
A Coverage Checking Algorithm for LF

Carsten Schürmann1 and Frank Pfenning2 ?

1 Yale University
New Haven, CT, USA, email: carsten@cs.yale.edu

2 Carnegie Mellon University
Pittsburgh, PA, USA, email: fp@cs.cmu.edu

Abstract. Coverage checking is the problem of deciding whether any
closed term of a given type is an instance of at least one of a given set of
patterns. It can be used to verify if a function defined by pattern match-
ing covers all possible cases. This problem has a straightforward solution
for the first-order, simply-typed case, but is in general undecidable in
the presence of dependent types. In this paper we present a terminating
algorithm for verifying coverage of higher-order, dependently typed pat-
terns. It either succeeds or presents a set of counterexamples with free
variables, some of which may not have closed instances (a question which
is undecidable). Our algorithm, together with strictness and termination
checking, can be used to certify the correctness of numerous proofs of
properties of deductive systems encoded in a system for reasoning about
LF signatures.

1 Introduction

Coverage checking is the problem of deciding whether any closed term of a given
type is an instance of at least one of a given set of patterns. This has a number of
applications: in functional programming, it is used to decide if a given set of cases
defining a function is exhaustive or not. In proof assistants it is used to verify
if a purported proof covers all possible cases. Depending on the application, the
underlying term algebra, meta-theoretic requirements, and efficiency considera-
tions, a variety of algorithms that implement or decide properties about pattern
matching emerge. In this paper we discuss one algorithm for coverage checking
in the logical framework LF [9].

The choice of the underlying term algebra is essential. In traditional func-
tional programming languages, for example, we have only simple types and pos-
sibly prefix polymorphism, and the structure of functions is not observable by
pattern matching. This makes coverage checking straightforward, both in theory
practice. In LF, on the other hand, we have dependent types and functions are
intensional: their structure can be observed by pattern matching. This makes
coverage checking undecidable since, for example, any set of patterns will cover
all terms of an empty type and emptiness is undecidable.
? This work was supported in part by the National Science Foundation under grants

CCR-0133502 and CCR-9988281. Submitted, February 28, 2003.

Nonetheless, coverage checking has many applications in logical frameworks.
Coquand’s seminal paper [3] is concerned with the natural expression of proofs
in a proof checker. Moreover, in certain dependent type theories, functions de-
fined by pattern matching are strictly more expressive than schemata of prim-
itive recursion [10]. In addition to coverage checking proof verification requires
termination analysis which we do not consider here, but has previously been
treated [22, 20]. Related is the work on Delphin [26] where functions may be
defined by pattern matching over LF terms in their full generality. Verifying
that such functions represent correct proofs requires coverage checking. In the
context of the Twelf system [19], coverage checking is used to verify that a given
logic program covers all cases for its input arguments. Besides checking the ex-
haustiveness of definitions, coverage checking is used to verify the correctness
of meta-theoretic proofs represented as relations. Numerous case studies of this
style of verification have been carried out, including cut-elimination for clas-
sical and intuitionistic logics [17], the Church-Rosser theorem for the untyped
λ-calculus [15], and various translations between logical systems (see [16] for an
introduction and survey). The running example in this paper is the correctness
of bracket abstraction, which is a critical step in the translation from natural
deduction to derivations from Hilbert’s axioms.

As mentioned above, the coverage checking problem is in general undecidable.
Our approach has been to design a sound approximation that always terminates
and either certifies coverage or produces a set of potential counterexamples.
Sometimes, these counterexamples are in effect impossible (due to dependent
types). This algorithm has been fully implemented in the Twelf system and has
proved enormously useful in practice to verify the correctness of meta-theoretic
proofs expressed as relations. The largest project undertaken so far is Crary’s
implementation of foundational typed assembly language with about 30,000 lines
of Twelf code [4] with more than 1000 theorems; other examples have been
mentioned above. One valuable experience gained trough these experiments is
that in the case of failure with spurious counterexamples it is in general possible
to make a proof more explicit in such a way that it then passes the coverage
checker.

The remainder of the paper is organized as follows: In Section 2 we briefly
introduce the logical framework LF, and sketch the most important concepts nec-
essary for this paper. In Section 3, we describe the coverage problem in detail
present our coverage algorithm. In Section 4 we then describe its implementa-
tion in Twelf before mentioning related work in Section 5. Finally we assess
results and conclude in Section 6. Because of space limitations, we were un-
able to integrate the illustrative example into this paper that can be found at
http://www.cs.cmu.edu/~twelf/notes/coverage.html.

2 LF

The type-theoretic foundation for this paper is the logical framework LF [9]. In
addition to the standard syntactic categories of objects, types, and kinds, we

2

will also use substitutions in a critical way throughout this paper so we briefly
introduce them here (see also, for example, [2]).

Kinds K ::= type | Πx:A.K
Atomic Types B ::= a | B M
Types A ::= B | Πx:A1. A2

Objects M ::= x | c | M1 M2 | λx:A.M

Signatures Σ ::= · | Σ, a : K | Σ, c : A
Contexts Γ ::= · | Γ, x : A
Substitutions σ ::= · | σ,M/x

We write a for constant type families, x or u for object-level variables, and c
for constructors. A term may come form any of the syntactic levels. As usual, we
identify α-equivalent terms. In order to state certain definitions and propositions
more concisely, we write U to stand for either an object or a type and V for
either a type or a kind and h for a family-level or object-level constant. We take
βη-conversion as the notion of definitional equality [9, 2], for which we write
U ≡ U ′ and V ≡ V ′. Substitutions are capture-avoiding and written as U [σ] or
V [σ] with the special form U [M/x] and V [M/x]. Often, we write ∆ for contexts
that are interpreted existentially, and Γ for universal ones. When we write Γ [σ],
it is a shorthand for applying σ in left to right order to each variable type in Γ .
Signatures, contexts, and substitutions may not declare a variable or constant
more than once, and renaming of bound variables may be applied tacitly to
ensure that condition. Besides equality, the main judgment is typing Γ ` U : V ,
suppressing the fixed signature Σ. We always assume our signatures, contexts
and types to be valid.

Type-checking and definitional equality on well-typed terms for LF are de-
cidable. Every term is equal to a unique β-normal η-long form which we call
canonical form. In the remainder of the paper we assume that all terms are in
canonical form, because it simplifies the presentation significantly. In the imple-
mentation this is achieved incrementally, first by an initial conversion of input
terms to η-long form and later by successive weak-head normalization as terms
are traversed.

Since it is perhaps not so well-known, we will give only the typing rules for
substitutions, which are used pervasively in this paper.

Γ ′ ` · : ·

Γ ′ ` σ : Γ Γ ′ ` M : A[σ]

Γ ′ ` (σ,M/x) : (Γ, x:A)

For a context Γ = (x1:A1, . . . , xn:An), we define idΓ = (x1/x1, . . . , xn/xn) so
that Γ ` idΓ : Γ .

Composition of substitutions is defined by (·) ◦ σ = (·) and (M/x, θ) ◦ σ =
(M [σ]/x, θ ◦ σ). We will only apply a substitution Γ ′ ` σ : Γ to a term Γ ` U : V
or a substitution Γ ` θ : Γ ′′ resulting in Γ ′ ` U [σ] : V [σ] and Γ ′ ` θ ◦ σ : Γ ′′,
respectively.

3

3 Coverage

In this section we first formally define the problem of coverage in the LF type
theory in Section 3.1. This relies on higher-order matching, a problem whose
decidability is an open question. We therefore identify an important subclass,
the strict coverage problems (Section 3.2) which guarantee not only decidabil-
ity but also uniqueness of matching substitutions. All examples we have ever
encountered in practice belong to this class and we explain the reasons for this
after the necessary definitions. Then we define splitting in Section 3.3, which is
the second critical operation to be performed during coverage checking. Next
we describe our basic coverage algorithm and prove it sound and terminating
in Sections 3.4 and 3.5. The last component of our coverage checker is finitary
splitting, discussed and proved correct in Section 3.6.

3.1 Definition of Coverage

A coverage goal is simply a term (object or type) with some free variables.
Intuitively, a coverage goal stands for all of its closed instances. In order to
emphasize the interpretation of the variables as standing for closed terms, we
write ∆ for such contexts and denote variables in ∆ by u and v rather than x
and y. The distinction between ∆ and Γ can be formalized (see [21]), but this
is not necessary for the present purposes.

A coverage problem is given by a goal and a set of patterns. One can think
of these as the patterns of a case expression in a functional program, or the
input terms in the clause heads of a logic program. In the general case, a set of
patterns is just a set of terms with free variables.

Definition 1 (Immediate Coverage). We say a coverage goal ∆ ` U : V is
immediately covered by a collection of patterns ∆i ` Ui : Vi if there is an i and
a substitution ∆ ` σi : ∆i such that ∆ ` U ≡ Ui[σi] : V .

Coverage has an infinitary definition, requiring immediate coverage of every
ground instance of a goal.

Definition 2 (Coverage). We say ∆ ` U : V is covered by a collection of
patterns ∆i ` Ui : Vi if every ground instance · ` U [τ] : V [τ] for · ` τ : ∆ is
immediately covered by the collection of terms ∆i ` Ui : Vi.

In this formulation the problem of coverage is very general, because the type
of U and the type of the Ui’s are not the same. It turns out that the algorithm
is significantly easier to describe and prove correct if we restrict U and Ui to be
types, and V = Vi = type.

Definition 3 (Type-Level Coverage). We say a goal ∆ ` A : type is covered
by a collection of patterns ∆i ` Ai : type if every ground instance · ` A[τ] : type
for · ` τ : ∆ is immediately covered by ∆i ` Ai : type.

4

The implementation in Twelf transforms any coverage problems that arise
into this type-level form. This translation is straightforward and only sketched
here. Given a coverage goal ∆ ` M : A′. Assume first that A′ = a′ N1 . . . Nk

for a′ : Πx1:A1. . . . Πxn:An.type. In this case we declare a new type family
a : Πx1:A1 . . .Πxn:An.a′ x1 . . . xn → type. The new coverage goal is now simply
∆ ` aN1 . . . Nk M : type. All patterns are transformed in the analogous way,
using the same a to replace a′. If A′ starts with some leading Π-quantifiers we
carry them over from the general to the restricted form.

To summarize, without loss of generality, in the remainder of this paper we
consider only coverage goals of the form ∆ ` A : type and patterns of the form
∆i ` Ai : type.

3.2 Strict Patterns

To determine if a goal is immediately covered we have to solve a higher-order
matching problem, instantiating the patterns Ai to match the goal A. Not in-
cidentally, this is also the operation that is performed when matching a case
subject against the patterns in each arm of a case branch, or when unifying the
input arguments to a predicate with the clause head.1

In order for this pattern matching to be decidable (for the coverage algorithm)
and also so that the operational semantics is well-defined (for the execution of a
functional or logic program), we require the patterns to be strict. Strictness for
a pattern ∆i ` Ai : type requires that each variable in ∆i must occur in A at
least once in a rigid position [11, 18].

Definition 4 (Strictness). We say that u has a strict occurrence in U if
∆;Γ `u U as defined by the rules depicted in Figure 1. A pattern ∆i ` Ai : type
is strict if ∆i; · `u Ai for each variable u in ∆i.

Informally, an occurrence of u is strict if it is not below another variable in
∆ and if that occurrence forms a higher-order pattern in the sense of Miller [14],
that is, u is applied to distinct parameters as expressed by the judgment Γ `
u x1 . . . xn pat. Unlike higher-order patterns in the sense of Miller, however, other
forms of occurrences of u are allowed, which is a practically highly significant
generalization. All of the examples in Twelf are strict, but many higher-order
examples are not patterns in the sense of Miller. Strictness is sufficient here
because we are only interested in matching and not full unification.

Theorem 1. Given a coverage goal ∆ ` A : type and a strict pattern ∆i `
Ai : type. Then it is decidable if there is a substitution ∆ ` σ : ∆i such that
A ≡ Ai[σ]. Moreover, if such a substitution exists it is uniquely determined.

Proof. See [24].

1 This unification becomes matching because the input arguments of the goal are
ground at run-time.

5

∆; Γ `u A
ls ld

∆; Γ `u λy : A. M

∆; Γ, y : A `u M
ls lb

∆; Γ `u λy : A. M

∆; Γ `u A1
ls pd

∆; Γ `u Πy : A1. A2

∆; Γ, y : A1 `u A2
ls pb

∆; Γ `u Πy : A1. A2

∆; Γ `u Mi
ls c (1 ≤ i ≤ n)

∆; Γ `u c M1 . . . Mn

∆; Γ `u Mi
ls a (1 ≤ i ≤ n)

∆; Γ `u a M1 . . . Mn

y : A ∈ Γ ∆; Γ `u Mi
ls var (1 ≤ i ≤ n)

∆; Γ `u y M1 . . . Mn

Γ ` u x1 . . . xn pat
ls pat

∆; Γ `u u x1 . . . xn

no rule for ∆; Γ `u v M1 . . . Mn

for u 6= v, v : A ∈ ∆

Fig. 1. A formal system for strictness

Note that in the above theorem there is no requirement on the coverage goal
A except that it be well-typed. Indeed, in practice, it will often not be a higher-
order pattern, nor will it be strict. This failure of strictness is the result of the
splitting operation described in the next section.

3.3 Splitting

In this section we present the second cornerstone of our coverage checking algo-
rithm, namely splitting. This is a generalization of a similar operation proposed
by Coquand [3]. Splitting is the answer to the question on how to proceed if the
current coverage goal is not immediately covered by any of the patterns. In this
case coverage might still hold, since we require only that all ground instances
of the goal be immediately covered. Since there may be infinitely many ground
instances, we instantiate the coverage goal only partially, one layer at a time.

In this situation the coverage goal may be refined into a new set of coverage
goals, each of which must be covered in order for the initial coverage goal to
succeed. This refinement of a coverage goal is determined by a finite complete
collection of non-redundant substitutions for its free variables. Applied to the
current coverage goal, each substitution generates a new coverage goal that can
be checked for coverage recursively.

Implementation of refinement will be via the splitting operation on a coverage
goal, which requires higher-order unification rather than just matching. It is
discussed in the remainder of this section. The strategy for how to invoke this
operation is the subject of the next section (3.4).

Definition 5 (Non-redundant complete set of substitutions).
Let ∆ ` A : type be a coverage goal. We say a finite collection ∆i ` τi : ∆ is a

6

non-redundant complete set of substitutions if for every · ` τ : ∆ there exists a
unique i and a unique · ` σi : ∆i such that · ` τ = τi ◦ σi.

Refining coverage goals through non-redundant complete set of substitutions
is a conservative operation. Coverage of the refined set of coverage goals implies
coverage of the original goal.

Theorem 2 (Conservativity of refinement). Let ∆ ` A : type be a coverage
goal and ∆i ` τi : ∆ a non-redundant complete collection of substitutions. All
∆i ` A[τi] : type are covered by a given set of patterns if and only if ∆ ` A : type
is covered.

Proof. Coverage depends only on the set of ground instances of a coverage goal.
But the collection of all ground instances of ∆i ` A[τi] is exactly the same as
the set of ground instanced of ∆ ` A : type since the τi form a complete set.
Hence coverage is preserved by refinement. 2

Next we address the question of how to construct such a refinement. The
method we are using is called splitting, and is inspired by a similar operation
present in ALF [3, 1] which in turn goes back to the basic steps in Huet’s algo-
rithm for higher-order unification [11].

Among all the goals that are not immediately covered we select one goal
∆ ` A : type, and from its context ∆ one declaration u:A. We refer to u as the
splitting variable. A may be a function type, therefore, without loss of generality,
it is of the following form

∆ ` u : ΠΓ. a M1 . . .Mm.

For the sake of conciseness, we consolidate all successive Π-abstraction into one
context Γ . This is only an abbreviation and does not properly extend LF. We
also use the following abbreviations p Γ which stands for p x1 . . . xm if Γ =
x1:A1, . . . , xm:Am where p is a constant or a parameter. Furthermore p (∆ Γ)
is a shorthand for p (u1 Γ) . . . (un Γ) for ∆ = u1:A′

1, . . . , un:A′
n.

We now want to determine the possible top-level structures of a term M :
ΠΓ. a M1 . . .Mm. Because of the existence of canonical forms, it is enough to
search the signature and the local context for constants that may occur in a
head position in M . All we have to do is to verify that types unify, but this is far
from trivial, since we are in the higher-order setting and have dependent types.
We will discuss our choice of unification algorithm in more detail later; here we
simply describe how to invoke it to obtain a complete and non-redundant set of
substitutions.

Let Γ be the local context of variables under which we have to consider a con-
stant application. In general, the type of a constant is Πu1:A1. . . .Πun:An. B
with an atomic type B. For the purpose of splitting, each ui is intuitively inter-
preted as an existential variable that can be instantiated to terms valid in Γ . To
account for those local dependencies, we raise those variables by Γ and turn all
ui into variables of functional type abstracting over Γ .

7

Definition 6 (Raising). Let Γ be a context of local parameters, A the type of
a constant c. Raising A by Γ yields a 〈∆ ` A′〉, a context ∆ of raised existential
variables and a raised type A′ (that always has the form ΠΓ. B).

raise〈Γ ` A〉 =

 〈· ` ΠΓ. A〉 if A is atomic
〈u : ΠΓ. A1,∆ ` A′〉 if A = Πu:A1. A2

and 〈∆ ` A′〉 = raise〈Γ ` A2[u Γ/u]〉

What makes raising such a tricky operation is that the ui may occur elsewhere
in the the type, and need to be replaced by their raised versions ui applied to
Γ . The ∆ that is computed during raising contains all ui’s in raised form.

Next, we describe the central definition of this section: splitting. We follow
standard practice and describe unification as a first-order formula over equations
U ≈ U ′. The particular unification algorithm that we use is higher-order pattern
unification that postpones unresolved unification equation as constraints. The
algorithm is described in detail in [5]. For our coverage algorithm, however we
restrict its generality a bit: Although we allow constraints to arise during the
process of unification, we require that after completion all constraints have been
resolved. Otherwise we do not allow splitting over the specified variable. This
is handled in our algorithm for selecting variables to split by trying another
variable instead. Unfortunately, successive selections of splitting variables are
not independent and it is possible that some sequences of splitting operations
fail (with spurious counterexamples) while other sequences could succeed. In
principle we could backtrack here, but this is currently not implemented.

Definition 7 (Splitting). Let ∆ ` A : type a coverage goal, and u in ∆ =
∆1, u : ΠΓ.Bu,∆2 a splitting variable. The splitting operation considers each
constant c declared in the signature Σ and each local parameter y declared in Γ
in turn, and determines a set of substitutions σc, σy as follows.

1. Constants: Let c : Π∆c. Bc ∈ Σ, and 〈∆′
c ` ΠΓ. B′

c〉 = raise〈Γ ` Π∆c. Bc〉.
Let ∆′ ` σc : ∆, ∆′

c be the most general unifier of the higher-order unification
problem

∃∆.∃∆′
c. (ΠΓ. Bu ≈ ΠΓ. B′

c) ∧ (u ≈ λΓ. c (∆′
c Γ)) (1)

if it exists.
2. Bound Variables: Let y : Π∆y. By ∈ Γ , and 〈∆′

y ` ΠΓ. B′
y〉 = raise〈Γ `

Π∆y. By〉. Let ∆′ ` σy : ∆, ∆′
y be the most general unifier of the higher-

order unification problem

∃∆.∃∆′
y. (ΠΓ. Bu ≈ ΠΓ.B′

y) ∧ (u ≈ λΓ. y (∆′
y Γ)) (2)

if it exists.

Since we collect all such most general unifiers, cases for which the unification
problem fails2 simply do not contribute a substitution to the result of the splitting
operation.
2 but not those whose results are indeterminate because of residual equations, which

are are not permitted

8

The main result of this section is that splitting generates always a set of
substitutions that is non-redundant and complete. Obviously, raising will play
a major role in this algorithm, prompting us to prove an auxiliary lemma
about raising that guarantees that any instantiation σ = M1/u1, . . . ,Mn/un

of variables in ∆ with respect to Γ can be raised to the empty context as
σ′ = (λΓ. M1)/u1 . . . (λΓ. Mn)/un. Because of space considerations, we have
omitted a generalized formulation of this lemma that one would prove by induc-
tion over the structure of the context ∆.

Lemma 1 (Raising). Let ∆ be context and B an atomic type. If

raise〈Γ ` Π∆.B〉 = 〈∆′ ` ΠΓ.B′〉

and Γ ` idΓ , σ : Γ,∆ then there exists a substitution σ′, s.t. · ` σ′ : ∆′ and

· ` ΠΓ.B[σ] ≡ (ΠΓ.B′)[σ′].

and for all corresponding u from ∆′ and ∆, respectively, the following equation
holds: (u[σ′]) Γ ≡ u[σ].

Finally, we state and prove the main theorem of this section that informally
states that no cases are lost due to splitting.

Theorem 3 (Splitting is non-redundant and complete). The set of sub-
stitutions generated by splitting is non-redundant and complete.

Proof. Non-redundancy: Trivial since for each c ∈ Σ and y ∈ Γ , σc(u) as well as
σy(u) have distinct head.
Completeness: Let ∆ ` A : type and u : ΠΓ. Bu ∈ ∆ a splitting variable and
· ` σ : ∆. Let · ` σ(u) = M : (ΠΓ. Bu)[σ] where M has canonical form · `
λΓ [σ]. p M1 . . .Mn. There are a constant and parameter case to consider for p.

Case: p = c : Π∆c. Bc ∈ Σ. We construct a substitution τ = idΓ ,M1/u1, . . . Mn/un

with Γ [σ] ` τ : Γ [σ],∆c. Let 〈∆′
c ` ΠΓ [σ]. B′

c〉 = raise〈Γ [σ] ` Π∆c. Bc〉. By
Corollary 1 there exists a substitution τ ′ such that · ` τ ′ : Γ ′

c and

· ` ΠΓ [σ]. Bc[τ] ≡ (ΠΓ [σ]. B′
c)[τ

′].

Therefore, by concatenating σ and τ ′ we obtain a new substitution η, that
satisfies · ` η : ∆, ∆′

c. By uniqueness of types for LF, the following types are
equivalent:

· ` (ΠΓ.Bu)[η] ≡ (ΠΓ. B′
c)[η] : type.

Furthermore, also from Corollary 1, we can infer that for all ui ∈ ∆′
c,

ui[τ ′] (Γ [σ]) ≡ ui[τ] ≡ Mi

and hence

(λΓ. c (∆′
c Γ))[η] ≡ λΓ [σ]. (c (∆′

c[τ
′] (Γ [σ]))) ≡ λΓ [σ]. (c M1 . . .Mn) ≡ u[η].

Consequently, η is a unifier for Equation (1). Recall, that by construction σc

is most general. Therefore, there exists a · ` σ′ : ∆′, such that η = σc ◦ σ′.
By restriction to ∆, we obtain that there exists an σ′′ such that σ = σc ◦σ′′.

9

Case: Almost identical to the one above, except that η will be a unifier for
Equation (2). 2

3.4 The Coverage Algorithm

Recall that a coverage goal ∆ ` A : type is immediately covered by a col-
lection of terms ∆i ` Ai : type if there is an i and ∆ ` σi : ∆i such that
∆ ` A ≡ Ai[σi] : type.

Immediate coverage is central to the naive, non-deterministic coverage algo-
rithm which we discuss next. We assume we have a set of coverage goals, all
of which must be covered for the algorithm to succeed. In the first step, this is
initialized with the goal ∆ ` A : type. We pick one of the coverage goals and
determine, via strict higher-order matching, if it is immediately covered by any
covering type Ai. If so we remove it from the set and continue. If not, we non-
deterministically select a variable in the coverage goal and split it into multiple
goals, which replace it in the collection of coverage goals.

This coverage algorithm is naive because it may not terminate, even if the
goal is covered. Even if types are non-empty and coverage holds, splitting the
wrong variable can lead to non-termination.

The procedure we propose in this section always terminates and either indi-
cates that coverage holds, or outputs a set of potential counterexamples. Some
of these may fail to be actual counterexamples, because we me may not be able
to instantiate the remaining variables to a ground term that is not covered. If
the counterexample is ground, however, it is guaranteed to be an actual coun-
terexample. We analyze the possible forms of counterexamples in more detail at
the beginning of Section 3.6.

The basic idea is to record why immediate coverage fails and not just if it
does. Assume we are given a coverage goal ∆ ` A : type and a pattern ∆′ `
A′ : type′. Instead of just applying our matching algorithm, we then construct
a conjunction of equations E and the symbols > (success) or ⊥ (failure) such
that 〈∆, ∆′; · ` A < A′〉 =⇒ E. This is accomplished by using the rules for the
judgment

〈∆;Γ ` U < U ′〉 =⇒ E

defined in Figure 2. We should read this judgment as: Match U against pattern U ′

in the parameter context Γ to obtain the residual equations E. ∆ is the disjoint
union of the (existential) variables in U and U ′, of which only those in U may
be instantiated during matching. Initially, the context Γ is always empty, and
both U and U ′ are types. However, internally we require the context Γ of shared
local parameters.

We can think of the algorithm as a rigid decomposition, which corresponds
to the simplify function in Huet’s algorithm for higher-order unification. If all
residual equations can be solved (and there is no ⊥), then matching is success-
ful. Otherwise, we have to interpret the equations to determine candidates for
splitting that will make progress (as defined below).

10

〈∆; Γ, x:A ` U < U ′〉 =⇒ E

〈∆; Γ ` λx:A. U < λx:A. U ′〉 =⇒ E

〈∆; Γ ` A < A′〉 =⇒ E1 〈∆; Γ, x:A′ ` B < B′〉 =⇒ E2

〈∆; Γ ` Πx:A. B < Πx:A′. B′〉 =⇒ E1 ∧ E2

〈∆; Γ ` Πx:A. B < a . . .〉 =⇒ ⊥ 〈∆; Γ ` a . . . < Πx:A. B〉 =⇒ ⊥

〈∆; Γ ` Ui < U ′
i〉 =⇒ Ei for 1 ≤ i ≤ n

〈∆; Γ ` c U1...Un < c U ′
1...U

′
n〉 =⇒ E1 ∧ ... ∧ En

c 6= c′

〈∆; Γ ` c . . . < c′ . . .〉 =⇒ ⊥

Γ (x) = A 〈∆; Γ ` Ui < U ′
i〉 =⇒ Ei for 1 ≤ i ≤ n

〈∆; Γ ` x U1 . . . Un < x U ′
1 . . . U ′

n〉 =⇒ E1 ∧ . . . ∧ En

Γ (x) = A, Γ (y) = A′, x 6= y

〈∆; Γ ` x . . . < y . . .〉 =⇒ ⊥

Γ (x) = A, Σ(c) = A′

〈∆; Γ ` x . . . < c . . .〉 =⇒ ⊥

∆(u) = A, Γ (x) = A′

〈∆; Γ ` u U1 . . . Un < x U ′
1 . . . U ′

m〉 =⇒ 〈Γ ` u U1 . . . Un ≈ x U ′
1 . . . U ′

m〉

∆(u) = A, Σ(c) = A′

〈∆; Γ ` u U1 . . . Un < c U ′
1 . . . U ′

m〉 =⇒ 〈Γ ` u U1 . . . Un ≈ c U ′
1 . . . U ′

m〉

〈∆; Γ ` U < u′ U ′
1 . . . U ′

m〉 =⇒ 〈Γ ` U ≈ u′ U ′
1 . . . U ′

m〉

Fig. 2. Rigid Matching Algorithm

Note that during rigid matching, no variable assignment takes place: where
the two terms disagree, we record an equation. But if matching is not possible,
we might either record an equation or return ⊥.

In order the state the lemmas in the generality required for an inductive
proof, we say that for ∆;Γ ` U : V and ∆′;Γ ` U ′ : V ′ that U ′ covers U if there
is a substitution ∆, Γ ` σ, idΓ : ∆′, Γ such that ∆, Γ ` U ≡ U ′[σ, idΓ] : V .

Lemma 2. If ∆, ∆′;Γ ` U < U ′ =⇒ E where E contains ⊥, then U ′ does not
immediately cover U or any instance of U .

Proof. By induction on the given derivation.

Because U ′ cannot immediately cover any instance of U , we do not generate
any candidate variables for splitting in ∆′ in this case.

Lemma 3. If ∆, ∆′;Γ ` U < U ′ =⇒ E where E does not contain ⊥, but con-
tains equations of the form u . . . ≈ c . . . or u . . . ≈ x Then U ′ does not
immediately cover U (but U ′ could possibly cover some instance of U).

11

Proof. By induction on the given derivation. In the base cases, x and c are rigid
and therefore cannot be instantiated to u.

In this case, any variable u occurring in an equation of the given form is
added to the set of candidate variables for splitting, since it is possible that
splitting might make progress.

Lemma 4. If ∆, ∆′;Γ ` U < U ′ =⇒ E, where E does not contain ⊥ or equa-
tions for the form u . . . ≈ c . . . or u . . . ≈ x Then any substitution ∆ `
σ : ∆′ such that for each residual equation 〈Γi ` Ui ≈ U ′

i〉 in E we have Γi `
Ui ≡ U ′

i [σ, idΓi
] is a valid match and shows that U ′ covers U .

Proof. Again, by induction on the given derivation. The base cases are evident.
The tricky part in the inductive argument is that the two matched terms do not
necessarily have the same type or kind (even though the do initially) because
we postpone non-rigid equations. However, as in the case of higher-order de-
pendently typed unification [6], it is enough to maintain well-typedness modulo
postponed equations if we eventually solve them from left-to-right.

This means that if we have no candidates from the first two kinds of equa-
tions, we call a strict higher-order matching algorithm [24] on the residual equa-
tions. If this succeeds then A′ covers A. Otherwise, A′ does not cover A and
we suggest no candidate variables for splitting because it would be difficult to
guarantee termination.

When considering a particular coverage goal ∆ ` A : type, we apply the
above algorithm with each pattern. If one of them immediately covers, we are
done. If not, we take the union of all the suggested candidates and pick one
non-deterministically. The current implementation picks the rightmost candi-
date in ∆, because internal dependencies might further constrain variables to
its left during the splitting step. If splitting fails because higher-order unifica-
tion with the algorithm in [5] can not determine a complete and non-redundant
set of substitutions, then we try another candidate, and so on. If there are no
remaining splitting candidate, we add the coverage goal to the set of potential
counterexamples and pick another goal.

3.5 Termination

The overall structure of the algorithm is such that the splitting step replaces a
coverage goal by several others. In order to show termination with respect to a
simple multi-set ordering, we must show that each of the subgoals that replace
a given goal are smaller according some well-founded measure.

We calculate this measure as follows. Given a coverage goal ∆ ` A : type ap-
ply rigid matching against each pattern. Eliminate those equations that contain
⊥. Among the remaining ones, consider only equations u U1 . . . Un ≈ h′ U ′

1 . . . U ′
m

where h = x or h = c. Note that all candidates for splitting appear on the left-
hand side of such an equation. Take the sum of the sizes of the right-hand sides
as measured by the number of bound variable and constant occurrences.

12

When we apply splitting to any candidate variables in ∆, that is, one of the
variables u that appears on the left-hand side of an equation as given above,
then this measure decreases.

Lemma 5. Given a coverage goal ∆ ` A : type and a fixed set of patterns pro-
posed to cover it. If we split the coverage goal along a variable u suggested by
rigid matching, each of the resulting subgoals has a smaller measure than the
original goal.

Proof. u occurs on the left-hand side of at least one residual equation 〈Γ `
u U1 . . . Un ≈ h′ U ′

1 . . . U ′
m〉. After splitting, this residual equation may disap-

pear altogether (say, because the case has become impossible). However, if rigid
matching reaches again this subterm in the subgoal, it will now have the form
Γ ` h U∗

1 . . . U∗
k ≈ h′ U ′

1 . . . U ′
m for some h = x (a local parameter in Γ) or

h = c (a constant). If h 6= h′ then the this equation drops out altogether, since
it generates ⊥ instead. If h = h′, then k = m and the algorithm recurses by
comparing each U∗

j with U ′
j for 1 ≤ j ≤ m. But this eliminates at least one

constant or variable occurrence (namely h), thereby decreasing our measure. 2

Theorem 4. Coverage checking terminates after a finite number of steps, yield-
ing either an indication of coverage or a finite set of potential counterexamples.

Proof. Immediate by the previous lemma by a multi-set ordering on the set of
coverage goals.

3.6 Finitary splitting

The failure-directed algorithm described above works well in most practical
cases, within or outside the pattern fragment. There are two remaining difficul-
ties: one are remaining constraints during splitting as discussed in Section 3.3,
the other is that occasionally the generated counterexamples fail to be actual
counterexamples. The latter is a common occurrence. In large part this is because
meta-theoretic proofs represented as dependently typed functions or relations of-
ten have a number of cases that are impossible. Instead of explicitly proving that
the cases are impossible, one usually just lists the cases that can arise if it is
syntactically obvious that the others can not arise.

What are the types of spurious counterexamples that may be produced by
the algorithm? The most obvious one is a coverage goal that is incompatible
with all patterns, but has no ground instances. We explain below how to han-
dle some of these case. A less obvious problem is that matching the residual
equations fail because of a spurious dependency that cannot be an actual depen-
dency because of subordination considerations. We treat this case by applying
strengthening [24] to eliminate these spurious dependencies throughout the al-
gorithm. Finally, it is possible that two distinct variables of the coverage goal
fail to match, yet they must be identical because the type has only one element.
Finitary splitting will often catch these cases and correctly report coverage.

13

In order to handle as many spurious counterexamples as possible, we extend
the algorithm described above as follows. Once the algorithm terminates with a
set of proposed counterexamples to coverage, we examine each such counterex-
ample to see if we can determine if it is impossible, that is, if it quantifies over
an empty type. More concretely, let ∆ ` A : type be a counterexample, that is,
coverage goal that is not covered and does not produce any splitting candidates.
We now attempt to split each variable u:A in ∆ in turn, leading to a new set
of coverage goals ∆i ` Ui : Vi for 0 ≤ i < n. If n = 0 we know that the case is
impossible.

If n > 0 we could, in principle, continue the algorithm recursively to see if
each of the subgoals ∆i ` Ui : Vi are impossible. However, in general this would
not terminate (and cannot, because inhabitation is undecidable). Instead, we
only continue to split further if all of the new variables uk : Ak in ∆i have a
type that is strictly subordinate to the type A [27, 24]. Otherwise, we fail and
report the immediate supergoal as a potential counterexample.

Theorem 5. Finitary splitting terminates, either with an indication that the
given coverage goal has no ground instances, or failure.

Proof. There are only a finite number of variables in a given coverage goals.
During each step of splitting we either stop or obtain subgoals where a variable
u : A has been replaced by several variables ui : Ai each of which has a type
strictly lower in the subordination hierarchy. Since this hierarchy is well-founded,
finitary splitting will terminate.

This process can be very expensive. Fortunately, we have not found it to be
a bottleneck in practice, because finitary splitting is applied only to remaining
counterexamples. Usually, there are not many, and usually it is immediate to see
that they are indeed possible because most types are actually inhabited. We do
not presently try to verify if the types are actually inhabited (that is, start a
theorem prover), although it may be useful for debugging purposes to distinguish
between definite and potential counterexamples. However, in a future extension
this could be done at the user’s direction if he or she cannot easily detect the
source of the failure of coverage.

4 Implementation

The coverage checking algorithm is implemented as part of the current Twelf [19]
distribution, available from the Twelf webpage at http://www.twelf.org/.
From the user’s perspective, it can be employed in two different ways.

First, Twelf ascribes an operational meaning to LF signatures, that can be
executed with a logic programming interpreter. Verifying coverage via the cov-
erage checker means that execution will always be able to make progress and
can not fail assuming the program is well-moded, that is, the role of arguments
for input and output are properly respected. That it also terminates is an en-
tirely different issue enforced by a termination and reduction checker [22, 20]. In

14

this relational form, the coverage algorithm distinguishes between input coverage
(the argument position that will be matched when a logical program is called)
and the output coverage (the argument position that will be matched after a
subgoal has been successfully evaluated). Although the interaction between the
two is well understood up to programs of order 2, output coverage is a difficult
operation to implement for higher-order logic programs of order 3 and greater.

Second, the internal data structures of Twelf are taken advantage of by the
functional programming language Delphin that supports function definition by
cases over arbitrary LF terms. Its type theory is based on T +

ω [25]. Although a
suitable Delphin parser is still under construction, a specialized converter allows
Twelf logic programs to be translated and run natively in Delphin. The differ-
entiating features of T +

ω to type theories used in other functional programming
languages are dependently typed data, pattern matching against functions, a
world system that controls the dynamic extension of a datatype by new con-
structors at run-time. Delphin programs do not distinguish between input and
output coverage since they are functional programs, which renders it an attrac-
tive target platform for coverage checking of Twelf logic programs. And indeed,
we have managed to overcome the limitations of the Twelf coverage checker due
to order restriction by translating Twelf logic programs into Delphin functional
programs, and subsequently applying the Delphin coverage checker.

5 Related Work

Coquand has considered the problem of coverage for a type theory in the style
of Martin-Löf [3]. He defines coverage and splitting in much the same way we do
here, except that no matching against the structure of λ-expressions is allowed.
He also suggests a non-deterministic semi-decision procedure for coverage by
guessing the correct sequence of variable splits. In an implementation this split
can be achieved interactively.

Most closely related to ours is the work by McBride [13]. He refines Coquand’s
idea by suggesting an algorithm for successive splitting that is quite similar
to ours in the first-order case. He also identifies the problem of empty types
and suggest to recognize “obviously” empty types, which is a simpler variant
of finitary splitting. Our main contribution with respect to McBride’s work is
that we allow matching against the structure of higher-order terms which poses
significant additional challenges.

Another related development is the theory of partial inductive definitions [8],
especially in its finitary form [7] and the related notion of definitional reflec-
tion [23]. This calculus contains a rule schema that, re-interpreted in our con-
text, would allow any (finite) complete set of unifiers between a coverage goal
∆ ` A : type and the heads of the clauses defining A. Because of the additional
condition of so-called a-sufficiency for the substitutions this was never fully auto-
mated. Also, it appears that a simple, finite complete set of unifiers was computed
as in the splitting step, but that the system could not check whether an arbitrary
given set of premises could be obtained as a finite complete set of unifiers.

15

In the Coq system [12] functions defined by patterns can be compiled to
functions defined by standard primitive recursive elimination forms. Because of
the requirement to compile such functions back into pure Coq and the lack of
matching against functional expressions, the algorithm is rather straightforward
compared to our coverage checker and does not handle variable dependencies,
non-linearity, or empty types. It does, however, treat polymorphism which we
have not considered.

6 Conclusion

We have presented a solution to the coverage checking problem for LF, generaliz-
ing and extending previous approaches. The central technical developments are
strict patterns (which significantly generalize higher-order patterns in the sense
of Miller), strict higher-order matching, splitting in the presence of full higher-
order unification, and a two-phase control structure to guarantee termination of
the algorithm.

Our coverage algorithm is sound and terminating, but it is necessarily incom-
plete. Applied to a given set of patterns, it either reports “yes”, or it generates a
set of potential counterexamples, that often contain the vital information about
why coverage has failed. Because coverage is undecidable in the case of LF, the
algorithm sometimes generates spurious counterexamples, that can sometimes
be removed with a highly specialized albeit incomplete algorithm called finitary
splitting and has proven tremendously useful in practice.

All algorithms and techniques described in this paper are implemented in
the Twelf system, Version 1.4 (December 2002). Many examples of coverage
are available in the example directories of the Twelf distribution. The current
implementation is somewhat more general than what we describe here since it
also accounts for regular worlds [24]. We plan to extend the rigorous treatment
given here to this larger class of coverage problems in a future paper.

References

1. C. Coquand. A proof of normalization for simply typed lambda calculus written
in ALF. In Proceedings of the Workshop on Types for Proofs and Programs, pages
85–92, B̊astad, Sweden, 1992.

2. T. Coquand. An algorithm for testing conversion in type theory. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pages 255–279. Cambridge University
Press, 1991.

3. T. Coquand. Pattern matching with dependent types. In Proceedings of the Work-
shop on Types for Proofs and Programs, pages 71–83, B̊astad, Sweden, 1992.

4. K. Crary. Toward a foundational typed assembly language. In G. Morrisett,
editor, Proceedings of the 30th Annual Symposium on Principles of Programming
Languages, New Orleans, Louisiana, Jan. 2003. ACM Press. To appear.

5. G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit sub-
stitutions: The case of higher-order patterns. In M. Maher, editor, Proceedings of
the Joint International Conference and Symposium on Logic Programming, pages
259–273, Bonn, Germany, Sept. 1996. MIT Press.

16

6. C. M. Elliott. Extensions and Applications of Higher-Order Unification. PhD the-
sis, School of Computer Science, Carnegie Mellon University, May 1990. Available
as Technical Report CMU-CS-90-134.

7. L.-H. Eriksson. Finitary Partial Inductive Definitions and General Logic. PhD the-
sis, Department of Computer and System Sciences, Royal Institute of Technology,
Stockholm, 1993.

8. L. Hallnäs. Partial inductive definitions. Theoretical Computer Science, 87(1):115–
142, Sept. 1991.

9. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, Jan. 1993.

10. M. Hofmann and T. Streicher. The groupoid model refutes uniqueness of identity
proofs. In Proceedings of the 9th Annual Symposium on Logic in Computer Science
(LICS’94), pages 208–212, Paris, France, 1994. IEEE Computer Society Press.

11. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

12. INRIA. The Coq Proof Assistant, version 7.4 edition, Feb. 2003. Reference Manual.
13. C. McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis,

University of Edinburgh, 1999. Available as Technical Report ECS-LFCS-00-419.
14. D. Miller. A logic programming language with lambda-abstraction, function vari-

ables, and simple unification. Journal of Logic and Computation, 1(4):497–536,
1991.

15. F. Pfenning. A proof of the Church-Rosser theorem and its representation in a
logical framework. Journal of Automated Reasoning, 1993. To appear. A prelim-
inary version is available as Carnegie Mellon Technical Report CMU-CS-92-186,
September 1992.

16. F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors, Hand-
book of Automated Reasoning, chapter XXI. Elsevier Science and MIT Press, 1999.
In preparation.

17. F. Pfenning. Structural cut elimination I. intuitionistic and classical logic. Infor-
mation and Computation, 157(1/2):84–141, Mar. 2000.

18. F. Pfenning and C. Schürmann. Algorithms for equality and unification in the
presence of notational definitions. In T. Altenkirch, W. Naraschewski, and B. Reus,
editors, Types for Proofs and Programs, pages 179–193, Kloster Irsee, Germany,
Mar. 1998. Springer-Verlag LNCS 1657.

19. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th Inter-
national Conference on Automated Deduction (CADE-16), pages 202–206, Trento,
Italy, July 1999. Springer-Verlag LNAI 1632.

20. B. Pientka. Termination and reduction checking for higher-order logic programs.
In First International Joint Conference on Automated Reasoning (IJCAR), pages
401–415, Siena, Italy, 2001. Springer Verlag, LNCS 2083.

21. B. Pientka and F. Pfenning. Optimizing higher-order pattern unification. Submit-
ted, Jan. 2003.

22. E. Rohwedder and F. Pfenning. Mode and termination checking for higher-order
logic programs. In H. R. Nielson, editor, Proceedings of the European Symposium
on Programming, pages 296–310, Linköping, Sweden, Apr. 1996. Springer-Verlag
LNCS 1058.

23. P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Proceed-
ings of the Eighth Annual IEEE Symposium on Logic in Computer Science, pages
222–232, Montreal, Canada, June 1993.

17

24. C. Schürmann. Automating the Meta Theory of Deductive Systems. PhD thesis,
Department of Computer Science, Carnegie Mellon University, Aug. 2000. Avail-
able as Technical Report CMU-CS-00-146.

25. C. Schürmann. Recursion for higher-order encodings. In L. Fribourg, editor, Pro-
ceedings of the Conference on Computer Science Logic (CSL 2001), pages 585–599,
Paris, France, August 2001. Springer Verlag LNCS 2142.

26. C. Schürmann, R. Fontana, and Y. Liao. Delphin: Functional programming with
deductive systems. Draft.

27. R. Virga. Higher-Order Rewriting with Dependent Types. PhD thesis, Department
of Mathematical Sciences, Carnegie Mellon University, Sept. 1999. Available as
Technical Report CMU-CS-99-167.

18

