Chapter 5

Parametric and Hypothetical
Judgments

Many deductive systems employ reasoning from hypotheses. We have seen an exam-
ple in Section 2.5: a typing derivation of a Mini-ML expression requires assumptions
about the types of its free variables. Another example occurs in the system of natu-
ral deduction in Chapter 7?7, where a deduction of the judgment that A D B is true
can be given as a deduction of B is true from the hypothesis A is true. We refer to
a judgment that J is derivable under a hypothesis J’ as a hypothetical judgment. Tts
critical property is that we can substitute a derivation D of J’ for every use of the
hypothesis J’ to obtain a derivation which no longer depends on the assumption .J'.

Related is reasoning with parameters, which also occurs frequently. The system
of natural deduction provides once again a typical example: we can infer that
V. A is true if we can show that [a/z]A is true, where a is a new parameter which
does not occur in any undischarged hypothesis. Similarly, in the typing rules for
Mini-ML we postulate that every variable is declared at most once in a context T,
that is, in the rule

Tembe:n

tp_lam
I'vlamz.e: 7 —

the variable z is new with respect to I' (which represents the hypotheses of the
derivation). This side condition can always be fulfilled by tacitly renaming the
bound variable. We refer to a judgment that J is derivable with parameter = as a
parametric judgment. Its critical property is that we can substitute an expression
t for z throughout a derivation of a parametric judgment to obtain a derivation
which no longer depends on the parameter x.

Since parametric and hypothetical judgments are common, it is natural to ask
if we can directly support them within the logical framework. The answer is

109

110 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

affirmative—the key is the notion of function provided in LF. Briefly, the derivation
of a hypothetical judgment is represented by a function which maps a derivation of
the hypothesis to a derivation of the conclusion. Applying this function corresponds
to substituting a derivation for appeals to the hypothesis. Similarly, the derivation
of a parametric judgment is represented by a function which maps an expression to
a derivation of the instantiated conclusion. Applying this function corresponds to
substituting an expressions for the parameter throughout the parametric derivation.

In the remainder of this chapter we elaborate the notions of parametric and
hypothetical judgment and their representation in LF. We also show how to ex-
ploit them to arrive at a natural and elegant representation of the proof of type
preservation for Mini-ML.

5.1 Closed Expressions

When employing parametric and hypothetical judgments, we must formulate the
representation theorems carefully in order to avoid paradoxes. As a simple example,
we consider the judgment e Closed which expresses that e has no free variables.
Expression constructors which do not introduce any bound variables are treated in
a straightforward manner.

e Closed
——— cloz —— clos
z Closed s e Closed
e1 Closed ea Closed)
clo_pair
(e1,ea) Closed
e Closed e Closed
——clo_fst —— clo_snd
fst e Closed snd e Closed
e1 Closed ea Closed
clo_app

e1 ez Closed

In order to give a concise formulation of the judgment whenever variables are
bound we use hypothetical judgments. For example, in order to conclude that
lam z. e is closed, we must show that e is closed under the assumption that x
is closed. The hypothesis about x may only be used in the deduction of e, but
not elsewhere. Furthermore, in order to avoid confusion between different bound
variables with the same name, we would like to make sure that the name z is not
already used, that is, the judgment should be parametric in . The hypothetical

5.1. CLOSED EXPRESSIONS 111

judgment that J is derivable from hypotheses Ji, ..., J, is written as

Ji oo dy
J

The construction of a deduction of a hypothetical judgment should be intuitively
clear: in addition to the usual inference rules, we may also use a hypothesis as evi-
dence for a judgment. But we must also indicate where an assumption is discharged,
that is, after which point in a derivation it is no longer available. We indicate this
by providing a name for the hypothesis J and labelling the inference at which the
hypothesis is discharged correspondingly. Similarly, we label the inference at which
a parameter is discharged. The remaining inference rules for the judgment e Closed
using this notation are given below.

—u
x Closed

e1 Closed ea Closed e3 Closed

clo_case™"
(case e; of z = e3 | s x = e3) Closed
))
x Closed x Closed
e Closed e1 Closed ea Closed
—— clo_Jlam®™" clo_letv®™*
lam z. e Closed let val x = e; in ey Closed
) SE—T)
x Closed x Closed
e1 Closed ea Closed e Closed
clo_letn®™* —— clo_fix®"
let name x = e; in ey Closed fix z. e Closed

In order to avoid ambiguity we assume that in a given deduction, all labels for
the inference rules clo_case, clo_lam, clo_letv, clo_letn and clo_fix are distinct. An
alternative to this rather stringent, but convenient requirement is suggestive of the
representation of hypothetical judgments in LF: we can think of a label u as a
variable ranging over deductions. The variable is bound by the inference which
discharges the hypothesis.

112 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

The following derivation shows that the expression let name f = lam z. z in f (f z)
is closed.

w cloz
f Closed z Closed
” w clo_app
x Closed f Closed f z Closed
——clo_lam™" clo_app
lam z. x Closed f (f z) Closed
clo_letn®*

let name f =lam z. z in f (f z) Closed

This deduction has no undischarged assumptions, but it contains subderiva-
tions with hypotheses. The right subderivation, for example, would traditionally
be written as

——cloz
f Closed z Closed |
clo_app
f Closed f z Closed
clo_app.

f (f 2z) Closed

In this notation we can not determine if there are two hypotheses (which happen
to coincide) or two uses of the same hypothesis. This distinction may be irrelevant
under some circumstances, but in many situations it is critical. Therefore we retain
the labels even for hypothetical derivations, with the restriction that the free labels
must be used consistently, that is, all occurrences of a label must justify the same
hypothesis. The subderivation above then reads

—w ———cloz
f Closed z Closed
I
—_—w clo_app
f Closed f z Closed
clo_app.

f (f 2z) Closed

There are certain reasoning principles for hypothetical derivations which are
usually not stated explicitly. One of them is that hypotheses need not be used. For
example, lam z. z is closed as witnessed by the derivation

— clo_z
z Closed

clo_lam™*
lam z. z Close

which contains a subdeduction of z Closed from hypothesis u :: Closed. Another
principle is that hypotheses may be used more than once and thus, in fact, arbitrarily
often. Finally, the order of the hypotheses is irrelevant (although their labelling is
not). This means that a hypothetical deduction in this notation could be evidence
for a variety of hypothetical judgments which differ in the order of the hypotheses

5.1. CLOSED EXPRESSIONS 113

or may contain further, unused hypotheses. One can make these principles explicit
as inference rules, in which case we refer to them as weakening (hypotheses need not
be used), contraction (hypotheses may be used more than once), and exchange (the
order of the hypotheses is irrelevant). We should keep in mind that if these principles
do not apply then the judgment should not be considered to be hypothetical in the
usual sense, and the techniques below may not apply. These properties have been
studied abstractly as consequence relations [Gar92].

The example derivation above is not only hypothetical in w, but also parametric
in f, and we can therefore substitute an expression such as lam z. x for f and obtain
another valid deduction.

w cloz
lam x. x Closed z Closed
_ w clo_app
lam z. x Closed (lam z. z) z Closed
clo_app

(lam z. z) ((lam . z) z) Closed

If C :: e Closed is parametric in x, then we write [¢//x]C :: [¢//x]e Closed for the
result of substituting €’ for x in the deduction C. In the example, the deduction still
depends on the hypothesis w, which suggests another approach to understanding
hypothetical judgments. If a deduction depends on a hypothesis u :: J we can
substitute any valid deduction of J for this hypothesis to obtain another deduction
which no longer depends on u :: J. Let C be the deduction above and let C’ ::

lam x. x Closed be
u

x Closed

clo_lam®™™".
lam x. z Closed

Note that this deduction is mot parametric in x, that is, £ must be considered a
bound variable within C’. The result of substituting C’ for w in C is

/

—u
z' Closed o
u T clo_lam® " ————clo_z
x Closed lam z'. " Closed z Closed
—— clo_lam®™* clo_app
lam x. z Closed (lam z'. z') z Closed

clo_app
(lam z. z) ((lam 2. 2’) z) Closed

where we have renamed some occurrences of x and u in order to satisfy our global
side conditions on parameter names. In general we write [D’/u]D for the result of
substituting D’ for the hypothesis u :: J' in D, where D’ :: J'. During substitution
we may need to rename parameters or labels of assumptions to avoid violating side
conditions on inference rules. This is analogous to the renaming of bound variables
during substitution in terms in order to avoid variable capture.

114 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

The representation of the judgment e Closed in LF follows the judgment-as-types
principle: we introduce a type family ‘closed’ indexed by an expression.

closed : exp — type

The inference rules that do not employ hypothetical judgments are represented
straightforwardly.

cloz . closed z
clos : IIE:expclosed E — closed (s E)
clo_pair : IIEj:exp. [1E;:exp.
closed Ey — closed Eo — closed (pair Eq E3)
clofst : IIE:exp. closed E — closed (fst E)
closnd : IIE:exp. closed E — closed (snd E)
clo.app : IIEj:exp. [TE;:exp.
closed Ey — closed E2 — closed (app Ey Es)

Now we reconsider the rule clo_lam.

—u
x Closed

e Closed

—— clo_lam®™"
lam x. e Closed

The judgment in the premiss is parametric in x and hypothetical in = Closed.
We thus consider it as a function which, when applied to an ¢’ and a deduction
C :: ¢/ Closed yields a deduction of [¢’/z]e Closed.

clollam : IIE:exp — exp.
(TIz:exp. closed x — closed (E z)) — closed (lam E)

Recall that it is necessary to represent the scope of a binding operator in the lan-
guage of expressions as a function from expressions to expressions. Similar declara-
tions are necessary for the hypothetical judgments in the premisses of the clo_letv,
clo_letn, and clo_fix rules.

5.1. CLOSED EXPRESSIONS 115

clo_case : IIFE;:exp. IIEs:exp. IIE5:exp — exp.
closed ¥y — closed Ey
— (IIz:exp. closed & — closed (E5 x))
— closed (case Fy Ez E3)
cloletv : IIE;:exp. IIE5:exp — exp.
closed Ey — (ILz:exp. closed © — closed (Fs x))
— closed (letv £y E5)
cloletn : IIE;:exp. IIE5:exp — exp.
closed Ey — (ILz:exp. closed © — closed (Fs x))
— closed (letn Ey E3)
clo_fix . IIE:exp — exp.
(ILz:exp. closed z — closed (E z)) — closed (fix E)

We refer to the signature which includes expression constructors, the declarations
of the family closed and the encodings of the inference rules above as EC.

In order to appreciate how this representation works, it is necessary to under-
stand the representation function "7 on deductions. As usual, the definition of the
representation function follows the structure of C :: e Closed. We only show a few
typical cases.

Cl CQ
e1 Closed ea Closed
Case: C = clo_app. Then
e1 ez Closed

FC7=clo_app Te1 " Tex ' TCL T TGy

SE—)
x Closed

C1
e Closed

Case: C=———— clo_lam®*. Then
lam x. e Closed

"C™ = clo_lam (Az:exp. Te™) (Ax:exp. Au:closed z. "Cy 7).

Case: C = ——— u. Then
x Closed
C7=u.

The example deduction above which is evidence for the judgment let name f =
lam z. z in f z Closed is represented as

Fze cloletn (lam (Az:exp. z)) (Af:exp. app f z)
(clolam (Az:exp.) (Ax:exp. Au:closed u. u))
(A f:exp. Aw:closed f. clo_app f z w clo_z)
: closed (letn (lam (Az:exp. z)) (Af:exp. app f z))

116 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

To show that the above is derivable we need to employ the rule of type conversion
as in the example on page 59. The naive formulation of the soundness of the
representation does not take the hypothetical or parametric judgments into account.

Property 5.1 (Soundness of Representation, Version 1)
Given any deduction C :: e Closed. Then t5c "C7) closed "e™.

While this indeed a theorem, it cannot be proven directly by induction—the
induction hypothesis will not be strong enough to deal with the inference rules whose
premisses require deductions of hypothetical judgments. In order to formulate and
prove a more general property we have to consider the representation of hypothetical
judgments. As one can see from the example above, the deduction fragment

—w ———cloz
f Closed z Closed

f z Closed

clo_app

is represented by the LF object
clo_app fzwcloz

which is valid in the context with the declarations f:exp and w:closed f. In order
to make the connection between the hypotheses and the LF context explicit, we
retain the labels of the assumptions and explicitly define the representation of a list
of hypotheses. Let A = uy :: &1 Closed, ..., u, :: x, Closed be a list of hypotheses
where all labels are distinct. Then

TAT = zq:exp, uj:closed x1, ..., T,:exp, un:closed x,,.
The reformulated soundness property now references the available hypotheses.

Property 5.2 (Soudness of Representation, Version 2)
Given any deduction C :: e Closed from hypotheses A = wuy :: x1 Closed, . .., uy, :
T, Closed. Then o "A™ Ctx and

"A7 e TCT 1 closed Te™.

Proof: The proof is by induction on the structure of C. We show three typical
cases.
Case:

Cl CQ
e1 Closed ea Closed
C= clo_app.
e1 ex Closed

Since C is a deduction from hypotheses A, both C; and Cs are also deductions
from hypotheses A. From the induction hypothesis we conclude then that

5.1. CLOSED EXPRESSIONS 117

1. "TA7 e TC1 7 1 closed Te; ', and
2. "A7 e "Co 1) closed Mey ™
are both derivable. Thus, from the type of clo_app,
TA7V ;e clo_app Te1 " Tea 7 TCL T TCy T) closed (app Ter T Teg).
It remains to notice that "e; e ' = app ey 'Teg .
Case:

)
x Closed

C1
e Closed
C=—- —
lam x. e Closed

clolam™",
Then C; is a deduction from hypotheses A, u :: Closed, and
TA,u:: x Closed’ ="A7, x:exp, u:closed x.
By the induction hypothesis on C; we thus conclude that
TA™, x:exp, u:closed x by "C17 1) closed Te™
is derivable. Hence, by two applications of the canpi rule for canonical forms,

TA7 b Axiexp. Au:closed z. "Cy 7) Ilz:exp. Iu:closed x. closed Me™

is also derivable.

By the representation theorem for expressions (Theorem 3.6) and the weak-
ening for LF we also know that

A7 b Az:exp. Te) exp — exp
is derivable. From this and the type of clo_lam we infer

FA7 ke clodam (Az:exp. Te™)
1 (ITz:exp. u:closed z. closed ((Az:exp. "e) z))
— closed (lam (Az:exp. Te™)).

By the rule atmcnv, using one [-conversion in the type above, we conclude

TA7 ke clodlam (Az:exp. Te™)
1 (z:exp. Hu:closed z. closed "e™)
— closed (lam (Az:exp. Te™)).

118 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

Using the rules atmapp and cancon which are now applicable we infer

TA7 ke clodam (Az:exp. Te) (Ax:exp. Au:closed z. "C1 ™)
1} closed (lam (Az:exp. Te™)),

which is the desired conclusion since "lam z. e = lam (Az:exp. "e™).

Case:

C

= u.
x Closed

Then "C™" = u, to which "A™ assigns type closed x = closed "2, which is
what we needed to show.

O

The inverse of the representation function, L, is defined on canonical objects C'
of type closed FE for some F of type exp. This is sufficient for the adequacy theorem
below—one can extend it to arbitrary valid objects via conversion to canonical form.
Again, we only show three critical cases.

| o G LC1a LCs |
clo_app E1 E = clo_app
- PP &1 B2t T2l LE11 LEs1 Closed
—
x Closed
. . . LC1a
Lclo_lam (Az:exp. E) (Az:exp. Au:closed z. Cy)_ E. Closed

clo_lam™*
lam x. LE_ Closed

. —u
LUt = g Closed

The last case reveals that the inverse of the representation function should be param-
eterized by a context so we can find the x which is assumed to be closed according
to hypothesis u. Alternatively, we can assume that we always know the type of
the canonical object we are translating to a deduction. Again, we are faced with
the problem that the natural theorem regarding the function .- cannot be proved
directly by induction.

Property 5.3 (Completeness of Representation, Version 1) Given LF objects E
and C such that t5c E } exp and tgo C fy closed E. Then .CJ:: LEJ Closed.

5.1. CLOSED EXPRESSIONS 119

In order to prove this, we generalize it to allow appropriate contexts. These
contexts need to be translated to an appropriate list of hypotheses. Let I' be a
context of the form x:exp,uj:closed x1,...,x,:closed x,. Then LI'J is the list of
hypotheses u; :: ©1 Closed, . . ., uy, :: x, Closed.

Property 5.4 (Completeness of Representation, Version 2) Given a context I' =
x1:exp, ui:closed z1,...,x,:closed x,, and LF objects E and C' such that T lye E)
exp and I' e C 1 closed E. Then Cl :: LEL Closed is a valid deduction from
hypotheses LI'. Moreoever, L"C'1=C and ."A71= A for deductions C :: e Closed
and hypotheses /.

Proof: By induction on the structure of the derivation I' b C 1} closed E. The
restriction to contexts I' of a certain form is crucial in this proof (see Exercise 5.1).
O

The usual requirement that "7 be a compositional bijection can be understood
in terms of substitution for deductions. Let C :: e Closed be a deduction from
hypothesis v :: x closed. Then compositionality of the representation function
requires

“[C/ulle’/xCT = [FCu][Te 2] e

whenever C’ :: ¢/ Closed. Note that the substitution on the left-hand side is substi-
tution for undischarged hypotheses in a deduction, while substitution on the right
is at the level of LF objects. Deductions of parametric and hypothetical judgments
are represented as functions in LF. Applying such functions means to substitute for
deductions, which can be exhibited if we rewrite the right-hand side of the equation
above, preserving definitional equality.

[FC"/u][Te'/z]"CT = (Ax:exp. Au:closed z. "CT) e/ 7C'T

The discipline of dependent function types ensures the validity of the object on the
right-hand side:

(Az:exp. Au:closed z. "C™) "¢’ : [T€'7/x](closed x — closed Te™).
Hence, by compositionality of the representation for expressions,

(Az:exp. Au:closed z. "C™) "¢’ : closed "€’ — closed [e’/z]e”
and the application of this object to "C’'™ is valid and of the appropriate type.

Theorem 5.5 (Adequacy) There is a bijection between deductions C :: e Closed
from hypotheses uy :: ©1 Closed, . .., u, :: x, Closed and LF objects C' such that

T1:exp, ui:closed x1, ..., x,:exp, uy:closed x,, bze C 1 closed Te™.

120 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

The bijection is compositional in the sense that for an expression e; and a deduction
C; :: e; Closed, we have

T[Ci/uillei/z:]C7 = [TC; " ui]["ei /] C

Proof: Properties 5.2 and 5.4 show the existence of the bijection. To show that it
is compositional we reason by induction over the structure of C (see Exercise 5.2).
(]

5.2 Function Types as Goals in EIf

Below we give the transcription of the LF signature above in Elf.
closed : exp -> type. Yname closed U u.

% Natural Numbers
clo_z : closed z.
clo_s : closed (s E)
<- closed E.
clo_case : closed (case E1 E2 E3)
<- closed E1
<- closed E2
<- ({x:exp} closed x -> closed (E3 x)).

% Pairs
clo_pair : closed (pair E1 E2)
<- closed E1
<- closed E2.
clo_fst : closed (fst E)
<- closed E.
clo_snd : closed (snd E)
<- closed E.

% Functions
clo_lam : closed (lam E)

<- ({x:exp} closed x -> closed (E x)).
clo_app : closed (app E1 E2)

<- closed E1

<- closed E2.

% Definitions

5.2. FUNCTION TYPES AS GOALS IN ELF 121

clo_letv : closed (letv E1 E2)

<- closed E1

<- ({x:exp} closed x -> closed (E2 x)).
clo_letn : closed (letn E1 E2)

<- closed E1

<- ({x:exp} closed x -> closed (E2 x)).

% Recursion
clo_fix : closed (fix E)
<- ({x:exp} closed x -> closed (E x)).

Note that we have changed the order of arguments as in other examples. It seems
reasonable to expect that this signature could be used as a program to determine
if a given object e of type exp is closed. Let us consider the subgoals as they arise
in a query to check if lam y. y is closed.

?7- closed (lam [y:exp]l y).
% Resolved with clause clo_lam
?- {x:exp} closed x -> closed (([y:exp] y) x).

Recall that solving a goal means to find a closed expression of the query type.
Here, the query type is a (dependent) function type. From Theorem 3.13 we know
that if a closed object of type Ilz:A. B exists, then there is a definitionally equal
object of the form Ax:A. M such that M has type B in the context augmented
with the assumption z:A. It is thus a complete strategy in this case to make the
assumption that x has type exp and solve the goal

?7- closed x —> closed (([y:expl y) x).
However, x now is not a free variable in same sense as V in the query
7- eval (lam [y:exp] y) V.

since it is not subject to instantiation during unification. In order to distinguish
these different kinds of variables, we call variables which are subject to instantiation
logic variables and variables which act as constants to unification parameters. Unlike
logic variables, parameters are shown as lower-case constants. Thus the current goal
might be presented as

X : exp
?7- closed x —> closed (([y:expl y) x).

Here we precede the query with the typings for the current parameters. Now recall
that A -> Bis just a concrete syntax for {_:A} B where _ is an anonymous variable
which cannot appear free in B. Thus, this case is handled similarly: we introduce a
new parameter u of type closed x and then solve the subgoal

122 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

X ! exp
u : closed x
?7- closed (([y:exp]l y) x).

By an application of B-conversion this is transformed into the equivalent goal

X : exp
u : closed x
?- closed x.

Now we can use the parameter u as the requested object of type closed x and the
query succeeds without further subgoals.

We now briefly consider, how the appropriate closed object of the original
query, namely ?7- closed (lam [y:exp] y). would be constructed. Recall that
ifT,x:Abs M : Bthen ' 5 Ax:A. M : TIx:A. B. Using this we can now through
the trace of the search in reverse, constructing inhabiting objects as we go along
and inserting conversions where necessary.

u : closed x.
[u:closed x] u : closed x -> closed x.
[x:exp] [u:closed x] u : {x:exp} closed x -> closed x.
[x:exp] [u:closed x] u : {x:exp} closed x -> closed (([y:expl y) x).
clo_lam ([x:exp] [u:closed x] u)
: closed (lam [y:expl y).

Just as in Prolog, search proceeds according to a fixed operational semantics.
This semantics specifies that clauses (that is, LF constant declarations) are tried
in order from the first to the last. Before referring to the fixed signature, however,
the temporary hypotheses are consulted, always considering the most recently in-
troduced parameter first. After all of them have been considered, then the current
signature is traversed. In this example the search order happens to be irrelevant as
there will always be at most one assumption available for any expression parameter.

The representations of parametric and hypothetical judgments can also be given
directly at the top-level. Here are two examples: the first to find the representation
of the hypothetical deduction of f (f z) closed from the hypothesis f closed, the
second to illustrate failure when given an expression ((x,z)) which is not closed.

?7- Q : {f:exp} closed f -> closed (app £ (app f z)).

Q = [f:exp] [u:closed f] clo_app (clo_app clo_z u) u.
More? y

no more solutions

?7- Q : {x:exp} closed (pair x x).

no

5.3. NEGATION 123

Note that the quantification on the variable x is necessary, since the query
?7- closed (pair x x). is considered to contain an undeclared constant x (which
is an error), and the query ?- closed (pair X X) considers X as a logic variable
subject to instantation:

?7- Q : closed (pair X X).

Solving...

X =2z,

Q = clo_pair clo_z clo_z.

More? y

X=s 2,

Q = clo_pair (clo_s clo_z) (clo_s clo_z).

yes

5.3 Negation

Now that we have seen how to write a program to detect closed expressions, how
do we write a program which succeeds if an expression is not closed? In Prolog, one
has the possibility of using the unsound technique of negation-as-failure to write
a predicate which succeeds if and only if another predicate fails finitely. In Elf,
this technique is not available. Philosophically one might argue that the absence of
evidence for e Closed does not necessarily mean that e is not closed. More pragmat-
ically, note that if we possess evidence that e is closed, then this will continue to be
evidence regardless of any further inference rules or hypotheses we might introduce
to demonstrate that expressions are closed. However, the judgment that (z,x) is
not closed does not persist if we add the hypothesis that z is closed. Only under a
so-called closed-world assumption, that is, the assumption that no further hypothe-
ses or inference rules will be considered, is it reasonable to conclude the (x,z) is
not closed. The philosophy behind the logical framework is that we work with an
implicit open-world assumption, that is, all judgments, once judged to be evident
since witnessed by a deduction, should remain evident under extensions of the cur-
rent rules of inference. Note that this is clearly not the case for the meta-theorems
we prove. Their proofs rely on induction on the structure of derivations and they
may no longer be valid when further rules are added.

Thus it is necessary to explicitly define a judgment e Open to provide means for
giving evidence that e is open, that is, it contains at least one free variable. Below
is the implementation of such a judgment in EIf.

open : exp -> type. ‘name open Vv

124 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

% Natural Numbers

open_s : open (s E) <- open E.

open_casel : open (case E1 E2 E3) <- open E1.

open_case2 : open (case E1 E2 E3) <- open E2.

open_case3 : open (case E1 E2 E3) <- ({x:exp} open (E3 x)).

% Pairs

open_pairl : open (pair E1 E2) <- open E1.
open_pair2 : open (pair E1 E2) <- open E2.
open_fst : open (fst E) <- open E.
open_snd : open (snd E) <- open E.

% Functions

open_lam : open (lam E) <- ({x:exp} open (E x)).
open_appl : open (app E1 E2) <- open E1.
open_app2 : open (app E1 E2) <- open E2.

% Definitions

open_letvl : open (letv E1 E2) <- open E1.

open_letv2 : open (letv E1 E2) <- ({x:exp} open (E2 x)).
open_letnl : open (letn E1 E2) <- open E1.

open_letn2 : open (letn E1 E2) <- ({x:exp} open (E2 x)).

% Recursion
open_fix : open (fix E) <- ({x:expl} open (E x)).

One curious fact about this judgment is that there is no base case, that is,
without any hypotheses any query of the form ?- open "e?. will faill That is,
with a given query we must provide evidence that any parameters which may occur
in it are open. For example,

?7- Q : {x:exp} open (pair x x).
no
?7- Q : {x:exp} open x -> open (pair x x).

Empty Substitution.

Q = [x:exp] [v:open x] open_pairl v.
More? y

Empty Substitution.

Q = [x:exp] [v:open x] open_pair2 v.
More? y

No more solutions

5.4. REPRESENTING MINI-ML TYPING DERIVATIONS 125

?7- Q : {x:exp} open x -> open (lam [x:exp] pair x x).
no

5.4 Representing Mini-ML Typing Derivations

In this section we will show a natural representation of Mini-ML typing derivations
in LF. In order to avoid confusion between the contexts of LF and the contexts of
Mini-ML, we will use A throughout the remainder of this chapter to designate a
Mini-ML context. The typing judgment of Mini-ML then has the form

Apve:T

and expresses that e has type 7 in context A. We observe that this judgment
can be interpreted as a hypothetical judgment with hypotheses A. There is thus
an alternative way to describe the judgment e : 7 which employs hypothetical
judgments without making assumptions explicit.

—u
>x:T
Axmid>e:n >e: T .
tp_lam tp_lam®™
Ablamz.e: 1 — T plamz.e:m —

The judgment in the premiss in the formulation of the rule on the right is parametric
in z and hypothetical in u :: z:77. On the left, all available hypothesis are repre-
sented explicitly. The restriction that each variable may be declared at most once
in a context and bound variables may be renamed tacitly encodes the parametricity
with respect to x.

First, however, the representation of Mini-ML types. We declare an LF type
constant, tp, for the representation of Mini-ML types. Recall, from Section 2.5,

Types 7 == nat|m X7 |mn = n|a

It is important to bear in mind that — is overloaded here, since it stands for the
function type constructor in Mini-ML and in LF. It should be clear from the context
which constructor is meant in each instance. The representation function and the
LF declarations are straightforward.

tp : type
ol = «
nat? = nat nat : tp
"ri X1 = cross " m Ty cross : tp —tp — tp
11— 7' = arrow' 7 'y’ arrow : tp —>tp —tp

126 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

Here a on the right-hand side stands for a variable named « in the LF type theory.
We refer to the signature in the right-hand column as T'. We briefly state (without
proof) the representation theorem.

Theorem 5.6 (Adequacy) The representation function ™ 7 is a compositional bi-
jection between Mini-ML types and canonical LF objects of type tp over the signature
T.

Now we try to apply the techniques for representing hypothetical judgments
developed in Section 5.1 to the representation of the typing judgment (for an al-
ternative, see Exercise 5.6). The representation will be as a type family ‘of’ such
that

I—A_\ l_ I—P_\ : Of I—e_\ I—T_\

whenever P is a deduction of A > e : 7. Thus,
of : exp — tp— type

with the representation for Mini-ML contexts A as LF contexts "TA™.

.1 —

Az = TAT xexp,u:of x 77

Here w must be chosen to be different from z and any other variable in "A™ in
order to satisfy the general assumption about LF contexts. This assumption can
be satisfied since we made a similar assumption about A.

For typing derivation themselves, we only show three critical cases in the defi-
nition of "P7 for P :: A e : 7. The remainder is given directly in EIf later. The
type family of : exp — tp — type represents the judgment e : 7.

Case:

P1 P
Abel 7o — 7 Ab>es:m
P = tp_app.
Apbele:n

In this simple case we let
I—P_\ — tp_app I—Tl_\ I—T2_\ I—el_\ '_62_‘ I—Pl_\ I—PQ_\
where

tp-app : IIT%:tp. IIT5:tp. IIE; :exp. I1ES:exp
of Eq (arrow Ty T1) — of Eo Ty — of (app E1 Eq) Th

5.4. REPRESENTING MINI-ML TYPING DERIVATIONS 127

Case:

P/
Axm>e:n
P = tp_lam.
Ablamz.e: 1 — T

In this case we view P’ as a deduction of a hypothetical judgment, that is, a
derivation of e : 75 from the hypothesis z:7;. We furthermore note that P’ is
parametric in x and choose an appropriate functional representation.

TP = tplam "7 T (Aziexp. Te) (Aziexp. duwof z T TP)

The constant tp_lam must thus have the following type:

tp_lam : IITy:tp. HT5:tp. [IE:exp — exp.
(Tlz:exp. of & Ty — of (E z) T)
— of (lam E) (arrow Ty T3).

Representation of a deduction P with hypotheses A requires unique labels for
the various hypotheses, in order to return the appropriate variable whenever
an hypothesis is used. While we left this correspondence implicit, it should be
clear that in the case of "P’™ above, the hypothesis z:7; should be considered
as labelled by wu.

Case:
Alx) =T

P=——tp.var.
Abx:T

This case is not represented using a fixed inference rule, but we will have a
variable u of type ‘of z "7 which implicitly provides a label for the assump-
tion z. We simply return this variable.

I’P—l — u

The adequacy of this representation is now a straightforward exercise, given in
the following two properties. We refer to the full signature (which includes the
signatures T for Mini-ML types and E for Mini-ML expressions) as T'D.

Property 5.7 (Soundness) If P:: A>e: 7 then bp "A™ Ctz and

I—A_\ |_TD I—P_\ ﬂ Of I—e_\ I_T_\.

128 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

Property 5.8 (Completeness) Let A be a Mini-ML context and T' = "A7. If
brp E 1 exp, trp T 1) tp, and

Thep PRof ET

then there exist e, T, and a derivation P :: A > e : T such that "e’' = F, "T" =T,
and "P7=P.

It remains to understand the compositionality property of the bijection. We
reconsider the substitution lemma (Lemma 2.4):

If Avep:m and A, z1:7y > ey : 7o then A b [e1/z1]es : T2

The proof is by induction on the structure of Pa :: (A, z1:71 > e : 72). Wherever
the assumption x1:7y is used, we substitute a version of the derivation P; :: A > eq :
71 where some additional (and unused) typing assumptions may have been added
to A. A reformulation using the customary notation for hypothetical judgments
exposes the similarity to the considerations for the judgment e Closed considered in
Section 5.1.

uy Pl uy
If m o and P then e
P2 > e1:Ty le1/z1]Ps

> e2:T2 > [e1/x1]es : To

Here, [e1/21]P2 is the substitution of e; for z; in the deduction P, which is legal
since Ps is a deduction of a judgment parametric in ;. Furthermore, the deduction
P; has been substituted for the hypotheses labelled w in P2, indicated by writing
Py above the appropriate hypothesis. Using the conventions established for hypo-
thetical and parametric judgments, the final deduction above can also be written
as [P1/u1]le1/x1]P2. Compositionality of the representation then requires

T[P1/ui]ler/x1]Pe = ["P17/w]["e1/z1]" P
= (Azpexp. Aup:of 1 T TP) Feg ' TP

After appropriate generalization, this is proved by a straightforward induction over
the structure of Ps, just as the substitution lemma for typing derivation which lies
at the heart of this property.

Theorem 5.9 (Adequacy) There is a bijection between deductions

P

LTy ey T T D €T

5.5. AN ELF PROGRAM FOR MINI-ML TYPE INFERENCE 129

and LF objects P such that
ry:exp,up:of y T, L. mhexp, upiof &y T ' P ffof Tel T

The bijection is compositional in the sense that for an expression e; and deduction
P; i A;>e; i T; we have

T[Pifud)lei/zi) P = [P ui]["e; @] P
where A; = x1:exp,ui:of &1 "1, ..., xiiexp, uiof v T

Proof: As usual, by induction on the given derivations in each direction combined
with verifying that correctness of the inverse of the representation function. Com-
positionality follows by induction on the structure of P. ad

5.5 An EIf Program for Mini-ML Type Inference

We now complete the signature from the previous section by transcribing the rules
from the previous section and Section 2.5 into Elf. The notation will be suggestive
of a reading of this signature as a program for type inference. First, the declarations
of Mini-ML types.

tp : type. ‘name tp T.

nat : tp.
cross : tp -> tp —> tp.
arrow : tp —-> tp —> tp.

Next, the typing rules.

of : exp -> tp -> type. ‘name of P u.
%mode of +E xT.

% Natural Numbers
tp_z : of z nat.
tp_s : of (s E) nat
<- of E nat.
tp_case : of (case E1 E2 E3) T
<- of El1 nat
<-of E2 T
<= ({x:exp} of x nat -> of (E3 x) T).

% Pairs
tp_pair : of (pair E1 E2) (cross T1 T2)

130 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

<- of E1 T1

<- of E2 T2.
tp_fst : of (fst E) T1

<- of E (cross T1 T2).
tp_snd : of (snd E) T2

<- of E (cross T1 T2).

% Functions
tp_lam : of (lam E) (arrow T1 T2)

<- ({x:exp} of x T1 -> of (E x) T2).
tp_app : of (app E1 E2) T1

<- of E1 (arrow T2 T1)

<- of E2 T2.

% Definitions
tp_letv : of (letv E1 E2) T2

<- of E1 T1

<- ({x:exp} of x T1 -> of (E2 x) T2).
tp_letn : of (letn E1 E2) T2

<- of E1 T1

<- of (E2 E1) T2.

% Recursion
tp_fix : of (fix E) T
<- ({x:exp} of x T -> of (E x) T).

As for evaluation, we take advantage of compositionality in order to represent sub-
stitution of an expression for a bound variable in representation of tp_letn,

Aber:m A ler/z]es : T
tp_letn.

Apbletnamexr =e; iney : 1

Since we are using higher-order abstract syntax, es is represented together with
its bound variable as a function of type exp — exp. Applying this function to the
representation of e; yields the representation of [e1 /x]es.

The Elf declarations above are suggestive of an operational interpretation as a
program for type inference. The idea is to pose queries of the form 7- of e T.
where T is a free variable subject to instantiation and e is a concrete Mini-ML
expression. We begin by considering a simple example: lam z. (z,s x). For this
purpose we assume that of has been declared dynamic and exp and tp are static.
This means that free variables of type exp and tp may appear in an answer.

?7- of (lam [x] pair x (s x)) T.

5.5. AN ELF PROGRAM FOR MINI-ML TYPE INFERENCE 131

Resolved with clause tp_lam
7- {x:exp} of x T1 -> of (pair x (s x)) T2.

In order to perform this first resolution step, the interpreter performed the substi-
tutions

E = [x:exp] pair x (s x),
TL =T1,

T2 = T2,

T = arrow T1 T2.

where E, T1, and T2 come from the clause tp_lam, and T appears in the original
query. Now the interpreter applies the rules for solving goals of functional type and
introduces a new parameter x.

Introducing new parameter x : exp

X : exp
?7- of x T1 -> of (pair x (s x)) T2.
Introducing new parameter u : of x T1.

X : exp,
u:of xT1

?7- of (pair x (s x)) T2.
Resolved with clause tp_pair

This last resolution again requires some instantiation. We have

El = x,
E2 = (s %),
T2 = cross T21 T22.

Here, E1, E2, T21, and T22 come from the clause (the latter two renamed from T1 and
T2, respectively). Now we have to solve two subgoals, namely ?- of x T21. and
?7- of (s x) T22. The first subgoal immediately succeeds by using the assump-
tion u, which requires the instantiation T21 = T1 (or vice versa).

X : exp,
u: of xT1
7- of x T21.

Resolved with clause u
Here is the remainder of the computation.

X : exp,
u: of xT1

?7- of (s x) T22.

Resolved with clause tp_s

132 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

This instantiates T22 to nat and produces one subgoal.

X : exp,
u: of x Tl
?7- of x nat.
Resolved with clause u

This last step instantiates T1 (and thereby indirectly T21) to nat. Thus we obtain
the final answer

T = arrow nat (cross nat nat).
We can also ask for the typing derivation Q:

?7- Q : of (lam [x] pair x (s x)) T.

T
Q

There will always be at most one answer to a type query, since for each expression
constructor there exists at most one applicable clause. Of course, type inference
will fail for ill-typed queries, and it will report failure, again because the rules are
syntax-directed. We have stated above that there will be at most one answer yet we
also know that types of expressions such as lam x. x are not unique. This apparent
contradiction is resolved by noting that the given answer subsumes all others in the
sense that all other types will be instances of the given type. This deep property of
Mini-ML type inference is called the principal type property.

arrow nat (cross nat nat),
tp_lam [x:exp] [P:of x nat] tp_pair (tp_s P) P.

?7- of (lam [x] x) T.

Resolved with clause tp_lam

?7- {x:exp} of x T1 -> of x T2.
Introducing new parameter x

?7- of x T1 -> of x T2.

Assuming ul : of x T1

?7- of x T2.

Resolved with clause ul [with T2 = T1i]

T = arrow T1 T1.

Here the final answer contains a free variable T1 of type tp. This is legal, since we
have declare tp to be a static type. Any instance of the final answer will yield an
answer to the original problem and an object of the requested type. This can be
expressed by stating that search has constructed a closed object, namely

([T1:tp] tp_lam ([x:exp] [P:of x T1] P))
{T1:tp} of (lam ([x:exp] x)) (arrow T1 T1).

5.5. AN ELF PROGRAM FOR MINI-ML TYPE INFERENCE 133

If we interpret this result as a deduction, we see that search has constructed a
deduction of a parametric judgment, namely that > lam z. z : m; — 71 for any
concrete type 71. In order to include such generic derivations we permitted type
variables a in our language. The most general or principal derivation above would
then be written (in two different notations):

U — tpovar
DT« Tab T«

tp_lam®™* tp_lam
plamz.z:a — « plamz. z:a — «

From the program above one can see, that the type inference problem has
been reduced to the satisfiability of some equations which arise from the ques-
tion if a clause head and the goal have a common instance. For example, the goal
?7- of (lam [x] x) (cross T1 T2). will fail immediately, since the only possible
rule, tp_lam, is not applicable because arrow T1 T2 and cross T1 T2 do not have
a common instance. The algorithm for finding common instances which also has the
additional property that it does not make any unnecessary instantiation is called a
unification algorithm. For first-order terms (such as LF objects of type tp in the
type inference problem) a least committed common instance can always be found
and is unique (modulo renaming of variables). When variables are allowed to range
over functions, this is no longer the case. For example, consider the objects E2 z
and pair z z, where E2 is a free variable of type exp -> exp. Then there are four
canonical closed solutions for E2:!

E2 = [x:exp] pair x x ;
E2 = [x:exp] pair z x ;
E2 = [x:exp] pair x z ;
E2 = [x:exp] pair z z.

In general, the question whether two objects have a common instance in the LF type
theory is undecidable. This follows from the same result (due to Goldfarb [Gol81])
for a much weaker theory, the second-order fragment of the simply-typed lambda-
calculus.

The operational reading of LF we sketched so far thus faces a difficulty: one
of the basic steps (finding a common instance) is an undecidable problem, and,
moreover, may not have a least committed solution. We deal with this problem by
approximation: EIf employs an algorithm which finds a greatest common instance
or detects failure in many cases and postpones other equations which must be
satisfied as constraints. In particular, it will solve all problems which are essentially
first order, as they arise in the type inference program above. Thus Elf is in spirit a
constraint logic programming language, even though in many aspects it goes beyond
the definition of the CLP family of languages described by Jaffar and Lassez [JL87].

LA fifth possibility, E2 = pair z is not canonical and n-equivalent to the second solution.

134 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

The algorithm, originally discovered by Miller in the simply-typed A-calculus [Mil91]
has been generalized to dependent and polymorphic types in [Pfe91b]. The precise
manner in which it is employed in EIf is described in [Pfe91a].2. Here we content
ourselves with a simple example which illustrates how constraints may arise.

?7- of (lam [x] x) ((F:tp -> tp) nat).

F=F.
((arrow T1 T1 = F nat))

Here the remaining constraint is enclosed within double parentheses. Any solution
to this equation yields an answer to the original query. It is important to realize
that this constitutes only a conditional success, that is, we can in general not be
sure that the given constraint set is indeed be satisfiable. In the example above,
this is obvious: there are infinitely many solutions of which we show two.

F = [T:tp] arrow T1 T1,

T1 = T1 ;

F = [T:tp] arrow (arrow T T) (arrow T T),
T1 = arrow nat nat.

The same algorithm is also employed during Elf’s term reconstruction phase. In
practice this means that Elf term reconstruction may also terminate with remaining
constraints which, in this case, is considered an error and accompanied by a request
to the programmer to supply more type information.

The operational behavior of the program above may not be satisfactory from the
point of view of efficiency, since expressions bound to a variable by a let name are
type-checked once for each occurrence of the variable in the body of the expression.
The following is an example for a derivation involving let name in Elf.

?7- Q : of (letn (lam [y] y) ([f] pair (app f z) (app f (pair z z)))) T.
Solving...

T = cross nat (cross nat nat),
Q=
tp_letn
(tp_pair

(tp_app (tp_pair tp_z tp_z)
(tp_lam [x:exp] [P:of x (cross nat nat)] P))
(tp_app tp_z (tp_lam [x:exp] [P:of x nat] P)))
(tp_lam [x:exp] [P:of x T1] P).
More? y
no more solutions

2[further discussion of unification elsewhere?]

5.6. REPRESENTING THE PROOF OF TYPE PRESERVATION 135

Notice the two occurrences of tp_lam which means that (lam [y] y) was type-
checked twice. Usually, ML’s type system is defined with explicit constructors for
polymorphic types so that we can express > lam x. = : Vt. t — t. The type
inference algorithm can then instantiate such a most general type in the body e of a
let name-expression let name z = e; in ep without type-checking e; again. This is
the essence of Milner’s algorithm W in [Mil78]. It is difficult to realize this algorithm
directly in Elf. Some further discussion and avenues towards a possible solution
are given in [Har90], [DP91], and [Lia95]. . Theoretically, however, algorithm W
of [Mil78] is not more efficient compared to the algorithm presented above as shown
by [Mai92].

5.6 Representing the Proof of Type Preservation

We now return to the proof of type preservation from Section 2.6. In order to prepare
for its representation in Elf, we reformulate the theorem to explicitly mention the
deductions involved.

For any e, v, 7, D::e <> v, and P :: > e : 7 there exists a Q ::>wv : 7.

The proof is by induction on the structure of D and relies heavily on inversion
to predict the shape of P from the structure of e. The techniques from Section 3.7
suggest casting this proof as a higher-level judgment relating D, P, and Q. This
higher-level judgment can be represented in LF and then be implemented in Elf as
a type family. We forego the intermediate step and directly map the informal proof
into Elf, calling the type family tps.

tps : eval EV > of ET -> of VT -> type.
Jmode tps +D +P -Q.

All of the cases in the induction proof now have a direct representation in Elf. The
interesting cases involve appeals to the substitution lemma (Lemma 2.4).

Case: D =

ev_z.
Z“— Z

Then we have to show that for any type 7 such that > z : 7 is derivable,
>z : 7 is derivable. This is obvious.

There are actually two slightly different, but equivalent realizations of this case.
The first uses the deduction P :: >z : 7 that exists by assumption.

tps_z0 : tps (ev_z) P P.

The second, which we prefer, uses inversion to conclude that P must be tp_z, since
it is the only rule which assigns a type to z.

136 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

tps_z : tps (ev_z) (tp_z) (tp_z).

The appeal to the inversion principle is implicit in these declarations. For each
D and P there should be a Q such that tps "D TP TQ7 is inhabited. The
declaration above appears to work only for the case where the second argument P
is the axiom tp_z. But by inversion we know that this is the only possible case.
This pattern of reasoning is applied frequently when representing proofs of meta-
theorems.

The next case deals with the successor constructor for natural numbers. We
have taken the liberty of giving names to the deductions whose existence is shown
in the proof in Section 2.6. This will help use to connect the informal statement
with its implementation in EIf.

Dy
€1 — U1
Case: D =————ev.s. Then
sep —sv:
Pudser:T By assumption
Py ::>e1 : nat and 7 = nat By inversion
Q1 ::>w; : nat By ind. hyp. on D,
Q::>sw;: nat By rule tp_s

Recall that an appeal to the induction hypothesis is modelled by a recursive
call in the program which implements the proof. Here, the induction hypothesis
is applied to Dy :: e; < w1 and Pp :: > eg : nat to conclude that there is a Q7 ::
> v; : nat. This is what we needed to show and can thus be directly returned.

tps_s : tps (ev_s D1) (tp_s P1) (tp_s Q1)
<- tps D1 P1 Q1.

We return to the cases involving case-expressions later after we have discussed the
case for functions. The rules for pairs are straightforward.

tps_pair : tps (ev_pair D2 D1) (tp_pair P2 P1) (tp_pair Q2 Q1)
<- tps D1 P1 Q1
<- tps D2 P2 Q2.
tps_fst : tps (ev_fst D1) (tp_fst P1) Q1
<- tps D1 P1 (tp_pair Q2 Q1).
tps_snd : tps (ev_snd D1) (tp_snd P1) Q2
<- tps D1 P1 (tp_pair Q2 Q1).

There is an important phenomenon one should note here. Since we used the back-
wards arrow notation in the declarations for ev_pair and tp_pair

5.6. REPRESENTING THE PROOF OF TYPE PRESERVATION 137

ev_pair : eval (pair E1 E2) (pair V1 V2)
<- eval E1 V1
<- eval E2 V2.

tp_pair : of (pair E1 E2) (cross T1 T2)
<- of E1 T1
<- of E2 T2.

their arguments are reversed from what one might expect. This is why we called the
first argument to ev_pair above D2 and the second argument D1, and similiary for
tp_pair. The case for lam-expressions is simple, since they evaluate to themselves.
For stylistic reasons we apply inversion here as in all other cases.

tps_lam : tps (ev_lam) (tp_lam P) (tp_lam P).

The case for evaluating an application e; ey is more complicated than the cases
above. The informal proof appeals to the substitution lemma.

D, D> Ds
e1 — lam z. e} €2 < V2 [ve/T]e] — v
Case: D = ev.app.
€1 e2 —v
Piubere:n By assumption
Pruber:me— 71 and P2 :ib>eg:Te for some T2 By inversion
Qrupblamz.el i =7 By ind. hyp. on D;
Qe By inversion
Qo iD V2T By ind. hyp. on D»
Ps > [vg/z]el i 1 By the Substitution Lemma 2.4
Qs DbV :TL By ind. hyp. on D3

We repeat the declarations of the ev_app and tp_lam clauses here with some
variables renamed in order to simplify the correspondence to the names used above.

ev_lam : eval (app E1 E2) V
<- eval E1 (lam E1’)
<- eval E2 V2
<- eval (E1’ V2) V.

tp_lam : of (lam E1’) (arrow T2 T1)
<- ({x:exp} of x T2 -> of (E1’ x) T1).

The deduction Q; is a deduction of a parametric and hypothetical judgment (para-
metric in x, hypothetical in > z:73). In EIf this is represented as a function
which, when applied to V2 and an object Q2 : of V2 T2 yields an object of type
of (E1’ V2) Ti, that is

138 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

Q1° : {x:exp} of x T2 -> of (E1’ x) TI1.
The Elf variable E1’ : exp -> exp represents \z:exp. e}, and V2 represents vs.
Thus the appeal to the substitution lemma has been transformed into a function
application using Q1°, that is, P3 = Q1’ V2 Q2.

tps_app : tps (ev_app D3 D2 D1) (tp_app P2 P1) Q3
<- tps D1 P1 (tp_lam Q1’)
<- tps D2 P2 Q2
<- tps D3 (Q1’ V2 Q2) Q3.

This may seem like black magic—where did the appeal to the substitution lemma
go? The answer is that it is hidden in the proof of the adequacy theorem for the
representation of typing derivations (Theorem 5.9) combined with the substitution
lemma for LF itself! We have thus factored the proof effort: in the proof of the
adequacy theorem, we establish that the typing judgment employs parametric and
hypothetical judgments (which permit weakening and substitution). The implemen-
tation above can then take this for granted and model an appeal to the substitution
lemma simply by function application.

One very nice property is the conciseness of the representation of the proofs of
the meta-theorems in this fashion. Each case in the induction proof is represented
directly as a clause, avoiding explicit formulation and proof of many properties of
substitution, variable occurrences, etc. This is due to the principles of higher-order
abstract syntax, judgments-as-types, and hypothetical judgments as functions. An-
other important factor is the Elf type reconstruction algorithm which eliminates the
need for much redundant information. In the clause above, for example, we need
to refer explicitly to only one expression (the variable V2). All other constraints
imposed on applications of inferences rules can be inferred in a most general way in
all of these examples. To illustrate this point, here is the fully explicit form of the
above declaration, as generated by Elf’s term reconstruction.

tps_app :

{E:exp -> exp} {V2:exp} {El:exp} {T:tp} {D3:eval (E V2) E1}
{T1:tp} {Q1’:{El:exp} of E1 T1 -> of (E E1) T} {Q2:0f V2 T1}
{Q3:0f E1 T} {E2:exp} {D2:eval E2 V2} {P2:of E2 T1} {E3:exp}
{D1:eval E3 (lam E)} {Pl:of E3 (arrow T1 T)}
tps (E V2) E1 T D3 (Q1’ V2 Q2) Q3 -> tps E2 V2 T1 D2 P2 Q2

-> tps E3 (lam E) (arrow T1 T) D1 P1 (tp_lam T1 E T Q1°)
-> tps (app E3 E2) E1 T (ev_app E V2 E1 E2 E3 D3 D2 D1)
(tp_app E2 T1 E3 T P2 P1) Q3.

We skip the two cases for case-expressions and only show their implementation.
The techniques we need have all been introduced.

5.6. REPRESENTING THE PROOF OF TYPE PRESERVATION 139

tps_case_z: tps (ev_case_z D2 D1) (tp_case P3 P2 P1) Q2
<- tps D2 P2 Q2.

tps_case_s: tps (ev_case_s D3 D1) (tp_case P3 P2 P1) Q3
<- tps D1 P1 (tp_s Q1’)
<- tps D3 (P3 V1 Q1’) Q3.

Next, we come to the cases for definitions. For let val-expressions, no new

considerations arise.

Dl DQ
er <= v1 [vi/z]ez — v

Case: D = ev_letv.

letvalz = e; in ey — v

Puvletvalz =er1ines: 7 By assumption
Pi:ber:m and
Po:ix:mi>ez: T for some 71

Qi udbvriT

By inversion
By ind. hyp. on D:

Py b [vi/zles: T

By the Substitution Lemma 2.4

Qo ubv:T

By ind. hyp. on D»

tps_letv :
<- tps D1 P1 Q1
<- tps D2 (P2 V1 Q1) Q2.

tps (ev_letv D2 D1) (tp_letv P2 P1) Q2

let name-expressions may at first sight appear to be the most complicated case.
However, the substitution at the level of expressions is dealt with via composition-
ality as in evaluation, so the representation of this case is actually quite simple.

D,
le1/z]ez — v

Case: D = ev_letn.

letname x = e; inex — v

Pupletnamezr =e;ines : 7
Pobler/zles i T
Qs udv:T

By assumption
By inversion
By ind. hyp. on D»

tps_letn :
<- tps D2 P2 Q2.

tps (ev_letn D2) (tp_letn P2 P1) Q2

The case of fixpoint follows the same general pattern as the case for application
in that we need to appeal to the substitution lemma. The solution is analogous.

140 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

D
fix z. e1/z]er — v

Case: D = ev_fix.
fixx.egs — v

Puvfixz.er: 7 By assumption
Prux:TD>eEr T By inversion
Pi b [fixz.oer/xler: T By the Substitution Lemma 2.4
Qi udbuv:T By ind. hyp. on D;

In the representation,
P1 : {x:exp} of x T -> of (E1 x) T
and thus
(P1 (fix E1)) : of (fix E1) T -> of (E1 (fix E1)) T
and
(P1 (fix E1) (tp_fix P1)) : of (El (fix E1)) T
This is the representation of the deduction Pj, since
Clfix z. e1/z)e; " = [Tfix z. e1 /x| e1 " = (Az:exp. Ter) (fix (Az:exp. Ter 7).
tps_fix : tps (ev_fix D1) (tp_fix P1) Q1
<- tps D1 (P1 (fix E1) (tp_fix P1)) Q1.

Here is a simple example which illustrates the use of the tps type family as a
program. First, we abbreviate the expression

letname f=lamz.zinlet g=f fingyg

by e0, using the definitional mechanism of Elf. The we generate the typing deriva-
tion with a %solve declaration and call it p0. Next we evaluate e0 and call the
evaluation d0. Then we pose a query that will execute the proof of type preservation
to generate a substitution for Q, the typing derivation for the value of the expression
above.

e0 : exp = letn (lam [x] x) ([f] letn (app f £) ([gl app g g)).
%solve pO : of e0 T.

%solve dO : eval e0 V.

%query 1 * tps dO pO Q.

Among other information, this will print
Q = tp_lam ([x:exp] [u:of x T1] u).

Of course, this is a very indirect way to generate a typing derivation of lam z. x,
but illustrates the computational content of the type family tps we defined.

5.7. EXERCISES 141

5.7 Exercises

Exercise 5.1 Carry out three representative cases in the proof of Property 5.4.
Where do we require the assumption that I' must be of a certain form? Construct a
counterexample which shows the falsehood of careless generalization of the theorem
to admit arbitary contexts I'.

Exercise 5.2 Carry out three representative cases in the proof of the Adequacy
Theorem 5.5.

Exercise 5.3 Modify the natural semantics for Mini-ML such that only closed -
expressions have a value. How does this affect the proof of type preservation?

Exercise 5.4 Write Elf programs
1. to count the number of occurrences of bound variables in a Mini-ML expres-
sion;
2. to remove all vacuous let-bindings from a Mini-ML expression;

3. to rewrite all occurrences of expressions of the form (lam z. e3) e; to let x =
e1 in es.

Exercise 5.5 For each of the following statements, prove them informally and
represent the proof in Elf, or give a counterexample if the statement is false.

1. For any expressions e; and eq, evaluation of (lam z. e3) e; yields a value v if
and only if evaluation of let val z = e; in ey yields v.

2. For any expressions e; and eg, evaluation of (lam x. e3) e; yields a value v if
and only if evaluation of let name x = e; in ey yields v.

3. For walues vy, the expression (lam x. ez) vy has type 7 if and only if the
expression let val £ = v; in ey has type 7.

4. For values vy, the expression (lam z. es) vy has type 7 if and only if the
expression let name x = v; in e; has type 7.

5. Evaluation is deterministic, that is, whenever e < vy and e < vy then vy = vo
(modulo renaming of bound variables, as usual).

Exercise 5.6 Give an LF representation of the fragment of Mini-ML which includes
pairing, first and second projection, functions and application, and definitions with
let val without using hypothetical judgments. Thus the typing judgment should be
represented as a ternary type family, say, hastype, indexed by a representation of the

142 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

context A and representations of e and 7. We would then look for a representation
function -7 which satisfies

T'E"P7: hastype "TA7Te Tr
for a suitable I', whenever P is a valid deduction of A>e: 7.

Exercise 5.7 Illustrate by means of an example why declaring the type tp as
dynamic might lead to undesirable backtracking and unexpected answers during
type inference for Mini-ML with the program in Section 5.5. Can you construct a
situation where the program diverges on a well-typed Mini-ML expression? How
about on a Mini-ML expression which is not well-typed?

Exercise 5.8 Extend the implementation of the Mini-ML interpreter, type infer-
ence, and proof of type preservation to include

1. unit, void, and disjoint sum types (see Exercise 2.7),

2. lists (see Exercise 2.8).

Exercise 5.9 Consider the call-by-name version of Mini-ML with lazy constructors
as sketched in Exercise 2.13. Recall that neither the arguments to functions, nor
the arguments to constructors (s and (-, -)) should be evaluated.

1. Implement an interpreter for the language and show a few expressions that
highlight the differences in the operational semantics.

Implement type inference.
Define and implement a suitable notion of value.

Prove value soundness and implement your proof.

DA el R

Prove type preservation and implement your proof.

Discuss the main differences between the development for Mini-ML and its call-by-
name variant.

Exercise 5.10 The definition of the judgment e Closed follows systematically from
the representation of expressions in higher-order abstract syntax, because object-
level variables are represented by meta-level variables. This exercise explores a
generalization of this fact. Assume we have a signature ¥ in the simply-typed
lambda-calculus that declares exactly one type constant a and some unspecified
number of object constants c1,...,c,. Define an LF signature ¥; that extends X
by a new family

closed : a — type

5.7. EXERCISES 143

such that
K, N:a

if and only if
I's, N:a and TI'k, M :closed N

provided I' no has declaration of the form w:Ily;:A; ... y,,:A,,. closed P.

Exercise 5.11 Write Elf programs to determine if a Mini-ML expression is free of
the recursion operation fix and at the same time

1. linear (every bound variable occurs exactly once);
2. affine (every bound variable occurs at most once);
3. relevant (every bound variable occurs at least once).

Since only one branch in a case statement will be taken during evaluation, a bound
variable must occur exactly once in each branch in a linear expression, may occur
at most once in each branch in an affine expression, and must occur at least once
in each branch in a relevant expression.

Exercise 5.12 Instead of substituting in the typing rule for let name-expressions
we could extend contexts to record the definitions for variables bound with let name.

Contexts A u= -|Az7|Az=e

Variables must still occur at most once in a context (no variable may be declared
and defined). We would replace the rule tp_letn by the following two rules.

Aver:m Ar=e bey:T r=ein A Abe:T
tp_letn0 tp_var0
Abletnamexr =e; inesy : 1 Abx:T

There are at least two ways we can view this modification for representation in the
framework.

1. We use a new judgment, x = e, which is introduced only as a hypothesis into
a derivation.

2. We view a hypothesis x = e as the assumption of an inference rule. We might

write this as
>e T

Ur
>xr:T

>e 1 >eg Ty

tp_let™".
> let name x = e; in ey

144 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

The subscript 7 in the hypothetical rule u indicates that in each application of
u we may choose a different type 7. Hypothetical rules have been investigated
by Schroeder-Heister [SH84].

1. Show the proper generalization and the new cases in the informal proof of
type preservation using rules tp_letn0 and tp_varO.

Give the Elf implementation of type inference using alternative 1.

Implement the modified proof of type preservation in Elf using alternative 1.

Ll

Give the Elf implementation of type inference using alternative 2.

5. Implement the modified proof of type preservation in Elf using alternative 2.

Exercise 5.13 [on the value restriction or its absence |
Exercise 5.14 [on interpreting let name as let value, connect to value
restriction |

Exercise 5.15 The typing rules for Mini-ML in Section 2.5 are not a realistic
basis for an implementation, since they require e; in an expression of the form
let name u = e; in ey to be re-checked at every occurrence of u in es. This is
because we may need to assign different types to e; for different occurrences of u.

Fortunately, all the different types for an expression e can be seen as instances
of a most general type schema for e. In this exercise we explore an alternative
formulation of Mini-ML which uses explicit type schemas.

Types 7 == nat|nxn|mn—>n|a
Type Schemas o := 7 |Va.o

Type schemas o are related to types 7 through instantiation, written as o < 7.
This judgment is defined by

. [7'/alo < 7
inst_.tp ——— inst_all.
T<T Va.o <1

We modify the judgment A > e : 7 and add a second judgment, A ts e : o stating
that e has type schema o. The typing rule for let name now no longer employs
substitution, but refers to a schematic type for the definition. It must therefore be
possible to assign type schemas to variables which are instantiated when we need
an actual type for a variable.

Aer o A, x:o1>ex: T Alx)=o0 =T
tp_letn tp_var
Abletnamexr =e; iney : 1 Abx:T

5.7. EXERCISES 145

Type schemas can be derived for expressions by means of quantifying over free type

variables.
Ave:T Abe:o o
— tpsctp —tpsc_all

Ae:T Ame:Va.o

Here the premiss of the tpsc_all® rule must be parametric in «, that is, o must not
occur free in the context A.

In the proofs and implementations below you may restrict yourself to the frag-
ment of the language with functions and let name, since the changes are orthogonal
to the other constructs of the language.

1. Give an example which shows why the restriction on the tpsc_all rule is nec-
essary.

2. Prove type preservation for this formulation of Mini-ML. Carefully write
out and prove any substitution lemmas you might need, but you may take
weakening and exchange for granted.

3. State the theorem which asserts the equivalence of the new typing rules when
compared to the formulation in Section 2.5.

4. Prove the easy direction of the theorem in item 3. Can you conjecture the
critical lemma for the opposite direction?

5. Implement type schemas, schematic instantiation, and the new typing judg-
ments in Elf.

6. Unlike our first implementation, the new typing rules do not directly provide
an implementation of type inference for Mini-ML in Elf. Show the difficulty
by means of an example.

7. Implement the proof of type preservation from item 2 in EIf.

8. Implement one direction of the equivalence proof from item 3 in Elf.

Exercise 5.16 [about the Milner-Mycroft calculus with explicit types
for polymorphic let and recursion]

146 CHAPTER 5. PARAMETRIC AND HYPOTHETICAL JUDGMENTS

Bibliography

[AINPSS]

[ALI75]

[CDDK86]

[CF58]

[Chu32]
[Chu33]
[Chu40]
[Chu41]

[Coq91]

[Cur34]

Peter B. Andrews, Sunil Issar, Daniel Nesmith, and Frank Pfenning.
The TPS theorem proving system. In Ewing Lusk and Russ Overbeek,
editors, 9th International Conference on Automated Deduction, pages
760-761, Argonne, Illinois, May 1988. Springer-Verlag LNCS 310. Sys-
tem abstract.

William Allingham. In Fairy Land. Longmans, Green, and Co., London,
England, 1875.

Dominique Clément, Joélle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A simple applicative language: Mini-ML. In Proceedings of the
1986 Conference on LISP and Functional Programming, pages 13-27.
ACM Press, 1986.

H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amster-
dam, 1958.

A. Church. A set of postulates for the foundation of logic I. Annals of
Mathematics, 33:346-366, 1932.

A. Church. A set of postulates for the foundation of logic II. Annals of
Mathematics, 34:839-864, 1933.

Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56—68, 1940.

Alonzo Church. The Calculi of Lambda-Conversion. Princeton Univer-
sity Press, Princeton, New Jersey, 1941.

Thierry Coquand. An algorithm for testing conversion in type theory.
In Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
255-279. Cambridge University Press, 1991.

H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Sciences, U.S.A., 20:584-590, 1934.

147

148

[dB63]

[DFH*93]

[DMS2]

[Dow93]

[DP91]

[E1189]

[E1190]

[FP91]

[Gar92]

[Gen35]

BIBLIOGRAPHY

N.G. de Bruijn. The mathematical language AUTOMATH, its usage,
and some of its extensions. In M. Laudet, editor, Proceedings of the Sym-
posium on Automatic Demonstration, pages 29-61, Versailles, France,
December 1968. Springer-Verlag LNM 125.

Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy,
Catherine Parent, Christine Paulin-Mohring, and Benjamin Werner.
The Coq proof assistant user’s guide. Rapport Techniques 154, INRIA,
Rocquencourt, France, 1993. Version 5.8.

Luis Damas and Robin Milner. Principal type schemes for functional
programs. In Conference Record of the 9th ACM Symposium on Princi-
ples of Programming Languages (POPL’82), pages 207—212. ACM Press,
1982.

Gilles Dowek. The undecidability of typability in the lambda-pi-calculus.
In M. Bezem and J.F. Groote, editors, Proceedings of the International
Conference on Typed Lambda Calculi and Applications, pages 139-145,
Utrecht, The Netherlands, March 1993. Springer-Verlag LNCS 664.

Scott Dietzen and Frank Pfenning. A declarative alternative to assert in
logic programming. In Vijay Saraswat and Kazunori Ueda, editors, In-
ternational Logic Programming Symposium, pages 372—386. MIT Press,
October 1991.

Conal Elliott. Higher-order unification with dependent types. In N. Der-
showitz, editor, Rewriting Techniques and Applications, pages 121-136,
Chapel Hill, North Carolina, April 1989. Springer-Verlag LNCS 355.

Conal M. Elliott. Extensions and Applications of Higher-Order Unifi-
cation. PhD thesis, School of Computer Science, Carnegie Mellon Uni-
versity, May 1990. Available as Technical Report CMU-CS-90-134.

Tim Freeman and Frank Pfenning. Refinement types for ML. In Pro-
ceedings of the SIGPLAN ’91 Symposium on Language Design and Im-
plementation, pages 268-277, Toronto, Ontario, June 1991. ACM Press.

Philippa Gardner. Representing Logics in Type Theory. PhD thesis,
University of Edinburgh, July 1992. Available as Technical Report CST-
93-92.

Gerhard Gentzen. Untersuchungen iiber das logische Schlielen. Mathe-
matische Zeitschrift, 39:176-210, 405431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages
68-131, North-Holland, 1969.

BIBLIOGRAPHY 149

[Geu92]

[Gol81]

(GS84]

[Gun92]

[Han91]

[Han93|

[Har90]

[HB34]

[HHP93]

[HMB9)]

[How80]

[HP0O]

Herman Geuvers. The Church-Rosser property for Gn-reduction in typed
A-calculi. In A. Scedrov, editor, Seventh Annual IEEE Symposium on
Logic in Computer Science, pages 453—460, Santa Cruz, California, June
1992.

Warren D. Goldfarb. The undecidability of the second-order unification
problem. Theoretical Computer Science, 13:225-230, 1981.

Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiado,
Budapest, 1984.

Carl A. Gunter. Semantics of Programming Languages. MIT Press,
Cambridge, Massachusetts, 1992.

John J. Hannan. Investigating a Proof-Theoretic Meta-Language for
Functional Programs. PhD thesis, University of Pennsylvania, January
1991. Available as Technical Report MS-CIS-91-09.

John Hannan. Extended natural semantics. Journal of Functional Pro-
gramming, 3(2):123-152, April 1993.

Robert Harper. Systems of polymorphic type assignment in LF. Tech-
nical Report CMU-CS-90-144, Carnegie Mellon University, Pittsburgh,
Pennsylvania, June 1990.

David Hilbert and Paul Bernays. Grundlagen der Mathematik. Springer-
Verlag, Berlin, 1934.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143-184, January 1993.

John Hannan and Dale Miller. A meta-logic for functional programming,.
In H. Abramson and M. Rogers, editors, Meta-Programming in Logic
Programming, chapter 24, pages 453-476. MIT Press, 1989.

W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Fssays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479-490. Academic
Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected,
and annotated by Howard.

Robert Harper and Frank Pfenning. On equivalence and canonical forms
in the LF type theory. Technical Report CMU-CS-00-148, Department
of Computer Science, Carnegie Mellon University, July 2000.

150

[Hue73]

[Hue75]

[JL87]

[Kah87]

[Lia95]

[Mai92]

[Mil78]

[Mil91]

[ML85]

[MLY6]

[MNPS91]

[MTH90]

BIBLIOGRAPHY

Gérard Huet. The undecidability of unification in third order logic.
Information and Control, 22(3):257-267, 1973.

Gérard Huet. A unification algorithm for typed A-calculus. Theoretical
Computer Science, 1:27-57, 1975.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Programming Languages, pages 111-119, Munich, Germany, January
1987. ACM Press.

Gilles Kahn. Natural semantics. In Proceedings of the Symposium on
Theoretical Aspects of Computer Science, pages 22-39. Springer-Verlag
LNCS 247, 1987.

Chuck Liang. Object-Level Substitutions, Unification and Generalization
in Meta Logic. PhD thesis, University of Pennsylvania, December 1995.

H.G. Mairson. Quantifier elimination and parametric polymorphism in
programming languages. Journal of Functional Programming, 2(2):213—
226, April 1992.

Robin Milner. A theory of type polymorphism in programming. Journal
Of Computer And System Sciences, 17:348-375, August 1978.

Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and Com-
putation, 1(4):497-536, 1991.

Per Martin-Lof. On the meanings of the logical constants and the jus-
tifications of the logical laws. Technical Report 2, Scuola di Specializ-
zazione in Logica Matematica, Dipartimento di Matematica, Universita
di Siena, 1985.

Per Martin-Lof. On the meanings of the logical constants and the jus-
tifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11-60, 1996.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125-157, 1991.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, Massachusetts, 1990.

BIBLIOGRAPHY 151

[New65]

[NGAV94]

[NMO98]

[NMO99)]

[Paug6)

[Pau94]

[Pfe9lal

[Pfe91b]

[Pfe92]

[Pfe93)]

[Pfe94]

Allen Newell. Limitations of the current stock of ideas about problem
solving. In A. Kent and O. E. Taulbee, editors, Electronic Information
Handling, pages 195-208, Washington, D.C., 1965. Spartan Books.

R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Pa-
pers on Automath, volume 133 of Studies in Logic and the Foundations
of Mathematics. North-Holland, 1994.

Gopalan Nadathur and Dale Miller. Higher-order logic programming.
In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook
of Logic in Artificial Intelligence and Logic Programming, volume 5,
chapter 8. Oxford University Press, 1998.

Gopalan Nadathur and Dustin J. Mitchell. System description:
Teyjus—a compiler and abstract machine based implementation of
lambda Prolog. In H. Ganzinger, editor, Proceedings of the 16th Interna-
tional Conference on Automated Deduction (CADE-16), pages 287—291,
Trento, Italy, July 1999. Springer-Verlag LNCS.

Lawrence C. Paulson. Natural deduction as higher-order resolution.
Journal of Logic Programming, 3:237-258, 1986.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-
Verlag LNCS 828, 1994.

Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149-181. Cambridge University Press, 1991.

Frank Pfenning. Unification and anti-unification in the Calculus of Con-
structions. In Sizth Annual IEEE Symposium on Logic in Computer
Science, pages 74-85, Amsterdam, The Netherlands, July 1991.

Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cam-
bridge, Massachusetts, 1992.

Frank Pfenning. Refinement types for logical frameworks. In Herman
Geuvers, editor, Informal Proceedings of the Workshop on Types for
Proofs and Programs, pages 285-299, Nijmegen, The Netherlands, May
1993.

Frank Pfenning. EIf: A meta-language for deductive systems. In
A. Bundy, editor, Proceedings of the 12th International Conference
on Automated Deduction, pages 811-815, Nancy, France, June 1994.
Springer-Verlag LNAI 814. System abstract.

152

[Plo75]
[Plo77]

[Plo81]

[PM93]

[Pra65]
[PS99]

[PW91]

[RP96]

[Sal90]

[Sch00]

[SHS4]

[SS86]

BIBLIOGRAPHY

G. D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoret-
ical Computer Science, 1:125-159, 1975.

G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(3):223-255, 1977.

Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science Department,
Aarhus University, Aarhus, Denmark, September 1981.

Christine Paulin-Mohring. Inductive definitions in the system Coq:
Rules and properties. In M. Bezem and J.F. Groote, editors, Pro-
ceedings of the International Conference on Typed Lambda Calculi and
Applications, pages 328-345, Utrecht, The Netherlands, March 1993.
Springer-Verlag LNCS 664.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

Frank Pfenning and Carsten Schiirmann. System description: Twelf —
a meta-logical framework for deductive systems. In H. Ganzinger, edi-
tor, Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), pages 202-206, Trento, Italy, July 1999. Springer-
Verlag LNAT 1632.

David Pym and Lincoln A. Wallen. Proof search in the AlI-calculus. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
309-340. Cambridge University Press, 1991.

Ekkehard Rohwedder and Frank Pfenning. Mode and termination check-
ing for higher-order logic programs. In Hanne Riis Nielson, editor, Pro-

ceedings of the European Symposium on Programming, pages 296-310,
Link6ping, Sweden, April 1996. Springer-Verlag LNCS 1058.

Anne Salvesen. The Church-Rosser theorem for LF with Sn-reduction.
Unpublished notes to a talk given at the First Workshop on Logical
Frameworks in Antibes, France, May 1990.

Carsten Schiirmann. Automating the Meta Theory of Deductive Sys-
tems. PhD thesis, Department of Computer Science, Carnegie Mellon
University, August 2000. Available as Technical Report CMU-CS-00-
146.

Peter Schroeder-Heister. A natural extension of natural deduction. The
Journal of Symbolic Logic, 49(4):1284-1300, December 1984.

Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, Cam-
bridge, Massachusetts, 1986.

