More Direct Methods

$G = (V, E)$

Def \(S \subseteq V \) is an \(f(n) \)-separator if (vertex)

1) \(|S| \leq f(n) \)

2) \(\exists \) partition \(A, B \) of \(V - S \)

3) \(|A|, |B| \leq \frac{2}{3}n \)

Gilbert-Tarjan \(S \subseteq V \) is an \((\alpha, \beta) \)-\(f(n) \)-separator

\(\alpha < 1 \) & \(\beta > 0 \)

1) \(|S| \leq \beta f(n) \)

2) \(\exists \) partition \(A, B \) of \(V - S \)

3) \(|A| \leq \alpha n \)

Lipton-Tarjan If \(G \) is planar \(\exists \) \(\sqrt{n} \)-separator

\(\alpha = \frac{2}{3}, \beta = \sqrt{4} \)

Conjecture \(\beta = \sqrt{n} \) works.
Pivot Strategies

1) *(Nested Dissection) (ND)*
 1) Find a vertex separator S of G.
 2) Let G_1, \ldots, G_k be connected components of $G-S$.
 3) Return $\text{ND}(G_1), \ldots, \text{ND}(G_k), S$.

2) *(Lipton-Rose-Tarjan) (Generalized ND)*

Procedure $\text{LRT}(G, H, SV)$

* Returns an ordering of $V-H$.
* Initially $H = \emptyset$.

1) Find vertex separator S of G & part A, B.
 a) Let

 $G_1 = (A \cup S, E(A \cup S) - E(S))$ $H_1 = SV(H \cap A)$
 $G_2 = (B \cup S, E(B \cup S) - E(S))$ $H_2 = SV(H \cap B)$

 3) Return
 $\text{LRT}(G_1, H_1), \text{LRT}(G_2, H_2), S-H$.
\mathcal{S}_2 be a class of graph closed under subgraphs s.t.
1) Each graph has an n^d-separator.

Thin (LRT) for $G \in \mathcal{S}_{1/2}$

GND gives $O(n \log n)$ fill
$O(n^{3/2})$ work.
Gilbert-Tarjan

Graph Contraction

- edge contraction
- remove mult edges

Definition

G is sparse-contractible if every m-node contraction of G has $O(m)$ edges.

Note

Planar graphs are sparse-contractible.

Note

$P_m \times P_m \times P_1$ is not sparse-contractible.

It has a K_{vn} minor.
Example: Let P_n be path graph
S_n be star graph

$G_k = P_k \times S_k$

Claim: All subgraphs of G_k have \sqrt{n}-separators
of in GT

Claim: END ordering for G_k with fill $\mathcal{N}(n^{5/4})$

$n = k^2$

Order:
1) Top level sep = "spine" of G_k

This gives k paths after removing spine.

2) For each path P_k pick middle \sqrt{k} nodes.

3) For each middle \sqrt{k} nodes pivot "outside in".

4) Pick remaining node any way you like
Consider one wing from the spine

\[K - \sqrt{K} \]

As we pivot the \(K \) nodes we get \((K - \sqrt{K})(n^{3/2}) \) fill per wing \(\Omega(n^{3/2}) \) fill.

Over all wings \(\Omega(K^{5/2}) = \Omega(n^{5/4}) \) fill.

Minimal separator version
Min Degree Heuristic
Fractals

MDH = Pivot on a variable with minimum degree.

Question: How do we break ties?

Consider MDH in planar case.

Simple fill model for planar graphs:

1) Start with a planar graph (genus g surface)
2) Pivot = remove a vertex & its edges
3) Fill at a given time
 \{(x,y) | x & y share a face\}
Fractals

One way to generate them is:
1) Start with infinite grid plane
2) remove a "periodic" subset of vertices

Main Issue: what is area to boundary?

For an $N \times N$ sq $A = N^2$ $B \approx N$

$$\text{dim bdry} = \left(\frac{\log \left(\frac{\text{length}}{\text{area}} \right)}{\log N} \right)^2 = \left(\frac{\log N}{\log N^2} \right)^2 = 1$$

First case: $A_{i+1} = 7A_i$ & $B_{i+1} = 3B_i$

$$\text{dim bdry} = \left(\frac{\log \left(\frac{3N^2}{14N^2} \right)}{\log \left(\frac{3N^2}{14N^2} \right)} \right)^2 = \left(\frac{\log 3}{\log 7} \right)^2 = \frac{\log 3}{\log 7} \approx 1.16$$
Fill in linear case

\[A_{in+1} = 4A_i \Rightarrow \text{# rounds } \log_4 n \]

\[B_{in+1} = 2B_i \]

Find base size: \[2^{\log_4 n} = n \frac{\log_4^2}{\sqrt{n}} = \sqrt{n} \]

\[\text{fill } \geq (\sqrt{n})^2 = n \]
Fill for Hex example

\[A_{i+1} = 7A_i \quad \text{if round} = \log_7 n \]
\[B_{i+1} = 3B_i \quad \text{boundary size} = 3 \log_7 n \]

\[\text{fill} = (3 \log_7 n)^2 = (n \log_3 3)^2 = n \log_3 9 \approx n^{1.12} \]

\[A_{i+1} = 3A_i \]
\[B_{i+1} = 2B_i \]

\[\text{fill} = (n \log_3 3)^2 = n \log_3 4 \approx n^{1.26} \]
Diagonal cuts for 2D-Mesh

Vertical

\[A = (\sqrt{2} K)^2 = 2 K^2 \]
\[B = 4K \]
\[\text{fill} = 16 K^2 \]

\[A = K^2 \]
\[B = 2K \]
\[\text{fill} = 4K^2 \]
4-time better