
Language Techniques
for Provably Safe Mobile Code

Frank Pfenning

Carnegie Mellon University

Distinguished Lecture Series

Computing and Information Sciences

Kansas State University

October 27, 2000

Acknowledgments: Karl Crary, Robert Harper, Peter Lee,

Greg Morrisett, George Necula, . . .

1



Outline

1. The Safety Problem

2. The Trusted Computing Base

3. Typed Assemby Language (TAL)

4. Proof-Carrying Code (PCC)

5. Conclusion

2



Mobile Code

• Java applets

• Browser plugins

• Device drivers and packet filters

• MacOS extensions

• Spreadsheet macros

• PostScript files

• . . . your favorite example . . .

3



Program Properties

• Complex, tightly interacting software systems.

• How do we achieve safety (no crash-and-burn)?

• How do we achieve security (no unauthorized access)?

• How do we achieve correctness (satisfies specification)?

• This talk concentrates on safety.

4



Safety Problem Solved!

• Milner’s slogan: well-typed programs cannot go wrong.

• This is a theorem about the ML programming language!

• Corresponding theorems for Java, Scheme, and others.

safe languages

• Achieved with compile time and run time checking.

• False for C and C++ (e.g. no bounds checking on arrays).

unsafe languages

5



Safety Problem Solved?

• Distance between mathematical model of high-level

programming language and machine execution.

• Central question:

How do we bridge this gap to allow

program composition and safe, efficient execution?

• We will not discuss:

– Authentication and security.

– Digital signatures and assigning blame.

6



The Trusted Computing Base

• Examine various safety architectures.

• Overhead in code size?

• Overhead in efficiency?

• Complexity of the trusted computing base (TCB)?

Which components do we have to trust in order to

believe in the safety of the whole system?

7



TCB Example — Theorem Proving

conjecture
theorem
prover

-

�yes/no

TCB

• Theorem provers are complex.

8



TCB Example — Proof Checking

conjecture
certifying
theorem
prover

-

?

�yes/no
proof

checker

TCB

• Proof checker is much simpler than theorem prover.

• Proof checker is much easier to trust.

9



Applications — Proof Checking

• Resolution to type theory (Coq). [de Nivelle’99]

• Model checker (SVC2) to logical framework (Twelf).

[Stump & Dill’99]

• Nelson-Oppen cooperating decision procedures to logical

framework (Twelf). [Necula’98]

• Important software engineering tool!

• Logical framework (LF) as generic proof-checking engine.

[Harper, Honsell & Plotkin’87] [Pf.’91]

10



Back to Mobile Code

• Safety policies

• Reference monitor

• Software Fault Isolation (SFI)

• Typed Assembly Language (TAL)

• Proof-Carrying Code (PCC)

11



Safety Policies

• Memory safety:

dereference only valid pointers,

memory access allowed and aligned.

• Control-flow safety:

jump only to valid and allowed addresses.

• Type safety:

program operations only on values of appropriate type.

• Type safety subsumes memory and control-flow safety.

• Many other possibilities.

12



Reference Monitor

untrusted
code execution-

?

6

monitor

TCB

• Monitor (software or hardware) aborts unsafe execution.

• Burden on code consumer, inefficient.

• Difficult to enforce high-level abstractions.

13



Software Fault Isolation (SFI)

untrusted
code

merge
w. monitor

-

?

trusted
execution

TCB

• Allows different languages and sources.

• Burden on code consumer, somewhat inefficient.

• Difficult to enforce high-level abstractions.

14



Just-in-Time Compiler

untrusted code
(intermediate)

type
checker

JIT
compiler

- -

?

trusted
execution

TCB

• Large, complex trusted computing base.

• Efficient execution.

15



Typed Assembly Language (TAL)

• Types as a syntactic discipline for enforcing levels of

abstraction.

• Works well for high-level languages.

• Why not for assembly language or binaries?

[Morrisett, Walker, Crary, Glew’98]

16



TAL Safety Architecture

untrusted code
(typed binary)

type
checker

-

?

trusted
binary

(GC)
runtime
system

TCB

• Small trusted computing base.

• Some overhead, some restrictions.

17



Questions about TAL

• What does the type system look like?

• How do we obtain a typed binary?

• How to we prove soundness?

(well-typed programs cannot go wrong)

• Overhead in space and time?

• Restrictions on the form of code?

18



Example — TAL Type System

• Function computing factorial of r1, returning to r2.

fact:

code{r1:int,r2:{r1:int}}.
mov r3,1 set up accumulator for loop

jmp loop

loop:

code{r1:int,r2:{r1:int},r3:int}.
bz r1,done check if done, branch if zero
mul r3,r3,r1

sub r1,r1,1

jmp loop

done:

code{r1:int,r2:{r1:int},r3:int}.
mov r1,r3 move accumulator to result register
jmp r2 return to caller

19



Typed Intermediate Languages

• Start with a safe source language.

• Maintain type information throughout compilation.

• Annotate binary with types that cannot be readily inferred.

• Space overhead acceptable.

• Note: software fault isolation has no annotations to exploit.

• Burden is on the code producer.

20



TAL Discussion

• Easy to accomodate high-level invariants.

• Low-level type system tailored to source type system.

• Can interfere with optimizations.

• Type system engineered for a specific safety policy.

• Mathematical soundness proofs not easy.

• Tampering does not impact safety.

• Caveat: guarantees only as strong as the mathematical

model of the machine.

(example: separation of program and data)

21



TAL State-of-the-Art

• Original TAL for “safe C”. [Morrisett, Walker, Crary,

Glew’98’99]

• TILT — ML types to RTL level.

[Morrisett’95] [Morrisett, Harper, et al.’96]

• TAL with resource bounds. [Crary & Weirich’00]

• DTAL — dependently typed assembly language.

Stronger invariants for efficiency and increased reliability.

[Xi& Pf’98][Xi& Harper’99]

22



Proof-Carrying Code (PCC)

• Code producer attaches a proof that binary is safe.

• Code consumer checks the proof against the code.

• Then discards the proof, runs the binary.

23



PCC Safety Architecture

binary
+safety proof

VCGen
+proof checker

-

?

trusted
binary

(GC)
runtime
system

TCB

• VCGen = Verification Condition Generator

• Small trusted computing base.

• Need small, efficiently checkable proof objects.

24



Questions about PCC

• What do safety proofs look like?

• How do we obtain a safety proof?

• How do we prove soundness

(provably safe programs are really safe)?

• Overhead in space and time?

• Restrictions on the form of code?

25



Formal Safety Policies

• Safety policy given by inference rules.

• Generic rules for logical propositions.

• Specific rules for safety propositions

(saferead(a), safewrite(a), int(r1), . . .)

a mod 4 = 0 accessible(a)

saferead(a)

26



Proof Objects in Logical Framework (LF)

A B ∧I
A ∧ B

A ∧B ∧E1
A

A ∧B ∧E2
B

u
A

...

B
⊃Iu

A ⊃ B

• Inference rules as functions from proofs of premises to

proofs of conclusion.

andi : pf A -> pf B -> pf (A & B).

ande1 : pf (A & B) -> pf A.

ande2 : pf (A & B) -> pf B.

impi : (pf A -> pf B) -> pf (A => B).

impi(λu. andi (ande1 u) (ande2 u)) : pf (A & B => B & A).

27



LF Representation

• Logical framework: a meta-language for specifying logics

and representing proofs.

• Safety policy specified as signature.

(list of constant declarations)

• Proof-checking is type-checking!

• LF contains many redundancies.

• Syntactic redundancies can be eliminated.

[Michaylov & Pf’93] [Necula’98] [Pf & Schürmann’98]

• Proof-checking quite efficient in practice.

28



Certifying Compilation

• Start with a safe source language.

• Maintain invariants throughout compilation.

• Apply the verification condition generator (VCGen).

(requires invariants)

• Prove the verification condition.

(should be provable if compiler is correct)

• Use cooperating decision procedures.

29



Example: Safe Array Access

if (0 <= i && i <= *A) {
return A[i+1] /* unsafe access */

} else {
... signal an error ...

}

• Safe implementation of array access sub(A,i).

• Integer array as pointer to a sequence of words.

• First contains array’s length.

• Next: annotate with assertions.

30



Example: Adding Logical Assertions

/* int i, array A */

if (0 <= i && i <= *A) {
/* 0 <= i < length(A) */

return A[i+1]

} else {
... signal an error ...

}

• Invariants from source-level declarations.

• Invariants from control flow.

• Next: use sub(A,i) in array summation.

31



Example: Summing an Array

int sum = 0;

for (i=0; i<length(A); i++) {
/* 0 <= i < length(A) */

sum += sub(A,i); /* safe access */

}

• Propagate assertion through code for sub.

• Next: in-line and optimize.

32



Example: Assertion-Based Optimization

int sum = 0;

for (i=0; i<*A; i++) {
/* 0 <= i < length(A) */

sum += A[i+1]; /* unsafe access, proven safe */

}

• Unfold (inline) definition of sub.

• Eliminate bounds check.

• Next: annotate with proof of assertion.

33



Example: Certified Intermediate Code

int sum = 0;

for (i=0; i<*A; i++) {
/* π : 0 <= i < length(A) */

sum += A[i+1]

}

• Similar at machine code level.

34



Soundness

• Rigorous mathematical proof. [Necula’98]

• Partial formalization in linear logical framework.

[Plesko & Pf’99]

• Building a theory of types from machine model.

[Appel & Felty’00]

• Correctness of signature in practice?

35



PCC Discussion

• Space overhead highly variable.

• Run-time overhead manageable.

• Compile-time overhead manageable.

• Code efficiency comparable or better than standard

compilers.

• Most burden on code producer.

• More flexible than TAL.

• Less systematic than TAL.

36



PCC State-of-the-Art

• Original Touchstone compiler for “safe C”. [Necula’98]

• Original proof sizes 2x to 4x of binary.

• Special J certifying compiler for Java

[Colby, Lee, Necula et al.’00]

• Certifies memory, control, and type safety.

• Compiles 300 real-word Java applications, including

Hotjava (150K lines), StarOffice (100K lines).

• Annotations and proofs 25%–40% of machine code.

• Proofs represented as “oracle strings”.

37



The Real Lesson

• Type theory and logic are indispensible for solving system

problems!

• All compilers and theorem provers should be certifying!

• Valuable development and debugging tool.

(Twelf, Touchstone, Special J, CASC)

• Increased confidence and increased efficiency.

38



Future Work

• TILT Compiler for ML to TAL.

• Stronger invariants for both TAL and PCC

(refinement types and dependent types).

• Formally verifying soundness using meta-logical framework

(PCC signatures, TAL type systems)

• Proof compression and analysis.

39


