithms?



Improvement by Miller and Tolliver ’06
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Improvement by Miller and Tolliver ’06

! Lx Z(@ J)EE(U(Z) v(4)) w s
TDx > (i er V(@) +v(7)?)w; ;

ldea: re-weight (i,j) by

Actually, re-weight by U (

Prove: as iterate A, — 0, get 2 components



One approach to fusing:
Dirichlet Eigenvalues

Fixing boundary values to zero [Chung-Langlands '906]

Fixing boundary values to non-zero. [Grady '06]
Dominant mode by solving linear equation:
computing electrical flow in resistor network

m
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Analysis of Spectral Partitioning
Finite Element Meshes (eigvals right) [S-Teng '07]

Planted partitions (eigvecs right) [McSherry ‘01]

Prob
A-Aedge =p
P q
} A B-B edge = p
A-B edge = ¢
q p } B q<p
\’\,./ N



Other planted problems

Finding cn'2 clique in random graph
[Alon-Krivelevich-Sudakov "98]

Color random sparse k-colorable graph
[Alon-Kahale "97]

Asymmetric block structure (LS| and HITS)
[Azar-Fiat-Karlin-McSherry-Saia '01]

Partitioning with widely varying degrees
[Dasgupta-Hopcroft-McSherry '04]



Planted problem analysis

Sampled A as perturbation of

9 P

Small perturbations don’t change eigenvalues too much.

Eigenvectors stable too, if well-separated from others.

Understand eigenvalues of random matrices
[Furedi-Komlos 81, Alon-Krivelevich-Vu '01, Vu ‘095]



Distribution of eigenvalues of Random Graphs

Histogram of ™
eigvals of o000l
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Distribution of eigenvalues of Random Graphs

Histogram of ™

eigvals of o000l
random

40-by-40 8000
adjacency wonol
matrices

4000 -

2000 -

A

| |
-10 -5 0 5 10 15 20 25

Predicted curve: Wigner’'s Semi-Circle Law



Eigenvalue distributions

Eigenvalues of walk matrix of 50-by-50 grid graph

| | | |
0 500 1000 1500 2000 2500

Number greater than 1-¢ proportional to ¢



Eigenvalue distributions

Eigenvalues of walk matrix of 50-by-50 grid graph

| | | |
0 500 1000 1500 2000 2500

Number greater than 1-¢ proportional to ¢



Compression of powers of graphs

[Coifman, Lafon, Lee, Maggioni, Nadler, Warner, Zucker '035]

If most eigenvalues of A and W bounded from 1.
Most eigenvalues of At very small.
Can approximate At by low-rank matrix.

Build wavelets bases on graphs.
Solve linear equations and compute eigenvectors.

Make rigorous by taking graph from
discretization of manifold



Discretizing Manifold

edge weight e~ dist(z,y)/¢°



Eigenvalue distributions

Eigenvalues of path graph on 10k nodes
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number greater than 1-¢ proportional to Ve



Theorem: Eigenvalue distributions

Theorem:
If bounded degree,
number eigenvalues greater than 1-¢ is O(Ve)

Proof: can choose +/en vertices to collapse so that
conductance becomes at least ¢
(like adding an expander on those nodes).

New graph has all eigvals at most 1-¢ in abs value.
Is rank v/en change, so by Courant-Fischer

Aven| <1 -6



Eigenvalue distributions of planar graphs?

For planar graphs,
Colan de Verdiere’s results imply

Ao < Ax

How big must the gap be?
Must other gaps exist?



Computation

If . exactly an eigenvalue,
eigvecs = Null(A — Al)

Not rational, so only approximate

If A close to just one eigenvalue A,
_ 1
(A — )\I) ! ~ ’Uﬂ)T

If A, close to A,.4 is like A; = A,
v; and v;,, can rotate with each other



General Symmetric Matrices

Locate any eigval in time  O(n° + nlog(1/e€))

1. Orthogonal similarity transform to tri-diagonal
in time O(n*) by elimination algorithm.

2. Given tri-diagonal matrix,
count number eigenvalues in any interval
In time O(n)

3. Do binary search to locate eigenvalue

Locate eigenvector: O(n) steps on tri-diagonal,
O(n?) time to map back to A



Largest eigenvectors by power method

Apply A to random vector r:

r:Z(v?T)vi
Ar = Z)\’i (v?r) V;

Aty = Z AL (v;‘;rr) v; ~ N (vgr) Un,

In O((logn)/¢) iters, expect x such that
r! Ax
xlx

Using Lanczos, expect O(+/(logn)/¢)) iters
(better polynomial)

> (1 —e€)\,




Smallest eigenvectors by inverse power method

Apply L' to random vector r orthogonal to 1

L 1r = Z(l/)\z) (v 7) v;

i>2
Lty = Z )\;t (vfr) V; R~ )\Q_t (UQTT) V9
i>2
In O((logn)/¢) iters, expect x such that
x! Lx

T x

< (14 €)X

Compute L= intime mlog®™" nlog(1/e) [STeng04]
if planar, in time O(mlog(1/¢)) [Koutis-Miller 06]



Sparsification
Key to fast computation.

Replace A by sparse B for which

xl [ ax a2l Lax
max — <c min — >1/c
' Lpx ' Lpx

Generalized eigenvalues provide notion of
approximation in graphs.



Questions

Cheeger’s inequality for other physical problems?
How to incorporate other data into spectral methods?
Make multilevel coarsening rigorous.

What can we do with boundary conditions?

What about generalized eigenvalue problems?

2l Lx
T Max




