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GENERALIZED NESTED DISSECTION*

RICHARD J. LIPTON.* DONALD J. ROSE$ AND ROBERT ENDRE TARJANS

Abstract. J. A. George has discovered a method, called nested dissection, for solving a system of linear
equations defined on an n =k x k square grid in O(n log n) and space O(n*?) time. We generalize this
method without degrading the time and space bounds so that it applies to any system of equations defined on a
planar or almost-planar graph. Such systems arise in the solution of two-dimensional finite element problems
Our method uses the fact that planar graphs have good separators.

More generally, we show that sparse Gaussian elimination is efficient for any class of graphs which have
good separators, and conversely that graphs without good separators (including ‘‘almost all” sparse graphs)
are not amenable to sparse Gaussian elimination.

1. Introduction. Suppose we wish to solve by Gaussian elimination the system of
linear equations

1) Ax=b

where A is an n X n symmetric positive definite matrix, x is an n X 1 vector of variables,
and b is an n X 1 vector of constants. The solution process consists of two steps. First, we
factor A by means of row operations into

) A=LDL"

where L is lower triangular and D is diagonal. Next, we solve the simplified systems
Lz=b,Dy=zand L'x=

If A isdense (1 e, A contams mostly nonzero elements) then the time requnred for
factoring A is O(n>) and the time required for solving the simplified systems is O(n?). If
A is sparse (i.e., A contains mostly zero elements), we may be able to save time and
storage space by avoiding explicit manipulation of zeros. One difficulty with obtammg
such a savings is that “the factoring process may create nonzeros in L (and L") in
positions where A contains zeros. These new nonzeros are called fill-in.

One way to reduce the fill-in is to permute the rows and columns of A, i.e., to
transform A into ‘

3) A'=PAPT

where P is a permutation matrix, and to solve the reordered system. Since A is positive
definite, the reordered system is numerically stable with respect to the LDL” factoriza-
tion [9].

In order to characterize the fill-in associated with a given permutation matrix P, we
represent the class of matrices PAP” by an undirected graph' G = (V, E). The graph G
contains one vertex i € V for each row (and column) in A, and one edge {i, j} € E for
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cach pair of nonzero, off-diagonal elements a;; = a;; # 0 in A. Each permutation matrix
p corresponds to a numbering of the vertices of G; i.e., to a one-to-one mapping
r V-{1,2,---, n}. Corresponding to the factorization PAP"=LDL" is a graph
G* =(V, E¥)such that {i, j}e E% iff i > j and the element of L in row (i) and column
(j) is nonzero. See [18], [19], [20], [25] for a discussion of the properties of this
graph-theoretic model of sparse Gaussian elimination. The following lemma charac-
terizes the fill-in E% associated with an ordering 7.

LeMMA 1 [20]. Assuming no cancellation of nonzeros in the factoring of PAPT,
{v, wle EY iff v#w and there is a path v=10,,03,- ", Vx4 =W such that =(v;)<
min {m(v), w(w)} for 2=i=k. (Note that a path consisting of a single edge {v, w}€ E
satisfies this condition.)

The running time and storage space required by sparse Gaussian elimination are
functions of m, the number of nonzeros in L, and of d(i), the number of edges {i, j} in G%
with (i) < 7 (j). Note that d(i) is the number of nonzeros in column i of L (and row i of
L"), and that m =¥~} d(i). For purposes of analysis and implementation, we can
divide sparse elimination into the following four steps.

Step 1 Find a good ordering .

The time and space required by this step depend upon the method used.

Step 2 (Symbolic factorization.) Compute the nonzero positions in L, assuming

no lucky cancellation of nonzeros.
Time: O(m) using the algorithm of [20].
Space: O(m).
Step 3 (Numeric factorization.) Compute L. )
Time: O/, d(iXd(i)+3)) using an algorithm $Bch as described in [6],
[12], [22], [25]. The number of multiplications performed during this step
is 1307, d(iXd(i)+3)[19].
Space: O(m).

Step 4 (Backsolving.)Solve Lz=b, Dy=z and L"x =Y.
Time: O(m) [19].
Space: O(m).

The reason for separating the factorization into two steps (symbolic and numeric) s
that all known ways of implementing sparse Gaussian elimination which compute the
numeric factorization without first finding the fill-in positions have a time bound for
overhead which is more than a constant factor greater than the number of multi-
Plications. If the system of equations is to be solved for only one right-hand side b, it is
possible to combine at least part of Step 4 (solving Lz =b and Dy = z) with Step 3.

The efficiency of sparse Gaussian elimination depends upon Step 1; that is,
upon ﬁnding an ordering 7 which reduces the size of the fill-in m and the multiplication
count3 ¥ """ d(iXd(i)+ 3). Finding such a good ordering for an arbitrary graph seems to

¢ a very hard, perhaps even NP-complete problem. However, for some special cases
80od ordering schemes are known. One such scheme is the nested dissection method of
I A George [11], which allows the solution of systems whose graph is an n =k X k
Square grid graph in O(n*?) time and O(n log n) space. George's scheme uses the fact
that removal of O(k) vertices from a k X k square grid leaves four square grids, each
Toughly k/2 x k/2 [21].

In this paper we generalize George's idea. Let S be a class of graphs closed under
the subgraph relation (i.e..if G.e S and G, is a subgraphof G,then G, € S). The class §
MUstiesan f(n)-separator theorem if there are constants 2= a < 1. 8> 0 for which any
"vertex graph G in S has the following property: the vertices of G can be partitioned
Mo three sets A. B, C such that no vertex in A is adjacent to any vertex in B,
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|A|, |B| = an, and |C|= Bf(n). Our main result is that all systems of equations whose
graphs satisfy a Vn-separator theorem can be solved in O(n*?).time and O(n log n)
space using a “divide and conquer” method [1] to gencrate the ordering. Frop
separator theorems proved in [16], we obtain a mcthpQ for solving any system of
equations whose graph is planar or almost-planarin O(n’ ) time and O(n log n)space,
Such systems arise in the solution of two-dimensional finite clement problems 26|,
Section 2 presents these results.

More generally, divide and conquer gives a good ordering scheme for any class of
graphs satisfying an f(n)-separator theorem; the fill-in and multiplication count
produced by the ordering depend upon f(n). At the end of § 2 we list fill-in anq
multiplication bounds for various values of f(n) other than f(n)= vn.

Section 3 presents some relationships between Gaussian elimination, good
separators, sparsity, and random graphs. We give a lower bond on the cost of Gaussian
elimination in terms of the size of separators in the problem graph. We prove that
graphs with good separators are sparse. Finally, we show that “‘almost all’’ sparse graphs
have no good ordering for Gaussian elimination. Section 4 discussed the significance of
the results in §§ 2 and 3.

2. Generalized nested dissection. Let S be a class of graphs closed under subgraph
on which a ﬁt-separator theorem holds, let a, B be the constants associated with the
separator theorem, and let G=(V, E) be an n-vertex graph in S. The following
recursive algorithm numbers the vertices of G so that sparse Gaussian elimination is
efficient. The algorithm assumes that !/ of the vertices of G are already assigned
numbers, each of which is greater than b, and that the remaining vertices of G are to be
numbered consecutively from a to b.

NUMBERING ALGORITHM. If G contains no more than no = (8/(1 —a))? vertices,
number the unnumbered vertices arbitrarily from a to b. Otherwise, find sets A, B, C
satisfying the v n-separgtor theorem. Let A contain i unnumbered vertices, B contain |
unnumbered vertices, and C contain k unnumbered vertices.

Number the unnumbered vertices in C arbitrarily from b—k +1 to b. Delete all
edges with both endpoints in C. Apply the algorithm recursively to the subgraph
induced by B U C to number the unnumbered vertices in B from b—k —j+1to b—k.
Apply the algorithm recursively to the subgraph induced by AU C to number the
unnumbered vertices in A froma=b-k—j—i+1toa+i-1=b-k—j.

If G initially has no numbered vertices, then applying this algorithm to G with
a=1, b=n, and | = 0 will number the vertices of G from 1 to n. We are interested in
three properties of this algorithm: its running time, the size of the fill-in produced by the
ordering it generates, and the multiplication count of the generated ordering.

THEOREM 1. Suppose that a vertex partition satisfying the \/;—separator theorem can
be found in O(m + n) time on an n-vertex, m-edge graph. Then the numbering algorithm
requires O((m + n)log n) time.

Proof. Let t(m, n) be the maximum time required by the numbering algorithm on
any graph in S with n vertices and m edges. Then

t(m,n)=c,? if n = ny,

@)

t(m, n)= co(m + n)+max {t(m,, n,) + t(m3, ny)} otherwise.

2 Throughout this paper, ¢, ¢y, €y, * * -, denote suitable positive constants.
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where no=(B/(1—a))’ and the maximum is taken over values of m;, n,, mz, n,
satisfying
m;+my,=m,

) n§n1+n2§n+B\/r_1, and (1—a)n=n,=an +B\/:z fori=1,2.

A proof by induction similar to the one below for the fill-in bound shows that

im,n)is O((m+n)logn). 0O .
THEOREM 2. Let G be any n-vertex graph numbered by the algorithm. The total size

of the fill-in associated with the numbering is at most c3n log, n + O(n), where

©) ¢3=B’(G+2Va/(1=Va))/logy(1/e).

Proof. We shall prove that the fill-in is O(n log n). A more careful but lengthier
analysis [15] gives the bound claimed in the theorem. .

Suppose the recursive numbering algorithm is applied to an n-vertex graph G \ylth
[ vertices previously numbered. Assume n > nj and let A, B, C be the vertex partition
generated by the algorithm. If C contains k unnumbered vertices, then the max1mum
number of fill-in edges whose lower numbered endpoint is in C is

(7 k(k—1)/2+kl<B%n/2+BIVn.

By Lemma 1, two vertices v and w are joined by a fill-in edge if and only if there is a
path from v to w through vertices numbered less than both v and w. Thus no fill-in edge
joins a vertex in A with a vertex in B. Let f(/, n) be the maximum aymber of fill-in edges
whose lower numbered endpoint is numbered by the algorithm (and not previously
numbered). Then

f(lb,n)=n(n-1)/2 ifn=ny and
£, n)=Bn/2+BIVn+max {f(Iy, n1)+f(l2, n2)}
otherwise, where the maximum is taken over values satisfying
L+hL=1+28n,
) n§n,+n2§n+3\/7t,

(8)

(l-a)yn=n;=an +B~/; fori=1,2.
We claim that foralln=1,
(10) f(l, n)=<cs(l+n)logs n+csiVn

Where ¢, and cs are suitably large positive constants, to be chosen later. The desired
und of O(n log n) on fill-in size follows from the claim.
We prove the claim by induction on n. Assume n = ns, where n3 = nyis a value to be
chosen later. Then

() f(l, n)= n(n—1)/2=(n3/2)(n—1)= ca(l+ n) log, n+csivn,
d 4= n,/2.
L U n > ny and suppose the claim is true for values smaller than n. Then f(L. n)=
ﬁ/\ n+ . ny+fUs. ny for suitable values of [\, ny. ot ‘
l“ e =1l -a 7[3 via+ 1 Since v+ 1N ng 2 B/ fa)‘ we have a-
‘el ] and e > 0. Thus m,San+Bvn=ta+B/vmn=(l-¢eg)n<nfori=1 2.
‘W the claim holds for n, and n; by the induction hypothesis.

- ﬂlz“#'f
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Hence where ¢s, 9, and ¢, are suitably |
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+ostl +28yn)van «E,\,

fu. n»é{33n/2+31\’;+(‘41/1 +aplogs ny + i +ns) logs nay+ vy =1 ,:,
(12)

' Jan+Bynsan+p/(2va) =Van (19) gl m)=n(n =1
; Since Van +BJ/n=vVan+B/(2Va) =_an + c6,—we have ~ . if cg is sufficiently large.
; f,n)=csn+1) logzn+(c5~/a+B)I~/n+B2n/2+3c4B\/n log, n +2csBVan . Let n>n,4 and suppose the cl.

(13) 12), we have

; OIS

+csce(l+2BYn)+ca(n +1) loga (1—¢).

Suppose we choose n3 large enough so that n>n3; implies 33\/'_tlog2 ns
nlog; (1/(1—¢))/2, choose cs large enough so that 05\/;+B =cs, i€, csZB/(1-a),
1N and choose ¢, large enough so that pB2/2+2csBVa+csce(l+2B)s
¢ cilogy (1/(1-¢))/2. Then f(I, n)=cs(n+1)logy n +¢slVn as desired, and the claim
‘ follows by induction.

THEOREM 3. Let G be any n-vertex graph numbered by the algorithm. The total

+co(lin,

suitable values of /y, ny, I, ..
or fixed n, + n,, the functior
as possible and the other is

ok 3

5
|
i g(l,n)sc, n*"?
|
|
i
l
i

] multiplication count associated with the numbering is at most c:n*’*+ O(n(log n)), | n¥2 4 nd? < [
IR where i -
, P =n

(18) o=+ BVa(2+Va/(1+a)+da/(1-a))/(1-Va))/(1-5) | .

. i =n
5 ! with 8 = a**+(1 - a)*?. : 3
i Proof. We shall prove that the number of multiplications is O(n’ /). A more =n

i% careful analysis [15] gives the bound claimed in the theorem. ! | <[a

.! Consider the number of multiplications associated with the ordering. The number g

gl of multiplications associated with a given vertex v is d(v)(d(v)+ 3)/2, where d(v) s the 21 implies B(a \/r—n) =B/(a

il number of fill-in edges whose lower-numbered vertex is v. Thus a bound on the number ! ; Also

of multiplications assdeiated with a separator C generated by one call of the recursive ‘
& numbering algorithm is hiny +Lyn, :

‘: BVn—1 BVn-1 :
il Y G+D+1+3)/2 3 (i+1)%/2+38%n/4+3BIVn/2

I i=0 i=0 .

1 15 - ! -

!f (15) =8°n%?/6+B%In/2+BINn/2+3B8%n/4+3BINn/2. B+ By = (1+28Y7

i .

" Let g(/, n) be the maximum number of multiplications associated with vertices not . =W+2 B‘/;'

1 previously nmbered when the recursive numbering algorithm is applied to a graph in § ] \

i having n vertices, of which [/ are previously numbered. Then « =Val*Vn+

i L J : tting & = 3/2 +(1- 3/2

16) g(lbn)=n(n-1)2n-1)/124+3n(n—1)/4=n(n—1Xn+4)/6 ifn =ny and | n) ggives “ (1=a)""an

g(l, n)=B’n*/6+B2In/2+BI*Vn/2+38°n/4+3BINn/2 R g(bn)=(ci+cgd+2
+max {g(ly, n))+g(ly, m) § % L

+(c12+coa +

i
I
|
{

k' | N

¢ ) otherwise, where the maximum is taken over values satisfying
: +c1a(cs +co
!
{
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| We claim that for all n = 1 )25, choose
1 e claim that forall n =1, B+48vVa)=c,, and choose
' (18) g(l, n)=cen**+ coln +c10l*Vn, 10)+2¢oaB +4c,08°Va=c

'glaim follows by induction.
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where Cs, Co, and ¢ o are suitably large constants, to be chosen later. The desired bound
of O(n*’?) on multiplications follows from the claim. '

We prove the claim by induction on n. For n = n,, where ns=n, is a value to be
selected later,

(19) gl n)=n(n—1)(n +4)/6 = ny(ns— 1)(ns +4)/6 = cn*”,

if ¢y is sufficiently large.
Let n > n4 and suppose the claim is true for values smaller than n. Then, analogous

to (12), we have
g(l, n)§c1|n3/2+culn +C13’2\/’_l+ Cg(n::/z +n%/2)
(@0) +colliny + lana) + cro(liVar +13vns)

for suitable values of [y, n,, I3, n,. . s . o ’
For fixed n,+ n,, the function nd?+ ng ° is maximized when one of n,, n is as
small as possible and the other is as large as possible. Thus

nY?+n3?=[(1- a)n]?’*+[an +3‘/;']3/2
=n*(1-a)*+a**(1+B/(aVn)*"?]
n*?[(1-a)*+a*?(1+B/a(Vn)y)
(1~ a)? +a**(1+3p/(aVn)]
a¥+(1 _a)3/2]n3/2+33\/(—1'f"\

21)

A 1A

IA

since @ =34 implies B(aVn)= B/(aVno)=B/((1 - a)Vno) = 1.
Also

Lin,+ Lny = (1 +2B8Vn)an + BVn)
) =ain+2aBn*?+BINn+2p8%n
and
BVn,+ BVn,=(1+28Vn)an + gVn
(23) < (1+28Vn(Van+B/(2Va))
=Val™Nn+4gVain +48an*?+(1+28vVn)g/(2Va).

Letting 6 = a>/?+(1 - «)*’* and combining the above inequalities with the bound
on g(l, n) gives

g(L n)=(c1,+csd+2coaB +4c 0BV a2
(24) +(C|2+C90 +4C1()B‘/;)In +(C|3+C|0\/;)12\/;l
+C|4(C8 + C9+ cm)n + C]4(C9 + Clo)l\/;"' C14C1012,

Where ¢, is a suitably large constant depending only on « and B.

Suppose  we choose n, large enough so that n>n, implies c¢;4=
Max {(1=8)n' /2. (1-a)n' /2. (1 =~a)n' " /2}. choose ¢ large cnough so that
“Sato(l+va) 2 ¢ choose ¢y large enough so that c¢:+co(l+a )/.3 +
Golerg+ 488 b)f- ¢o. and choose ¢y large enough so  that c“:f—c_x(l + 6)/2 +
Clalcg+c19)+2coaP +4c 0B Va = cy. Then g(l, n)= cgn™*+ coln + ¢10/°Vn as desired,
ind the claim follows by induction. 0

I
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THEOREM 4. Let G be any planar graph. Then G has an elimination ordering which
produces a fill-in of size c¢inlogn +O(n) and a multiplication count of c.n':
O(n(logn Y). where ¢32129 und ¢;54002. Such an ordering can be founy in
O(n log n) time. _ ’ '

Proof. By Corollary 2 of [16], plunar graphs satisfy a v n-separator theorem wig,
a =3and B =2v2. Furthermore the appropriate vertex partition can be found in O(n)
time. Plugging into the bounds of Theorems 1-3 gives the result. 0

A finite element graph is any graph formed from a planar embedding of a plang,
graph by adding all possible diagonals to each face. (The finite element graph has ,
clique corresponding to each face of the embedded planar graph.) The embeddeq
planar graph is called the skeleton of the finite element graph and each of its faces is
element of the finite element graph.

THEOREM 5. Let G be any n-vertex finite element graph with no element having
more than k boundary vertices. Then G has an elimination ordering which produces ,
fill-in of size O(k*n log n) and multiplication count O(k*n*’?). Such an ordering can p,
found in O(n log n) time.

Proof. By Corollary 4 of [16], any n-vertex finite element graph with no elemen;
having more than k boundary vertices satisfies a vV n-separator theorem with & = ang
B =41k/2]. Furthermore the appropriate vertex partition can be found in O(n) time.
Plugging into the bounds of Theorems 1-3 gives the result. [

Although planar and almost-planar graphs seem to be the most interesting case,
analogues to Theorems 2-5 hold for other classes of graphs. For instance, the following
theorems can be proved using the same methods as in the proofs of Theorems 2-3.

THEOREM 6. Let S be any class of graphs closed under subgraph on which an n*
separator theorem holds for o>3. Then for any n-vertex graph G in S, there is an
elimination ordering with O(n*°) fill-in size and O(n>*) multiplication count.

The class of ddimensional hypercubic grid graphs satisfies Theorem 6 for o =
d-1/d. ,

THEOREM 7. Let S be any class of graphs closed under subgraph on which an n"
separator theorem holds for 3< o <3. Then for any n-vertex graph G in S there is an
elimination ordering with O(n) fill-in size and O(n’?) multiplication count. B

THEOREM 8. Let S be any class of graphs closed under subgraph on which a ~n
separator theorem holds. Then for any n-vertex graph G in S, there is an elimination
ordering with O(n) fill-in size and O(n log; n) multiplication count.

THEOREM 9. Let S be any class of graphs closed under subgraph on which ann’
separator theorem holds for o <3. Then for any n-vertex graph G in S, there is an
elimination ordering with O(n) fill-in size and multiplication count.

3. Gaussian elimination, separators, and sparsity. In this section we explore
additional relatiofhips between sparse Gaussian elimination, good separators, and

sparse graphs. We have shown that the existence of good separators in a graph and its
subgraphs allows us to carry out sparse Gaussian elimination efficiently. It is natural t0
ask whether the converse is true; that is, whether the existence of good separators i
necessary for efficient sparse elimination. To prove a result of this kind, we need 2

strengthened version of a lemma in [5].

LEMMA 2. Let G =(V, E) be an n-vertex graph satisfying the following property f‘_"
some l: every set of vertices A such thatn/3 =|A|=2n/3 is adjacent to at least | vertices "

V — A. Then if w is any ordering of V, G*% contains a clique of at least | vertices.

Proof. G must have a connected component containing at least n/3 vertices:
Otherwise there is a set A violating the hypothesis of the lemma, formed as follows. L¢!
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A = @. Add connected components to A one at a time until-A contains at least n/3
vertices. Then A contains less than 2n/3 vertices and is adjacent to no verticesin V — A.

Let w(v;)=ifor1=i=nandfor 1=k =nlet C},C%, - -, C}, be the connected
components of the subgraph of G induced by the vertices {v;, v5, - - -, v, }. Let k be. the
smallest integer such that |Cf|Zn/3 for some j; such a k exists by the previous
paragraph. Then ICY ', IC3 '), - - -, IChil, |<n/3. Furthermore, since C* must
contain vy, we can choose q and the labeling of the C¥™! so that

n/3= 3 |C¥|=2n/3
i=1

with v, adjacent to some vertex in Cf{ ™' for 1=i=gq.

Let A=U{, Cf". Let C be the set of verticesin V — A adjaggnt to at least one
vertex in A. By the hypothesis of the lemma, |C|= . Furthermore each element v € C
has 7(v)Z k. Any two vertices v, w e C —{v,} are adjacent in G% by Lemma 1, since
they are both adjacent to at least one vertex in C;. Similarly v, and any vertex
we C—{uv,} are adjacent in G¥%, since for some i both v, and w are adjacent to at least
one vertex in C¥~'. Thus C forms a clique in G*. 0

A weaker form of Lemma 2, in which the degrees of all vertices are assumed to be
bounded, appears in [5].

THEOREM 10. Let G =(V, E) be a graph satisfying the hypothesis of Lemma 2.
Then any ordering of V produces a fill-in of size at least I(I1—1)/2 and a multiplication
count of at least I(1—1)(1+4)/6.

Proof. The proof is immediate from Lemma 2. 0O -

Theorem 10 and the results in § 2 imply that generalized nésted dissection is the
best method of sparse elimination (to within a constant factor in running time and
storage space) on large classes of graphs. For instance we have the following result,
adapted from [16].

.

FiG. 1. A 5x5 square grid graph.

THEOREM 11. Foranyk, letG =(V, E)beak x k square grid graph (Fig. 1). Let A
be any subset of Vsuch thatn/3 =|A|=2n/3, where n = k*. Let C be the set of vertices in

=~ A adjacent to at least one vertex in A. Then |C|=Vn/3.

Proof. Without loss of generality, suppose that the number r of rows of G which
Nain vertices in A is at least as large as the number ¢ of columns of G which contain
‘erices in A, Then n/3 = Al resr and rz~n/3.

_Let r* be the number of rows of G which contain only vertices in A. Then
MUSIA[=2n/3,and r¥ < 2k/3. Ifr*=0,theniClZrz~n/3.1fr¥*# 0, thenk=r=¢ =
K ang IClzr—r*=k-r*zk/3=Vn/3. O
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. 3/2 T

By Theorems 10 and 11, k X k square grid grgphs have an QUn™'7) mulnpllgatlon
count for any ordering [13]. By using more sophisticated techmques.‘ one can derive 4
Q(n log n) lower bound on the fill-in for such 55;1[»)}17 [13]. For d—dlmcns‘umal hyper.
cubic grid graphs. Theorem 10 gives an Q(n™"" " ) Iowgr bound on fill-in and
Q(n*“ "4y Jower bound on multiplications, agrecing with the upper bounds in
Theorem 6. See [35]. .

We turn now to the relationship between good separators and sparsity. Our fir,
result shows that only sparse graphs have good separators.

THEOREM 12. Let S be any class of graphs closed under subgraph and satisfying g
n/(log, n)'**-separator theorem for fixed a, B, and € >0. If G is a graph in S having »
vertices and m edges, then m is O(n). .

Proof. Let t(n)be the maximum number of edges in any n-vertex grall)Paln S.Letg
be an n-vertex graph in S with ¢(n) edges. Since S satisfies an n/(log, n) " “-separator
theorem, the vertices of G can be partitioned into three sets A, B, C such that ¢
separates A and B, A and B each contain no more than an vertices, and C contains ng
more than Bn/(log, n)'** vertices. Since S is closed under subgraph, the subgraphs of G
induced by the vertex sets AUC and BUC are both in S. If |[AUC|=n, ang
|[BU C| = n,, it follows that t(n)= t(n,)+ t(n,). Hence for any n,,

t(in)=n(n—-1)/2
t(n)=max {t(n,)+t(ny)}

if n=n,,
(23) otherwise,

where the maximum is taken over values n,, n, satisfying
n=n,;+n,=n+Bn/(log, n)""*,

(26) (1-a)n=n;<an+Bn/(log;n)'** fori=1,2.

We shall show by ‘i:\duction that
27) Kn)=csn—c6n/(loga n)* for n=n,,

where cys, c16, and ng are suitably large positive constants. The theorem follows.

Let no be large enough so that (log, no)* =28/ ¢. Choose nj3 = n large enough so
that (1-a)n3;=ny and a+B/(logs n3)'** <1. Choose ¢;5=n3;—1 and c,¢= c;spB/e.
Then if no=n=n,,

t(n)=n(n—1)/2=c,sn/2=c,sn—c,sn/(log; no)*
(28)

=cisn—ci6n/(logy n)°.

Thus (27) holds for ng=n =n,. S

Let n>n, a|}d suppose (27) holds for values between ny, and n—1. Then
t(n)=t(n,)+t(ny) for some values of ny, n, satisfying (26). We have n;, n:2

(1-a)n=(1-a)ns=no. Also, ny, ny=<an+Bn/(log n)'** =n(a+pB/(logzn)"**)s ;g

n(a +B/(logz n3)'**) < n. Thus, by the induction hypothesis,

(29) H(n)=cisny—ci6n1/ (082 n1)° + 15y — c16n2/(logs ny)".

By (26), CishytCisnya=c;sn+ Clsﬂn/(logz n)”‘. Thus

(30) t(n)=cysn+cyspn/(logz n)'** — ci6(ny/(logz ny)* + ny/(log, ny)*).

It remains for us to show that

(31)  cisBn/(loga n)'** —c 6(n1/(logz n)° + nz/(logz n2)*)=—c16n/(logz n)",

GENERAL
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Le.
(32) c1sBn/(logz n)' ¢ = ¢ 16(n1/(logz n1)° + na/(log, ny)* — n/(loga n)°).

The right-hand side of (32) is only reduced by making n; and n, smaller; thus we can
assume that ny+n, = n. For fixed n, + n,, the function n,/(logz n1)" + ny/(log, ny) is
minimized when n; and n, are equal. Thus

c16(n1/(10g2 m)° +nz/(logz n2)° —n/(logz n)°)
2 c16(n/(logz n—1)° —n/(log n)°)
(33) = c16n((1/(1-1/logz n))* —1)/(logz n)°*
Zcy6n(1+1/logz n)* —1)/(log; n)°

[ 4
= cy6en/(logz n)'** = cysBn(loga n)'**

since C15=(;15B/€. D
Not ali sparse graphs have good separators. In fact, for fixed @, B such that

p<l-a=a<]1, there is a constant ¢ such that almost all® n-vertex graphs with.cn
edges have no vertex partition A, B, C satisfying |A|, [B|=an, |C|=8n, and C
separates A and B. This result is implicit in Theorem 4 of [8]. It follows from Theorem
10 that almost all sparse graphs require (n?) fill-in and (n’) multiplication count. By
using a more direct argument, we can obtain a stronger result.

THEOREM 13. For all € >0 there is a constant c(g) such that almost all n-vertex
graphs with at least c (e )n edges have a fill-in clique of at least (1 — &)n vertices for any
ordering. e

Proof. We first prove that almost all n-vertex graphs with at least cn edges have the
following property:

If A and B are sets of vertices such that |A|, [B|= en/4 and

p
P) AN B =, then at least one edge joins A and B.

We prove (P) by an argument like that used to prove Theorem 4 of [8]. Consider a
random graph G with n vertices and m edges, where m = cn. The number of ways to
choose two vertex sets A, B satisfying |A|, |B|=Zen/4, ANB= is less than 3"
Between A and B there are at least £°n%/16 potential edges. The probability that none
of these edges actually occurs in G is less than (1 — 2¢/n)**"*''¢. Thus, if ¢ is chosen so
that 3"(1-2¢/n)**"’'*>0 as n->o0, then almost all graphs satisfy (P). Since
(1=2¢/n)*n2/16 5 g=<€n/8 choosing ¢ > (8 log. 3)/e? gives the result.

Now we use (P) to prove the theorem. Let G = (V, E) be any graph satisfying (P).
Consider any set A of at least 3en/4 vertices in G. A contains a subset B of atleast en/4
vertices whose induced subgraph in G is connected. Otherwise, we can derive a
contradiction as follows. Let A, A,, - - -, Ax be the vertex sets of the connected
cgmponents of the subgraph of G induced by A. Let j be the minimum index such that
Lo, |Ai|= en/4. Then ¥)_, |A;|=en/2. By (P) there must be an edge joining some
:’;rtex in U/_, A, with some vertex in UL,H A,. This is impossible by the definition of

€ A’s.

Consider any ordering of the vertices of G. Let A be the first 3en/4 vertices in the

Ofdering. Let B be a subset of A containing at least #n/4 vertices whose induced

"By “almost all” we mean that the traction of n-vertex graphs satisfying the property tends with
Mot
;”}"Nng n to one. We assume that cach n-vertex graph has vertex set {1, 2, - - -, n} and that two graphs arc
Stinct unless their edge sets are identical. See {7] for a thorough discussion of random graphs.
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subgraph in G is connected. By property (P) at least (1 —¢/2)n vertices in V —B, 4
hence at least (1 —¢)n verticesin V — A, must be adjacent to atleast one vertex in B,
Lemma [ any pair of such vertices are joined by a fill-in edge. Thus the setof verticeg
V - B adjacent to at least one vertex in B is a fill-in clique of at least (] -
vertices. '

THEOREM 14. Almost all n-vertex graphs with c(e)n edges have a fill-in of
(1-¢)’n*/2 - O(n) and a multiplication count of (1 - € )’n’/6 — O(n*), for any ordering.

Proof. Immediate from Theorem 13. [

“)h

4. Remarks. We have demonstrated the existence of an O(n*')-time,
O(n log n)-space method for carrying out sparse Gaussian elimination on systemq
whose pattern of nonzeros corresponds to a planar or two-dimensional finite elemen;
graph. Such systems arise often in real problems. The practicality of the algorithm
remains to be tested, and the constants in Theorem 3 are large. However, we believe
that the algorithm is potentially useful for solving large systems, since the worst-case
bounds derived here are probably much too pessimistic. Experiments by George and
Liu [10] with a similar algorithm suggest that our method is practical.

It is possible to reduce the running time of our algorithm to O(n'*%27) by using
Strassen’s algorithm for matrix multiplication and factorization [3], [23]. If the system
of equations is to be solved for just one right-hand side b, it is possible to reduce the
storage required to O(n) by storing only part of L and recomputing the rest as
necessary. Reference [5] describes how to achieve these savings in the case of ordinary
nested dissection; the generalization to planar and almost-planar graphs is analogous to
the results in § 2.

Gaussian elimination can be used to solve systems of linear equations defined over
algebras other than the real numbers [2], [4], [24], and the algorithm in § 2 applies to
these other situations. For instance, the single-source shortest paths problem with
negative-weight edges can be solved in O(n>/?) time on planar graphs. The best general
sparse algorithm [14] requires O(n? log n) time.

The results in § 2 show that the existence of good separators in a graph and its
subgraphs is enough to guarantee that sparse Gaussian elimination is efficient. Con-
versely, Theorem 10 in § 3 shows that a graph for which Gaussian elimination is efficient
must have a good separator. The existence of good separators in a graph and its
subgraphs implies that the graph is sparse, but almost all sparse graphs do not have good
separators. These results suggest that when studying Gaussian elimination, one should
regard a graph as “‘usefully sparse” when it has good separators rather than when ithasa
small edge/vertex ratio.

A number of questions remain to be explored. Can generalized nested dissection
be implemented effigiently? Is it practical? How does one find good separators in a
graph? What is a useful definition of the ‘“‘goodness” of a separator? Informally, a
separator is good if it is small and divides the graph into small pieces. We need a
quantitative definition which embodies this idea. What are the trade-offs between the
size of the separator and the size of the pieces it produces? The property of having good
separators is crucial not only in Gaussian elimination but in many other problems [17).

Appendix: Definitions. A graph G = (V, E) consists of a set V of vertices and a set
E of edges. Each edge is an unordered pair {v, w} of distinct vertices. If {v, w} is an edge,
v and w are adjacent, v and w are incident to {v, w}, and v and w are the endpoints of
{v,w}. A path of length k with endpoints v, w is a sequence of vertices v=
Vo, V1, U2, * * , Ux = w such that {v;_,, v;} is an edge for 1 =i=k. If G,=(V,, E,) and
G, =(V,, E,)are graphs, G, is a subgraph of G, if V,c V,and E, < E,.If G = (V,, E2)
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isa graph and V; € V,, the graph G, = (Vy, E;)where E 1=E>N {{v, w.}lv, we V} is t_he
bgraph of G, induced by the vertex set V. A clique is a graph in whnch an edgc? joins
" eg pair of distinct vertices. A graph is connected if every pair of its vertices are joined
;V ;?;Jath. The connected components of a graph are its maximal connected subgraphs.
L)tl:t A, B, C be a partition of the verticgs of a grapl? G =(V, E). We say C separates A
and B if no edge joins a vertex in A with a vertex in {’3 -
If f and g are functions of n, “f(n) is O(g(n)) mcans:‘ that ‘for some ’?osmve
constant ¢, f(n)=cg(n) for all but finitely many values of n; “f(n) is (}(g(n))” means
i n ’ . . .
sin) : ;32(1&1 )G) = (V, E) is planar if there is a one-to-one map f; from V into points in
the plane and a map f, from E into simple curves in the plane such that, for each edge
{v.w}€ E, f({v, w}) has endpoints fi(v) and fo(w), and' no two gurves f2({vy, wi}),
f2({va, w2}) share a point except possibly a common er_ldpomt. Such a pair of maps f,E f2
is a planar embedding of G. The connected planar regions formed whep the ranges o f,
and f, are deleted from the plane are called the faces of the embedding. Each faczvls
bounded by a curve corresponding to a cycle of G, Falled the boundqry of the face. e
shall sometimes not distinguish between a face and its t?oundary. A diagonal of a face is
an edge (v, w) such that v and w are nonadjacent vertices on the boundary of the face.
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