Subtyping and Intersection Types Revisited

Frank Pfenning

Carnegie Mellon University

International Conference on Functional Programming (ICFP'07)

Freiburg, Germany, October 1-3, 2007

Joint work with Rowan Davies, Joshua Dunfield, William Lovas, and Noam Zeilberger

Work in progress!

Outline

- Verificationist and pragmatist meaning theory
- Canonical proofs and atomic subtyping
- Identity and substitution
- Defining higher-order subtyping
- Sound and complete rules for higher-order subtyping
- Intersections
- Higher-order subtyping extended
- Monads: the bridge to functional programming
- The value restriction and distributivity

What is Logic About?

- Not truth, but *consequence*
- Not particular propositions, but arbitrary propositions

socrates is a man all men are mortal

socrates is mortal

P(c) true $\forall x. P(x) \supset Q(x) true$

Q(c) true

- Proofs are *parametric* in atomic propositions
- If A true then [B/P]A true for any B

The Meaning of Propositions

- Atomic propositions are parameters
- Meaning of compound propositions should be determined by their constituents
- Verificationist: meaning of a proposition is determined by its verifications

$$\frac{A \ true \quad B \ true}{A \ \& \ B \ true} \& I$$

- Introduction rules define: read bottom-up
- Elimination rules are justified from introduction rules

The Meaning of Propositions

• *Pragmatist*: meaning of a proposition is determined by its uses $A \&_{T} B true = A \&_{T} B true$

$$\frac{A \& B true}{A true} \& E_1 \qquad \frac{A \& B true}{B true} \& E_2$$

- Elimination rules define: read top-down
- Introduction rules are justified from elimination rules

An Aside

- Verificationist = ML programmer (= call-by-value)
- Pragmatist = Haskell programmer (= call-by-name)
- See [Zeilberger POPL'08]
- Origins in [Dummett'76] [Martin-Löf'83]

Hypothetical Reasoning

• Hypothetical reasoning from a notion of consequence

$$\frac{A \& B true}{B true} \& E_1 \qquad \frac{A \& B true}{A true} \& E_2 \\ \frac{B \& A true}{B \& A true} \& I$$

• Written as hypothetical judgment

 $A \& B true \vdash B \& A true$

ICFP, Freiburg, Oct 07 – p.7

Canonical Proofs

- Verificationist to establish conclusion
- Pragmatist to use hypotheses
- Meet at an atomic proposition P

$$\frac{A \text{ verif } B \text{ verif}}{A \& B \text{ verif}} \& I \qquad \qquad \frac{P \text{ use } P = Q}{Q \text{ verif}}$$

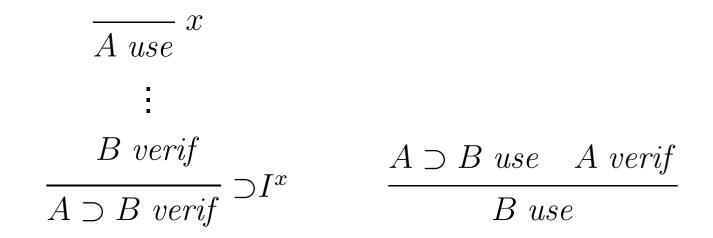
$$\frac{A \& B \text{ use } A \& B \text{ use } A \& B \text{ use } A$$

$$\frac{A \& B use}{A use} \& E_1 \qquad \qquad \frac{A \& B use}{B use} \& E_2$$

Bidirectional subformula property

Implication

Implication requires hypothetical reasoning



• Maintains bidirectional subformula property

Harmony

• Identity

A $use \vdash A$ verif for any proposition A

- Assume for atomic propositions (= parameters)
- Ensure for compound propositions
- (Hereditary) Proof Substitution

If Γ , A use $\vdash C$ verif and $\Gamma \vdash A$ verif then $\Gamma \vdash C$ verif

Hereditary substitution to obtain canonical proofs

Relating Atomic Propositions

- Relate (otherwise parametric) atomic propositions
- Based on entailment

 $\begin{array}{rcl} \mathsf{man} & \leq & \mathsf{mortal} \\ P & \leq & Q & (P \vdash Q) \end{array}$

- $P \leq Q$ is an *assumption* on parameters P and Q
- Use when logical connectives have been eliminated

$$\begin{array}{cccc} P \ use \quad P = Q \\ \hline Q \ verif \end{array} & \longrightarrow \end{array} \begin{array}{cccc} P \ use \quad P \leq Q \\ \hline Q \ verif \end{array}$$

Rules of Atomic Subtyping

• Reflexivity, by identity P use $\vdash P$ verif

$$P \le P$$

• Transitiviy, by substitution from P use $\vdash Q$ verif and Q use $\vdash R$ verif P < O = O < P

 $\frac{P \le Q \quad Q \le R}{P \le R}$

Curry-Howard-DeBruijn

- Propositions as types; proofs as terms
- Annotate judgments with proof terms
 - A verif becomes $M \Leftarrow A$ (check M against A)
 - A use becomes $R \Rightarrow A$ (R synthesizes A)
- Canonical proofs as canonical terms (β -normal, η -long)

$$\frac{\Gamma, x \Rightarrow A \vdash M \Leftarrow B}{\Gamma \vdash \lambda x. M \Leftarrow A \rightarrow B} \rightarrow I \qquad \qquad \frac{\Gamma \vdash R \Rightarrow P \quad P \leq Q}{\Gamma \vdash R \Leftarrow Q}$$

$$\frac{\Gamma \vdash R \Rightarrow A \to B \quad \Gamma \vdash M \Leftarrow A}{\Gamma \vdash R \Rightarrow A \vdash M \Rightarrow B} \to E$$

Identity Revisited

• Canonical term grammar

Canonical terms $M ::= \lambda x. M \mid R$ Atomic terms $R ::= x \mid RM$

• Identity with terms

 $x \Rightarrow A \vdash \eta_A(x) \Leftarrow A$ for any proposition A

• $\eta_A(R)$ defined by induction on A

$$\eta_P(R) = R$$

$$\eta_{A \to B}(R) = \lambda x. \eta_B(R \eta_A(x))$$

Definition extends modularly to new connectives

Substitution Revisited

Hereditary substitution with terms

If $\Gamma \vdash M \Leftarrow A$ and $\Gamma, x \Rightarrow A \vdash N \Leftarrow C$ then $\Gamma \vdash [M/x]_A N \Leftarrow C$

• Define $[M/x]_A N$ by nested induction on A and N

$$[M/x]_A(\lambda y. N) = \lambda y. [M/x]_A N$$

$$[M/x]_A(R) = [M/x]_A R \quad \text{if } hd(R) = x$$

$$[M/x]_A(R) = [M/x]_A^r R \quad \text{if } hd(R) \neq x$$

$$[M/x]_A^r(RN) = ([M/x]_A^r R) ([M/x]_A N)$$

$$[M/x]_A^r(y) = y$$

Hereditary Substitution

- Call $\llbracket M/x \rrbracket_A(R)$ when hd(R) = x
- Returns canonical term and its type M' : A' with A' a constituent of A

$$\llbracket M/x \rrbracket_A(x) \qquad = \quad M:A$$

$$[\![M/x]\!]_A(RN) = [N'/y]_BM' : C$$

where $[M/x]_A N = N'$

and $\llbracket M/x \rrbracket_A R = \lambda y. M' : B \to C$

Refers back to ordinary substitution with smaller type

Application: Logical Frameworks

- LF Logical Framework
- Based on dependent types λ^{Π}
 - Higher-order abstract syntax
 - Judgments as types
- Object language and rules are encoded as signatures with constant declarations
- Theory of subtyping presented here extends to dependent types [Lovas & Pf'07]
 - Allow declarations $a \leq b$ for type families a and b.
 - A little more later in this talk

Example: Encoding CBV

• Signature (with exp : type and val : type)

$$\mathsf{lam}$$
 : $(\mathsf{val} \to \mathsf{exp}) \to \mathsf{val}$

 $\mathsf{app} \quad : \quad \mathsf{exp} \to \mathsf{exp} \to \mathsf{exp}$

 $\mathsf{val} \ \leq \ \mathsf{exp}$

Sample derivation

$$\begin{array}{l} x \Rightarrow \mathsf{val} \vdash x \Rightarrow \mathsf{val} \quad \mathsf{val} \leq \mathsf{exp} \\ \hline x \Rightarrow \mathsf{val} \vdash x \Leftarrow \mathsf{exp} \\ \hline \lambda x. \, x \Leftarrow \mathsf{val} \rightarrow \mathsf{exp} \\ \hline \mathsf{lam} \left(\lambda x. \, x \right) \Leftarrow \mathsf{val} \end{array}$$

Example: Encoding Polytypes

• Predicative polymorphism

arrow	•	simp_tp \rightarrow simp_tp \rightarrow simp_tp
forall	•	$(simp_tp \rightarrow poly_tp) \rightarrow poly_tp$
simp_tp	\leq	poly_tp
Impredicative polymorphism		
arrow	•	$simp_tp \rightarrow simp_tp \rightarrow simp_tp$
forall	•	$(poly_tp \rightarrow poly_tp) \rightarrow poly_tp$
simp_tp	\leq	poly_tp

Summary So Far

- Meaning of connectives given by canonical proofs
- Analyze the structure of terms in two directions
- Bi-directional type-checking under CHdB isomorphism
- Identity and substitution principles
- Subtyping as entailment on atomic propositions
- Applicable to dependent types

Subtyping at Higher Types

• What about the usual co-/contra-variant rule of subtyping?

$$\frac{B_1 \le A_1 \quad A_2 \le B_2}{A_1 \to A_2 \le B_1 \to B_2}$$

- No need for such a rule
 - The logical meaning of \rightarrow is already given
 - The logical meaning of \leq is already given
- Canonical forms (specifically: η -long forms) are crucial

Defining Higher-Order Subtyping

- We can *define* a notion of subtyping several ways
 - (1) $A \leq_1 B$ if for all $\Gamma \vdash M \Leftarrow A$ we have $\Gamma \vdash M \Leftarrow B$ (2) $A \leq_2 B$ if for all $\Gamma, x \Rightarrow B \vdash N \Leftarrow C$ we have $\Gamma, x \Rightarrow A \vdash N \Leftarrow C$ (3) $A \leq_3 B$ if $x \Rightarrow A \vdash \eta_A(x) \Leftarrow B$ (4) $A \leq_4 B$ if for all $\Gamma, x \Rightarrow B \vdash N \Leftarrow C$ and $\Gamma \vdash M \Leftarrow A$ we have $\Gamma \vdash [M/x]_B N \Leftarrow C$
- These are all equivalent!
- Only compare types of the same shape, since type shape determines term shape (cf. "refinement restriction")

Rules for Higher-Order Subtyping

• Rules so far for atomic types

$$\frac{P \le Q \quad Q \le R}{P \le P} \qquad \frac{P \le Q \quad Q \le R}{P \le R}$$

• Also equivalent to (1)–(4) is adding the following rule

$$\frac{B_1 \le A_1 \quad A_2 \le B_2}{A_1 \to A_2 \le B_1 \to B_2}$$

- General reflexivity and transitivity principles hold
- Mirror identity and substitution for entailment

Subtyping Completeness

• The rules are complete in a strong sense:

 $A \leq B$ iff for all $\Gamma \vdash M \Leftarrow A$ we have $\Gamma \vdash M \Leftarrow B!$

- Possible due to the open-ended interpretation of subtyping
 - Quantification over Γ
 - Subtypings are stable under all extensions
 - Consistent with open-ended nature of LF
- Contrast with functional programming
 - Interested in *closed* terms for evaluation
 - Datatypes are inductive or recursive, not open-ended
 - Ironically, function spaces are open-ended
 - Cannot expect completeness

Subtyping Alone is Insufficient

- ... in practice
- Consider types even and odd
- What is the type of successor?
- Need intersection types
 - z : even
 - $\mathsf{s} \hspace{0.1 cm} : \hspace{0.1 cm} (\mathsf{even} \rightarrow \mathsf{odd}) \land (\mathsf{odd} \rightarrow \mathsf{even})$
- Expresses *multiple* properties of *one* term in a single type

Meaning Explanations

• Resume verificationist ($\land I$) and pragmatist ($\land E_i$) programs

$$\frac{\Gamma \vdash M \Leftarrow A \quad \Gamma \vdash M \Leftarrow B}{\Gamma \vdash M \Leftarrow A \land B} \land I$$

$$\frac{\Gamma \vdash R \Rightarrow A \land B}{\Gamma \vdash R \Rightarrow A} \land E_1 \qquad \frac{\Gamma \vdash R \Rightarrow A \land B}{\Gamma \vdash R \Rightarrow B} \land E_2$$

- Type-theoretic, but not purely "logical"
- Again, no new subtyping rules, nothing else needed!
- Only rule concerned with subtyping remains the same

$$\frac{\Gamma \vdash R \Rightarrow P \quad P \le Q}{\Gamma \vdash R \Leftarrow Q}$$

Example: 2 is even

Recall

- z : even
- $\mathsf{s} : (\mathsf{even} \to \mathsf{odd}) \land (\mathsf{odd} \to \mathsf{even})$
- To check $s(sz) \Leftarrow even we use$
 - s \Rightarrow odd \rightarrow even for the outer occurrence
 - $s \Rightarrow even \rightarrow odd$ for the inner occurrence
 - $z \Rightarrow$ even for the occurrence of z

Example: Open-Endedness

- Add type empty with no constructor
- We do not know that $empty \le even$:
 - $x \Rightarrow empty \vdash x \Leftarrow empty$ but $x \Rightarrow empty \not\vdash x \Leftarrow even$ unless we *specify* empty \leq even.
- We do not know that even \land odd \leq empty for a similar reason
- Currently there is no way to specify this [future work]

Characterizing HO Subtyping

- The characterizations of subtyping from before are still equivalent. For example
 - (1) $A \leq_1 B$ if for all $\Gamma \vdash M \Leftarrow A$ we have $\Gamma \vdash M \Leftarrow B$
 - (3) $A \leq_3 B$ if $x \Rightarrow A \vdash \eta_A(x) \Leftarrow B$
- Several sound and complete set of rules for subtyping
 - Axiomatic
 - Sequent calculus

Axiomatic Formulation I

Reflexivity and transitivity

$$\frac{A \le B \quad B \le C}{A \le C}$$

Functions

$$\frac{B_1 \le A_1 \quad A_2 \le B_2}{A_1 \to A_2 \le B_1 \to B_2}$$

Axiomatic Formulation II

Intersections

$$\frac{A \le B \quad A \le C}{A \le B \land C} \qquad \frac{A \le C}{A \land B \le C} \quad \frac{B \le C}{A \land B \le C}$$

• Distributivity

$$(A \to B) \land (A \to C) \le A \to (B \land C)$$

Sequent Calculus for Subtyping

- Use sequent calculus to show decidability
- Not necessary in an implementation!
 - Only to understand subtyping
 - Only atomic subtyping is required for type-checking
- Judgment $\Delta \leq C$

$$\frac{\Delta \leq A \quad \Delta \leq B}{\Delta \leq A \wedge B} \wedge R \qquad \frac{\Delta, A, B \leq C}{\Delta, A \wedge B \leq C} \wedge L$$
$$\frac{P \leq Q}{\Delta, P \leq Q} \qquad \begin{bmatrix} A \leq A_i \end{bmatrix}_i \quad [B_i]_i \leq B$$
$$\frac{\Delta, [A_i \to B_i]_i \leq A \to B}{\Delta, [A_i \to B_i]_i \leq A \to B}$$

Algorithmic Typing

• Typing rules are non-deterministic

$$\frac{\Gamma \vdash R \Rightarrow A \land B}{\Gamma \vdash R \Rightarrow A} \qquad \qquad \frac{\Gamma \vdash R \Rightarrow A \land B}{\Gamma \vdash R \Rightarrow B}$$

- A "more efficient" system
 - $\Gamma \vdash R \Rightarrow \Delta$ (*R* has all types in Δ)
 - $\Gamma \vdash M \Leftarrow A$ (*M* checks against *A*)
- Rules should maximally break down intersection
- Elide this refinement

Algorithmic Typing Rules

$\frac{\Gamma, x \Rightarrow A \vdash M \Leftarrow B}{\Gamma \vdash \lambda x. M \Leftarrow A \rightarrow B} \quad \frac{\Gamma \vdash R \Rrightarrow \Delta, P \quad P \leq Q}{\Gamma \vdash R \Leftarrow Q}$

 $\frac{\Gamma \vdash M \Leftarrow A \quad \Gamma \vdash M \Leftarrow B}{\Gamma \vdash M \Leftarrow A \land B}$

 $\frac{\Gamma \vdash R \Rrightarrow \Delta, [A_i \to B_i]_i \quad [\Gamma \vdash M \Leftarrow A_i]_i}{\Gamma \vdash R \Rrightarrow A} \quad \frac{\Gamma \vdash R \Rrightarrow \Delta, [A_i \to B_i]_i \quad [\Gamma \vdash M \Leftarrow A_i]_i}{\Gamma \vdash R M \Rrightarrow [B_i]_i}$

 $\frac{\Gamma \vdash R \Rrightarrow \Delta, A, B}{\Gamma \vdash R \Rrightarrow \Delta, A \land B}$

Summary

- Logical meaning explanations via canonical proofs
- Simple and uniform system of subtyping and intersections
- Subtyping defined on atomic types only
- Intersection defined for synthesis and checking only
- Clear derived notions of subtyping for higher-order types
- Sound and complete set of rules
- Compare and intersect only types with compatible shape
 - Since type shape determines shape of canonical terms
- Applies to dependent types with morally identical rules

Other Encoding Examples

- Barendregt's λ -cube
 - Uniform presentation of typing at all levels
 - Different corners of cube with different intersections
- Syntactic inclusions and properties
 - Values, expressions, and evaluation in functional languages
 - Hereditary Harrop formulas and logic programming
- Dependent properties of proofs
 - (Weak) (head) normal forms
 - Cut-free sequent proofs
 - Uniform sequent and natural deduction proofs

Functional Programming

- Can we use this approach to design type systems for functional languages?
- Logical Framework (LF)
 - Complete rules for subtyping and intersection
 - Open interpretation of atomic types
 - *Closed* interpretation of function spaces
- Functional programming
 - *Closed* interpretation of atomic types
 - Open interpretation of function spaces
 - Canonical forms no longer fully characterize meaning
 - Operational semantics, non-termination, effects

A Bridge

- Criterion (3) offers a bridge between logical frameworks and functional programming
 - (3) $A \leq_3 B$ if $x \Rightarrow A \vdash \eta_A(x) \Leftarrow B$
- Does not quantify over arbitrary terms or contexts
- η -expansions are available in functional language
- η -expansions are always canonical identity maps
- η -expansions depend only on type constructs in A and B
- Stability under language extensions

A Problem

- Some rules are *unsound* because they rely on the closed interpretation of function spaces (canonical forms, pure)
 - Intersection introduction requires a value restriction
 - Drop distributivity of \land over \rightarrow
 - For counterexamples see [Davies & Pf. ICFP'00]
- Idea: use *monads* to isolate effects!
- Understand the effect of effects on subtyping and intersections

Monads in Judgmental Form

- Maintain verificationist and pragmatist approach
- Meaning explanation by introduction and elimination forms
- Need new logical judgment
 - $\Gamma \vdash A \ lax$ (logically: lax truth of A)
- Type-theoretic version (with proof terms)
 - $\Gamma \vdash E \leftarrow A$
 - E is a potentially effectful computation of type A
 - Do not consider specific effects

Judgmental Rules

- Relating lax truth to truth
- A pure term M is a computation of type A

 $\frac{\Gamma \vdash M \Leftarrow A}{\Gamma \vdash M \leftarrow A}$

• Substitution: we can compose computations F before E

If $\Gamma \vdash F \leftarrow A$ and $\Gamma, x \Rightarrow A \vdash E \leftarrow C$ then $\Gamma \vdash \langle F/x \rangle_A E \leftarrow C$

The Monad Type Constructor

- Type $\{A\}$ for pure terms denoting computations of type A
- Verificationist definition

$$\frac{\Gamma \vdash E \leftarrow A}{\Gamma \vdash \{E\} \Leftarrow \{A\}} \left\{ \right\} I$$

Pragmatist definition

$$\frac{\Gamma \vdash R \Rightarrow \{A\} \quad \Gamma, x \Rightarrow A \vdash E \leftarrow C}{\Gamma \vdash \mathsf{let} \{x\} = R \text{ in } E \leftarrow C} \{\}E$$

ICFP, Freiburg, Oct 07 - p.42

Identity and Substitution Revisited

- Leftist hereditary substitution $\langle E/x \rangle_A F$
- Defined by nested induction on A, E, and F $\langle \text{let } \{y\} = R \text{ in } E/x \rangle_A F = \text{let } \{y\} = R \text{ in} \langle E/x \rangle_A F$ $\langle M/x \rangle_A E = [M/x]_A E$
- Identity principle via η -expansion $\eta_{\{A\}}(R) = \{ \text{let } \{x\} = R \text{ in } \eta_A(x) \}$

Subtyping and Intersections

• Rules for subtyping and intersection are not affected!

- They were concerned with truth
- Lax truth is a derived notion
- Orthogonality of language constructs pays off!
- It is *not* the case that

$$\frac{\Gamma \vdash E \leftarrow A \quad \Gamma \vdash E \leftarrow B}{\Gamma \vdash E \leftarrow A \land B} \text{ wrong!}$$

Higher-Order Subtyping

- Derived notions of subtyping remain unchanged
- New rule, axiomatically

 $\frac{A \le B}{\{A\} \le \{B\}}$

No Distributivity

- No distributivity: $\{A\} \land \{B\} \not\leq \{A \land B\}$
- Quick check via η -expansion

$$\frac{x \Rightarrow \{P\} \land \{Q\} \vdash x \Rightarrow \{P\} \land \{Q\}}{x \Rightarrow \{P\} \land \{Q\} \vdash x \Rightarrow \{P\}} \qquad \begin{array}{c} \text{fails} \\ y \Rightarrow P \vdash y \Leftarrow P \land Q \\ \hline y \Rightarrow P \vdash y \leftarrow P \land Q \\ \hline y \Rightarrow P \vdash y \leftarrow P \land Q \\ \hline x \Rightarrow \{P\} \land \{Q\} \vdash \mathsf{let} \{y\} = x \text{ in } y \leftarrow P \land Q \\ \hline x \Rightarrow \{P\} \land \{Q\} \vdash \mathsf{let} \{y\} = x \text{ in } y\} \Leftarrow \{P \land Q\}
\end{array}$$

Subtyping in Sequent Form

• In sequent form: commit

$$\frac{A \le B}{\Delta, \{A\} \le \{B\}}$$

Contrast with functions

$$\frac{[A \le A_i]_i \quad [B_i]_i \le B}{\Delta, [A_i \to B_i]_i \le A \to B}$$

• Take all
$$i$$
 such that $A \leq A_i$

The Value Restriction

- Call-by-value with effects requires some modifications
 - Value restriction on intersection introduction

$$\frac{\Gamma \vdash v : \sigma \quad \Gamma \vdash v : \tau}{\Gamma \vdash v : \sigma \land \tau}$$

- No distributivity
- Subtyping at higher order (terms are not η -long)
 - Easy: we did all the work already!
- Typing annotations (terms are not β -normal)
 - Not entirely easy [Dunfield & Pf'03] [Dunfield'07]

Deriving Restricted Rules

- Derive rules from standard encoding into monadic form
 - Types τ ::= $b \mid \tau_1 \rightarrow \tau_2$ Computationse::= $e_1 e_2 \mid v$ Valuesv::= $x \mid \lambda x. e$
- Type translation

$$\begin{aligned} |b| &= b\\ |\tau_1 \to \tau_2| &= |\tau_1| \to \{ |\tau_2| \}\\ |\tau_1 \land \tau_2| &= |\tau_1| \land |\tau_2| \end{aligned}$$

- Form of term translation
 - |e| = E computations as monadic expressions
 - |v| = M values as (pure) terms

Value Restriction

- Properties of term translation (elided)
 - If $e: \tau$ then $|e| \leftarrow |\tau|$
 - If $v:\tau$ then $|v| \Leftarrow |\tau|$
- Value restriction since
 does not distribute over { }.

$$\frac{\Gamma \vdash \{E\} \Leftarrow \{A\} \quad \Gamma \vdash \{E\} \Leftarrow \{B\}}{\Gamma \vdash \{E\} \Leftarrow \{A\} \land \{B\}}$$

$$\frac{\Gamma \vdash \{E\} \Leftarrow \{A \land A\}}{\Gamma \vdash \{E\} \Leftarrow \{A \land B\}}$$
 wrong!

• Also recall: no rule to split $E \leftarrow A \land B$

Distributivity

• Distributivity cannot be derived because

$$A \to \{B\}) \land (A \to \{C\}) \le A \to (\{B\} \land \{C\})$$

but

$$(A \to \{B\}) \land (A \to \{C\}) \not\leq A \to \{B \land C\}$$

$$(\tau \to \sigma) \land (\tau \to \rho) \not\leq \tau \to (\sigma \land \rho)$$

ICFP, Freiburg, Oct 07 - p.51

Other Considerations

- System has empty conjunction T (elided for this talk)
- Interpretation into type theory with proof irrelevance [mostly done]
 - Roughly: $M \Leftarrow A$ becomes $\langle M, N \rangle \Leftarrow \Sigma x : \check{A} : \hat{A}(x)$ where
 - \check{A} is a type representing the shape of A
 - $\hat{A}(x)$ is a type family on elements of type \check{A}
 - $N \Leftarrow \check{A}(M)$ is a proof that M has property \check{A}
 - $\langle M_1, N_1 \rangle = \langle M_2, N_2 \rangle$ iff $M_1 = M_2$ (by definition)
- Complexity due to definitional equality
- Coercion interpretation? [future work]

And More

- Union types are complex, but fit the story [Zeilberger'07] [Dunfield'07] [Dunfield & Pf'03]
 - Co-value restriction on union types
- Parametric polymorphism is harder [Davies'05] [Dunfield]
- Deeper analysis of call-by-name and call-by-value
 - Judgmental method and focusing [Zeilberger POPL'08]
 - Positive and negative intersections, unions [Zeilberger'07]
 - Addings products, sums, and negations

Summary: Origins

- Atomic propositions as parameters
- Atomic subtyping as assumptions
- Verificationist and pragmatist definitions of
 - logical connectives
 - canonical proofs
 - intersections
 - monads

Summary: Destinations

- Exceedingly simple rules with subtyping and intersections
- Derived notion of higher-order subtyping
 - from substitution or η -expansion
 - with sound and complete sets of structural rules
- Richly epxressive logical framework $\lambda^{\Pi \leq \wedge}$
- Explanation of value restriction on intersections in call-by-value via monadic embedding

All (Non-Derived) Rules

$$\frac{\Gamma, x \Rightarrow A \vdash M \Leftarrow B}{\Gamma \vdash \lambda x. M \Leftarrow A \rightarrow B} \rightarrow I \qquad \frac{\Gamma \vdash R \Rightarrow P \quad P \leq Q}{\Gamma \vdash R \Leftarrow Q}$$
$$\frac{\Gamma \vdash M \Leftarrow A \quad \Gamma \vdash M \Leftarrow B}{\Gamma \vdash M \Leftarrow A \wedge B} \wedge I$$
$$\frac{\Gamma \vdash R \Rightarrow A \rightarrow B \quad \Gamma \vdash M \Leftarrow A}{\Gamma \vdash RM \Rightarrow B} \rightarrow E$$
$$\frac{\Gamma \vdash R \Rightarrow A \wedge B}{\Gamma \vdash R \Rightarrow A} \wedge E_1 \qquad \frac{\Gamma \vdash R \Rightarrow A \wedge B}{\Gamma \vdash R \Rightarrow B} \wedge E_2$$
$$\frac{P \leq Q}{P \leq S}$$