Language Techniques
for Provably Safe Mobile Code

Frank Pfenning
Carnegie Mellon University

Distinguished Lecture Series
Computing and Information Sciences
Kansas State University

October 27, 2000

Acknowledgments: Karl Crary, Robert Harper, Peter Lee,
Greg Morrisett, George Necula, ...

Outline

1. The Safety Problem
. The Trusted Computing Base

. Typed Assemby Language (TAL)

AW N

Proof-Carrying Code (PCC)

o1

. Conclusion

Mobile Code

e Java applets

e Browser plugins

e Device drivers and packet filters
e MacOS extensions

e Spreadsheet macros

e PostScript files

e ... your favorite example ...

Program Properties

e Complex, tightly interacting software systems.

e How do we achieve safety (no crash-and-burn)?

e How do we achieve security (no unauthorized access)?
e How do we achieve correctness (satisfies specification)?

e [his talk concentrates on safety.

Safety Problem Solved!

e Milner's slogan: well-typed programs cannot go wrong.
e [hisis a theorem about the ML programming language!

e Corresponding theorems for Java, Scheme, and others.
safe languages

e Achieved with compile time and run time checking.

e False for C and C++ (e.g. no bounds checking on arrays).
unsafe languages

Safety Problem Solved?

e Distance between mathematical model of high-level
programming language and machine execution.

e Central question:

How do we bridge this gap to allow
program composition and safe, efficient execution?

e \We will not discuss:

— Authentication and security.

— Digital signatures and assigning blame.

The Trusted Computing Base

e Examine various safety architectures.

e Overhead in code size?

e Overhead in efficiency?

e Complexity of the trusted computing base (TCB)7

Which components do we have to trust in order to
believe in the safety of the whole system?

TCB Example — Theorem Proving

conjecture

theorem
prover

yes/no

TCB

e T heorem provers are complex.

TCB Example — Proof Checking

conjecture

yes/no

certifying
theorem
prover

proof
checker

TCB

e Proof checker is much simpler than theorem prover.

e Proof checker is much easier to trust.

Applications — Proof Checking

e Resolution to type theory (Coq). [de Nivelle'99]

e Model checker (SVC2) to logical framework (Twelf).
[Stump & Dill’99]

e Nelson-Oppen cooperating decision procedures to logical
framework (Twelf). [Necula'98]

e Important software engineering tool!

e Logical framework (LF) as generic proof-checking engine.
[Harper, Honsell & Plotkin'87] [Pf."91]

10

Back to Mobile Code

Safety policies

Reference monitor

Software Fault Isolation (SFI)
Typed Assembly Language (TAL)

Proof-Carrying Code (PCCQ)

11

Safety Policies

e Memory safety:
dereference only valid pointers,
memory access allowed and aligned.

e Control-flow safety:
jump only to valid and allowed addresses.

e Jype safety:
program operations only on values of appropriate type.

e [ype safety subsumes memory and control-flow safety.

e Many other possibilities.

12

Reference Monitor

untrusted

code

execution

monitor

TCB

e Monitor (software or hardware) aborts unsafe execution.

e Burden on code consumer, inefficient.

e Difficult to enforce high-level abstractions.

13

Software Fault Isolation (SFI)

untrusted
code

merge
wW. monitor

TCB

trusted
execution

e Allows different languages and sources.

e Burden on code consumer, somewhat inefficient.

e Difficult to enforce high-level abstractions.

14

Just-in-Time Compiler

TCB
untrusted code type B JIT
(intermediate) checker compiler

trusted
execution

e Large, complex trusted computing base.

e Efficient execution.

Typed Assembly Language (TAL)

e [Types as a syntactic discipline for enforcing levels of
abstraction.

e \Works well for high-level languages.

e Why not for assembly language or binaries?
[Morrisett, Walker, Crary, Glew'98]

16

TAL Safety Architecture

untrusted code

(typed binary)

e Small trusted computing base.

TCB
type
checker
(GC)
runtime
system
trusted
binary

e Some overhead, some restrictions.

17

Questions about TAL

What does the type system look like?
How do we obtain a typed binary?

How to we prove soundness?
(well-typed programs cannot go wrong)

Overhead in space and time?

Restrictions on the form of code?

18

Example — TAL Type System

e Function computing factorial of r1, returning to r2.

fact:
code{rl:int,r2:{r1:int}}.
mov r3,1 set up accumulator for loop
jmp loop
loop:
code{rl:int,r2:{r1:int},r3:int}.
bz r1,done check if done, branch if zero

mul r3,r3,rl
sub r1,rl1,1

jmp loop
done:
code{rl:int,r2:{r1:int},r3:int}.
mov rl,r3 move accumulator to result register

jmp r2 return to caller

19

Typed Intermediate Languages

e Start with a safe source language.

e Maintain type information throughout compilation.

e Annotate binary with types that cannot be readily inferred.
e Space overhead acceptable.

e Note: software fault isolation has no annotations to exploit.

e Burden is on the code producer.

20

TAL Discussion

e Easy to accomodate high-level invariants.

e Low-level type system tailored to source type system.
e Can interfere with optimizations.

e [Type system engineered for a specific safety policy.

e Mathematical soundness proofs not easy.

e Tampering does not impact safety.

e Caveat: guarantees only as strong as the mathematical
model of the machine.
(example: separation of program and data)

21

TAL State-of-the-Art

e Original TAL for “safe C". [Morrisett, Walker, Crary,
Glew'98'99]

o TILT — ML types to RTL level.
[Morrisett’95] [Morrisett, Harper, et al.’96]

e TAL with resource bounds. [Crary & Weirich'00]

e DTAL — dependently typed assembly language.
Stronger invariants for efficiency and increased reliability.
[Xi& Pf'98][Xi& Harper'99]

22

Proof-Carrying Code (PCC)

e Code producer attaches a proof that binary is safe.
e Code consumer checks the proof against the code.

e [hen discards the proof, runs the binary.

23

PCC Safety Architecture

TCB

binary VCGen
+safety proof “+proof checker
(GC)

runtime

system
trusted
binary

e VCGen = Verification Condition Generator
e Small trusted computing base.

e Need small, efficiently checkable proof objects.

Questions about PCC

What do safety proofs look like?
How do we obtain a safety proof?

How do we prove soundness
(provably safe programs are really safe)?

Overhead in space and time?

Restrictions on the form of code?

25

Formal Safety Policies

e Safety policy given by inference rules.
e Generic rules for logical propositions.

e Specific rules for safety propositions
(saferead(a), safewrite(a), int(rl), ...)

amod4 =20 accessible(a)

saferead(a)

26

Proof Objects in Logical Framework (LF)

B
A BAI AABAE ANB B

AN B A 1 B 2 AD B

oI

e Inference rules as functions from proofs of premises to
proofs of conclusion.

andi : pf A -> pf B -> pf (A & B).

andel : pf (A & B) —-> pf A.

ande2 : pf (A & B) -> pf B.

impi : (pf A -> pf B) -> pf (A => B).

impi(Au. andi (andel u) (ande2 u)) : pf (A & B =>B & A).

27

LF Representation

e Logical framework: a meta-language for specifying logics
and representing proofs.

e Safety policy specified as signature.
(list of constant declarations)

e Proof-checking is type-checking!
e LF contains many redundancies.

e Syntactic redundancies can be eliminated.
[Michaylov & Pf'93] [Necula'98] [Pf & Schiirmann’98]

e Proof-checking quite efficient in practice.

28

Certifying Compilation

Start with a safe source language.

Maintain invariants throughout compilation.

Apply the verification condition generator (VCGen).

(requires invariants)

Prove the verification condition.
(should be provable if compiler is correct)

Use cooperating decision procedures.

29

Example: Safe Array Access

if (0 <= i && i <= *A) {
return A[i+1] /* unsafe access */
} else {

. signal an error ...

e Safe implementation of array access sub(A,i).

e Integer array as pointer to a sequence of words.

e First contains array’s length.

e Next: annotate with assertions.

30

Example: Adding Logical Assertions

/* int i, array A */

if (0 <= i && i <= *A) {
/* 0 <= i < length(A) */
return A[i+1]

} else {

. signal an error ...

e Invariants from source-level declarations.

e Invariants from control flow.

e Next: use sub(A,i) in array summation.

31

Example: Summing an Array

int sum = O;
for (i=0; i<length(A); i++) {
/* 0 <= i < length(A) */

sum += sub(A,i); /* safe access *x/

}

e Propagate assertion through code for sub.

e Next: in-line and optimize.

32

Example: Assertion-Based Optimization

int sum = 0O;
for (i=0; i<*A; i++) {
/* 0 <= i < length(A) */

sum += A[i+1]; /* unsafe access, proven safe */

}

e Unfold (inline) definition of sub.
e Eliminate bounds check.

e Next: annotate with proof of assertion.

33

Example: Certified Intermediate Code

int sum = 0;
for (i=0; i<*A; i++) {
/* m : 0 <= i < length(A) */

sum += A[i+1]

}

e Similar at machine code level.

34

Soundness

e Rigorous mathematical proof. [Necula'98]

e Partial formalization in linear logical framework.
[Plesko & Pf'99]

e Building a theory of types from machine model.
[Appel & Felty'00]

e Correctness of signature in practice?

35

PCC Discussion

e Space overhead highly variable.
e Run-time overhead manageable.
e Compile-time overhead manageable.

e Code efficiency comparable or better than standard
compilers.

e Most burden on code producer.
e More flexible than TAL.

e | ess systematic than TAL.

36

PCC State-of-the-Art

e Original Touchstone compiler for “safe C". [Necula'98]
e Original proof sizes 2x to 4x of binary.

e Special J certifying compiler for Java
[Colby, Lee, Necula et al.’00]

e Certifies memory, control, and type safety.

e Compiles 300 real-word Java applications, including
Hotjava (150K lines), StarOffice (100K lines).

e Annotations and proofs 25%—40% of machine code.

e Proofs represented as “oracle strings'’ .

37

The Real Lesson

e Type theory and logic are indispensible for solving system
problems!

e All compilers and theorem provers should be certifying!

e Valuable development and debugging tool.
(Twelf, Touchstone, Special J, CASQC)

e Increased confidence and increased efficiency.

38

Future Work

o TILT Compiler for ML to TAL.

e Stronger invariants for both TAL and PCC
(refinement types and dependent types).

e Formally verifying soundness using meta-logical framework
(PCC signatures, TAL type systems)

e Proof compression and analysis.

39

