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Mobile Code

e Java applets

e Browser plugins

e Device drivers and packet filters
e MacOS extensions

e Spreadsheet macros

e PostScript files

e ... your favorite example ...



Program Properties

e Complex, tightly interacting software systems.

e How do we achieve safety (no crash-and-burn)?

e How do we achieve security (no unauthorized access)?
e How do we achieve correctness (satisfies specification)?

e [ his talk concentrates on safety.



Safety Problem Solved!

e Milner's slogan: well-typed programs cannot go wrong.
e [hisis a theorem about the ML programming language!

e Corresponding theorems for Java, Scheme, and others.
safe languages

e Achieved with compile time and run time checking.

e False for C and C++ (e.g. no bounds checking on arrays).
unsafe languages



Safety Problem Solved?

e Distance between mathematical model of high-level
programming language and machine execution.

e Central question:

How do we bridge this gap to allow
program composition and safe, efficient execution?

e \We will not discuss:

— Authentication and security.

— Digital signatures and assigning blame.



The Trusted Computing Base

e Examine various safety architectures.

e Overhead in code size?

e Overhead in efficiency?

e Complexity of the trusted computing base (TCB)7

Which components do we have to trust in order to
believe in the safety of the whole system?



TCB Example — Theorem Proving

conjecture

theorem
prover

yes/no

TCB

e T heorem provers are complex.




TCB Example — Proof Checking

conjecture

yes/no

certifying
theorem
prover

proof
checker

TCB

e Proof checker is much simpler than theorem prover.

e Proof checker is much easier to trust.




Applications — Proof Checking

e Resolution to type theory (Coq). [de Nivelle'99]

e Model checker (SVC2) to logical framework (Twelf).
[Stump & Dill’99]

e Nelson-Oppen cooperating decision procedures to logical
framework (Twelf). [Necula'98]

e Important software engineering tool!

e Logical framework (LF) as generic proof-checking engine.
[Harper, Honsell & Plotkin'87] [Pf."91]
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Back to Mobile Code

Safety policies

Reference monitor

Software Fault Isolation (SFI)
Typed Assembly Language (TAL)

Proof-Carrying Code (PCCQ)
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Safety Policies

e Memory safety:
dereference only valid pointers,
memory access allowed and aligned.

e Control-flow safety:
jump only to valid and allowed addresses.

e Jype safety:
program operations only on values of appropriate type.

e [ype safety subsumes memory and control-flow safety.

e Many other possibilities.
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Reference Monitor

untrusted

code

execution

monitor

TCB

e Monitor (software or hardware) aborts unsafe execution.

e Burden on code consumer, inefficient.

e Difficult to enforce high-level abstractions.
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Software Fault Isolation (SFI)

untrusted
code

merge
wW. monitor

TCB

trusted
execution

e Allows different languages and sources.

e Burden on code consumer, somewhat inefficient.

e Difficult to enforce high-level abstractions.

14



Just-in-Time Compiler

TCB
untrusted code type B JIT
(intermediate) checker compiler

trusted
execution

e Large, complex trusted computing base.

e Efficient execution.



Typed Assembly Language (TAL)

e [Types as a syntactic discipline for enforcing levels of
abstraction.

e \Works well for high-level languages.

e Why not for assembly language or binaries?
[Morrisett, Walker, Crary, Glew'98]
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TAL Safety Architecture

untrusted code

(typed binary)

e Small trusted computing base.

TCB
type
checker
(GC)
runtime
system
trusted
binary

e Some overhead, some restrictions.
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Questions about TAL

What does the type system look like?
How do we obtain a typed binary?

How to we prove soundness?
(well-typed programs cannot go wrong)

Overhead in space and time?

Restrictions on the form of code?

18



Example — TAL Type System

e Function computing factorial of r1, returning to r2.

fact:
code{rl:int,r2:{r1:int}}.
mov r3,1 set up accumulator for loop
jmp loop
loop:
code{rl:int,r2:{r1:int},r3:int}.
bz r1,done check if done, branch if zero

mul r3,r3,rl
sub r1,rl1,1

jmp loop
done:
code{rl:int,r2:{r1:int},r3:int}.
mov rl,r3 move accumulator to result register

jmp r2 return to caller
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Typed Intermediate Languages

e Start with a safe source language.

e Maintain type information throughout compilation.

e Annotate binary with types that cannot be readily inferred.
e Space overhead acceptable.

e Note: software fault isolation has no annotations to exploit.

e Burden is on the code producer.
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TAL Discussion

e Easy to accomodate high-level invariants.

e Low-level type system tailored to source type system.
e Can interfere with optimizations.

e [Type system engineered for a specific safety policy.

e Mathematical soundness proofs not easy.

e Tampering does not impact safety.

e Caveat: guarantees only as strong as the mathematical
model of the machine.
(example: separation of program and data)
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TAL State-of-the-Art

e Original TAL for “safe C". [Morrisett, Walker, Crary,
Glew'98'99]

o TILT — ML types to RTL level.
[Morrisett’95] [Morrisett, Harper, et al.’96]

e TAL with resource bounds. [Crary & Weirich'00]

e DTAL — dependently typed assembly language.
Stronger invariants for efficiency and increased reliability.
[Xi& Pf'98][Xi& Harper'99]
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Proof-Carrying Code (PCC)

e Code producer attaches a proof that binary is safe.
e Code consumer checks the proof against the code.

e [ hen discards the proof, runs the binary.
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PCC Safety Architecture

TCB

binary VCGen
+safety proof “+proof checker
(GC)

runtime

system
trusted
binary

e VCGen = Verification Condition Generator
e Small trusted computing base.

e Need small, efficiently checkable proof objects.



Questions about PCC

What do safety proofs look like?
How do we obtain a safety proof?

How do we prove soundness
(provably safe programs are really safe)?

Overhead in space and time?

Restrictions on the form of code?
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Formal Safety Policies

e Safety policy given by inference rules.
e Generic rules for logical propositions.

e Specific rules for safety propositions
(saferead(a), safewrite(a), int(rl), ...)

amod4 =20 accessible(a)

saferead(a)
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Proof Objects in Logical Framework (LF)

B
A BAI AABAE ANB B

AN B A 1 B 2 AD B

oI

e Inference rules as functions from proofs of premises to
proofs of conclusion.

andi : pf A -> pf B -> pf (A & B).

andel : pf (A & B) —-> pf A.

ande2 : pf (A & B) -> pf B.

impi : (pf A -> pf B) -> pf (A => B).

impi(Au. andi (andel u) (ande2 u)) : pf (A & B =>B & A).
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LF Representation

e Logical framework: a meta-language for specifying logics
and representing proofs.

e Safety policy specified as signature.
(list of constant declarations)

e Proof-checking is type-checking!
e LF contains many redundancies.

e Syntactic redundancies can be eliminated.
[Michaylov & Pf'93] [Necula'98] [Pf & Schiirmann’98]

e Proof-checking quite efficient in practice.
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Certifying Compilation

Start with a safe source language.

Maintain invariants throughout compilation.

Apply the verification condition generator (VCGen).

(requires invariants)

Prove the verification condition.
(should be provable if compiler is correct)

Use cooperating decision procedures.
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Example: Safe Array Access

if (0 <= i && i <= *A) {
return A[i+1] /* unsafe access */
} else {

. signal an error ...

e Safe implementation of array access sub(A,i).

e Integer array as pointer to a sequence of words.

e First contains array’s length.

e Next: annotate with assertions.
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Example: Adding Logical Assertions

/* int i, array A */

if (0 <= i && i <= *A) {
/* 0 <= i < length(A) */
return A[i+1]

} else {

. signal an error ...

e Invariants from source-level declarations.

e Invariants from control flow.

e Next: use sub(A,i) in array summation.
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Example: Summing an Array

int sum = O;
for (i=0; i<length(A); i++) {
/* 0 <= i < length(A) */

sum += sub(A,i); /* safe access *x/

}

e Propagate assertion through code for sub.

e Next: in-line and optimize.
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Example: Assertion-Based Optimization

int sum = 0O;
for (i=0; i<*A; i++) {
/* 0 <= i < length(A) */

sum += A[i+1]; /* unsafe access, proven safe */

}

e Unfold (inline) definition of sub.
e Eliminate bounds check.

e Next: annotate with proof of assertion.
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Example: Certified Intermediate Code

int sum = 0;
for (i=0; i<*A; i++) {
/* m : 0 <= i < length(A) */

sum += A[i+1]

}

e Similar at machine code level.
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Soundness

e Rigorous mathematical proof. [Necula'98]

e Partial formalization in linear logical framework.
[Plesko & Pf'99]

e Building a theory of types from machine model.
[Appel & Felty'00]

e Correctness of signature in practice?
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PCC Discussion

e Space overhead highly variable.
e Run-time overhead manageable.
e Compile-time overhead manageable.

e Code efficiency comparable or better than standard
compilers.

e Most burden on code producer.
e More flexible than TAL.

e | ess systematic than TAL.
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PCC State-of-the-Art

e Original Touchstone compiler for “safe C". [Necula'98]
e Original proof sizes 2x to 4x of binary.

e Special J certifying compiler for Java
[Colby, Lee, Necula et al.’00]

e Certifies memory, control, and type safety.

e Compiles 300 real-word Java applications, including
Hotjava (150K lines), StarOffice (100K lines).

e Annotations and proofs 25%—40% of machine code.

e Proofs represented as “oracle strings'’ .
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The Real Lesson

e Type theory and logic are indispensible for solving system
problems!

e All compilers and theorem provers should be certifying!

e Valuable development and debugging tool.
(Twelf, Touchstone, Special J, CASQC)

e Increased confidence and increased efficiency.
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Future Work

o TILT Compiler for ML to TAL.

e Stronger invariants for both TAL and PCC
(refinement types and dependent types).

e Formally verifying soundness using meta-logical framework
(PCC signatures, TAL type systems)

e Proof compression and analysis.
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