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1 Introduction to This Course

Logic is the study of reasoning. Since most mathematicians believe they are
working on the discovery of objective and absolute truths, mathematical
logic has focused on how to justify judgments A is true and A is false, where
A denotes propositions about mathematical objects such as integers or real
numbers. Every proposition is objectively either true or false, and logical
connectives are functions on truth values.

Philosophical logic takes a broader view and investigates how to reason
about complex judgments such as A is possible, A is necessary, K knows A,
K believes A, K affirms A and even A is obligatory or A is permitted, where
K denotes agents or principals and A denotes propositions. Modal oper-
ators such as “K knows” can not be merely functions on truth values. For
example, whether K knows A does not depend solely on whether A is true
or false. Judgments have a subjective quality which is generally denied in
mathematical logic.

In computer science, both objective and subjective views on logic have
numerous applications. The objective or classical approach, most influ-
enced by mathematics, is exemplified by Hoare logic to reason about im-
perative programs. Classical program logic defines programs as a new kind
of mathematical object, their meaning being given explicitly as functions
from states to states. The classical approach then develops inference rules
for reasoning about properties of programs. The subjective or intuitionistic
approach is exemplified by constructive type theory where the very defini-
tion of the logical connectives is tied to their computational interpretation.
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L1.2 Judgments and Propositions

For example, the meaning of the implication A⊃B might be given as a
(computable) function that maps proofs of A to proofs of B.

In my opinion it is extremely unfortunate that, historically, the study
of modal operators has been carried out almost exclusively with classical
means. Rather than embracing a subjective, intuitionistic point of view
which is in harmony with the meaning of the modal operators (which are
not truth-functional in nature, after all), researchers have attempted to re-
duce meaning to truth values anyway, taking an underlying classical logic
as axiomatic. This enterprise has been only partially successful, and many
problems remain in particular in first-order and higher-order modal logic.

In this course we will pursue both: We will study classical modal logic
with classical means, and intuitionistic modal logic with intuitionistic means.1

But we hope to deliver more than two separate interleaved courses by elu-
cidating the many deep connections between these schools of thought. For
example, Gödel’s interpretation of intuitionistic logic in classical modal
logic, and Kolmogorov’s interpretation of classical logic in intuitionistic
logic provide means for a classical mathematician to understand intuition-
istic logic and vice versa. To make this course feasible we focus on systems
that are particularly relevant to computer science.

We hope that students will come away from this course with a working
knowledge of modal logic and its applications in computer science. They
should be able to confidently apply techniques from modal logic to prob-
lems in their area of research, be it in the use of classical modal logic for ver-
ification, or intuitionistic modal logic to capture interesting computational
phenomena. They should be able to apply existing modal logics where ap-
propriate and design new logical systems when necessary and rigorously
analyze their properties.

2 Introduction to This Lecture

The goal of this first lecture is to develop the two principal notions of logic,
namely propositions and proofs. There is no universal agreement about the
proper foundations for these notions. One approach, which has been par-
ticularly successful for applications in computer science, is to understand
the meaning of a proposition by understanding its proofs. In the words of
Martin-Löf [ML96, Page 27]:

1Not coincidentally, this course is co-taught by practitioners steeped in these distinct
traditions.
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The meaning of a proposition is determined by [. . . ] what counts as a
verification of it.

A verification may be understood as a certain kind of proof that only ex-
amines the constituents of a proposition. This is analyzed in greater detail
by Dummett [Dum91] although with less direct connection to computer
science. The system of inference rules that arises from this point of view is
natural deduction, first proposed by Gentzen [Gen35] and studied in depth
by Prawitz [Pra65].

In this lecture we apply Martin-Löf’s approach to explain the basic propo-
sitional connectives. We will see later that universal and existential quanti-
fiers and, in particular, modal operators naturally fit into the same frame-
work.

3 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of
the notions of judgment and proposition. A judgment is something we may
know, that is, an object of knowledge. A judgment is evident if we in fact
know it.

We make a judgment such as “it is raining”, because we have evidence
for it. In everyday life, such evidence is often immediate: we may look out
the window and see that it is raining. In logic, we are concerned with sit-
uation where the evidence is indirect: we deduce the judgment by making
correct inferences from other evident judgments. In other words: a judg-
ment is evident if we have a proof for it.

The most important judgment form in logic is “A is true”, where A is a
proposition. There are many others that have been studied extensively. For
example, “A is false”, “A is true at time t” (from temporal logic), “A is neces-
sarily true” (from modal logic), “program M has type τ” (from programming
languages), etc.

Returning to the first judgment, let us try to explain the meaning of
conjunction. We write A true for the judgment “A is true” (presupposing
that A is a proposition). Given propositions A and B, we can form the
compound proposition “A and B”, written more formally as A ∧ B. But
we have not yet specified what conjunction means, that is, what counts as a
verification of A ∧B. This is accomplished by the following inference rule:

A true B true
A ∧B true

∧I
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Here the name ∧I stands for “conjunction introduction”, since the conjunc-
tion is introduced in the conclusion.

This rule allows us to conclude that A ∧B true if we already know that
A true and B true. In this inference rule, A and B are schematic variables,
and ∧I is the name of the rule. The general form of an inference rule is

J1 . . . Jn

J
name

where the judgments J1, . . . , Jn are called the premises, the judgment J is
called the conclusion. In general, we will use letters J to stand for judg-
ments, while A, B, and C are reserved for propositions.

We take conjunction introduction as specifying the meaning of A ∧ B
completely. So what can be deduced if we know that A ∧B is true? By the
above rule, to have a verification for A ∧ B means to have verifications for
A and B. Hence the following two rules are justified:

A ∧B true
A true

∧EL
A ∧B true

B true
∧ER

The name ∧EL stands for “left conjunction elimination”, since the conjunc-
tion in the premise has been eliminated in the conclusion. Similarly ∧ER

stands for “right conjunction elimination”.
We will see in Section 8 what precisely is required in order to guarantee

that the formation, introduction, and elimination rules for a connective fit
together correctly. For now, we will informally argue the correctness of the
elimination rules, as we did for the conjunction elimination rules.

As a second example we consider the proposition “truth” written as
>. Truth should always be true, which means its introduction rule has no
premises.

> true
>I

Consequently, we have no information if we know > true, so there is no
elimination rule.

A conjunction of two propositions is characterized by one introduction
rule with two premises, and two corresponding elimination rules. We may
think of truth as a conjunction of zero propositions. By analogy it should
then have one introduction rule with zero premises, and zero correspond-
ing elimination rules. This is precisely what we wrote out above.
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4 Hypothetical Judgments

Consider the following derivation, for some arbitrary propositions A, B,
and C:

A ∧ (B ∧ C) true

B ∧ C true
∧ER

B true
∧EL

Have we actually proved anything here? At first glance it seems that cannot
be the case: B is an arbitrary proposition; clearly we should not be able to
prove that it is true. Upon closer inspection we see that all inferences are
correct, but the first judgment A ∧ (B ∧ C) true has not been justified. We
can extract the following knowledge:

From the assumption that A∧(B∧C) is true, we deduce that B must
be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical deduction. In general, we may have more than one assumption,
so a hypothetical deduction has the form

J1 · · · Jn...
J

where the judgments J1, . . . , Jn are unproven assumptions, and the judg-
ment J is the conclusion. Note that we can always substitute a proof for
any hypothesis Ji to eliminate the assumption. We call this the substitution
principle for hypotheses.

Many mistakes in reasoning arise because dependencies on some hid-
den assumptions are ignored. When we need to be explicit, we will write
J1, . . . , Jn ` J for the hypothetical judgment which is established by the hy-
pothetical deduction above. We may refer to J1, . . . , Jn as the antecedents
and J as the succedent of the hypothetical judgment.

One has to keep in mind that hypotheses may be used more than once,
or not at all. For example, for arbitrary propositions A and B,

A ∧B true
B true

∧ER
A ∧B true

A true
∧EL

B ∧A true
∧I

can be seen a hypothetical derivation of A ∧B true ` B ∧A true.
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With hypothetical judgments, we can now explain the meaning of im-
plication “A implies B” or “if A then B” (more formally: A⊃B). The intro-
duction rule reads: A⊃B is true, if B is true under the assumption that A
is true.

A true
u

...
B true

A⊃B true
⊃Iu

The tricky part of this rule is the label u. If we omit this annotation, the rule
would read

A true...
B true

A⊃B true
⊃I

which would be incorrect: it looks like a derivation of A⊃B true from the
hypothesis A true. But the assumption A true is introduced in the process
of proving A⊃B true; the conclusion should not depend on it! Therefore
we label uses of the assumption with a new name u, and the corresponding
inference which introduced this assumption into the derivation with the
same label u.

As a concrete example, consider the following proof of A⊃(B⊃(A∧B)).

A true
u

B true
w

A ∧B true
∧I

B⊃(A ∧B) true
⊃Iw

A⊃(B⊃(A ∧B)) true
⊃Iu

Note that this derivation is not hypothetical (it does not depend on any
assumptions). The assumption A true labeled u is discharged in the last in-
ference, and the assumption B true labeled w is discharged in the second-
to-last inference. It is critical that a discharged hypothesis is no longer
available for reasoning, and that all labels introduced in a derivation are
distinct.

Finally, we consider what the elimination rule for implication should
say. By the only introduction rule, having a proof of A⊃B true means that
we have a hypothetical proof of B true from A true. By the substitution
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principle, if we also have a proof of A true then we get a proof of B true.

A⊃B true A true
B true

⊃E

This completes the rules concerning implication.
With the rules so far, we can write out proofs of simple properties con-

cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.

A ∧B true
u

B true
∧ER

A ∧B true
u

A true
∧EL

B ∧A true
∧I

(A ∧B)⊃(B ∧A) true
⊃Iu

When we construct such a derivation, we generally proceed by a com-
bination of bottom-up and top-down reasoning. The next example is a dis-
tributivity law, allowing us to move implications over conjunctions. This
time, we show the partial proofs in each step. Of course, other sequences
of steps in proof constructions are also possible.

...
(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true

First, we use the implication introduction rule bottom-up.

A⊃(B ∧ C) true
u

...
(A⊃B) ∧ (A⊃C) true

(A⊃(B ∧ C)⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

Next, we use the conjunction introduction rule bottom-up.

A⊃(B ∧ C) true
u

...
A⊃B true

A⊃(B ∧ C) true
u

...
A⊃C true

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu
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We now pursue the left branch, again using implication introduction
bottom-up.

A⊃(B ∧ C) true
u

A true
w

...
B true

A⊃B true
⊃Iw

A⊃(B ∧ C) true
u

...
A⊃C true

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

Note that the hypothesis A true is available only in the left branch and
not in the right one: it is discharged at the inference ⊃Iw. We now switch
to top-down reasoning, taking advantage of implication elimination.

A⊃(B ∧ C) true
u

A true
w

B ∧ C true
⊃E

...
B true

A⊃B true
⊃Iw

A⊃(B ∧ C) true
u

...
A⊃C true

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

Now we can close the gap in the left-hand side by conjunction elimina-
tion.

A⊃(B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧EL

A⊃B true
⊃Iw

A⊃(B ∧ C) true
u

...
A⊃C true

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.
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A⊃(B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧EL

A⊃B true
⊃Iw

A⊃(B ∧ C) true
u

A true
v

B ∧ C true
⊃E

C true
∧ER

A⊃C true
⊃Iv

(A⊃B) ∧ (A⊃C) true
∧I

(A⊃(B ∧ C))⊃((A⊃B) ∧ (A⊃C)) true
⊃Iu

5 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implica-
tion. The disjunction “A or B” (written as A∨B) is more difficult, but does
not require any new judgment forms. Disjunction is characterized by two
introduction rules: A ∨B is true, if either A or B is true.

A true
A ∨B true

∨IL
B true

A ∨B true
∨IR

Now it would be incorrect to have an elimination rule such as

A ∨B true
A true

∨EL?

because even if we know that A ∨ B is true, we do not know whether the
disjunct A or the disjunct B is true. Concretely, with such a rule we could
derive the truth of every proposition A as follows:

> true
>I

A ∨ > true
∨IR

A true
∨EL?

Thus we take a different approach. If we know that A ∨ B is true, we
must consider two cases: A true and B true. If we can prove a conclusion
C true in both cases, then C must be true! Written as an inference rule:

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

LECTURE NOTES JANUARY 12, 2010
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Note that we use once again the mechanism of hypothetical judgments. In
the proof of the second premise we may use the assumption A true labeled
u, in the proof of the third premise we may use the assumption B true
labeled w. Both are discharged at the disjunction elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first
premise we know A ∨ B true. The premises of the two possible introduc-
tion rules are A true and B true. In case A true we conclude C true by the
substitution principle and the second premise: we substitute the proof of
A true for any use of the assumption labeled u in the hypothetical deriva-
tion. The case for B true is symmetric, using the hypothetical derivation in
the third premise.

Because of the complex nature of the elimination rule, reasoning with
disjunction is more difficult than with implication and conjunction. As a
simple example, we prove the commutativity of disjunction.

...
(A ∨B)⊃(B ∨A) true

We begin with an implication introduction.

A ∨B true
u

...
B ∨A true

(A ∨B)⊃(B ∨A) true
⊃Iu

At this point we cannot use either of the two disjunction introduction
rules. The problem is that neither B nor A follow from our assumption A∨
B! So first we need to distinguish the two cases via the rule of disjunction
elimination.

A ∨B true
u

A true
v

...
B ∨A true

B true
w

...
B ∨A true

B ∨A true
∨Ev,w

(A ∨B)⊃(B ∨A) true
⊃Iu

The assumption labeled u is still available for each of the two proof obliga-
tions, but we have omitted it, since it is no longer needed.
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Now each gap can be filled in directly by the two disjunction introduc-
tion rules.

A ∨B true
u

A true
v

B ∨A true
∨IR

B true
w

B ∨A true
∨IL

B ∨A true
∨Ev,w

(A ∨B)⊃(B ∨A) true
⊃Iu

This concludes the discussion of disjunction. Falsehood (written as ⊥,
sometimes called absurdity) is a proposition that should have no proof!
Therefore there are no introduction rules.

Since there cannot be a proof of ⊥ true, it is sound to conclude the truth
of any arbitrary proposition if we know ⊥ true. This justifies the elimina-
tion rule

⊥ true
C true

⊥E

We can also think of falsehood as a disjunction between zero alternatives.
By analogy with the binary disjunction, we therefore have zero introduc-
tion rules, and an elimination rule in which we have to consider zero cases.
This is precisely the ⊥E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think
of the proposition “not A” (written ¬A) as A⊃⊥. In other words, ¬A is true
precisely if the assumption A true is contradictory because we could derive
⊥ true.

6 Natural Deduction

The judgments, propositions, and inference rules we have defined so far
collectively form a system of natural deduction. It is a minor variant of a sys-
tem introduced by Gentzen [Gen35] and studied in depth by Prawitz [Pra65].
One of Gentzen’s main motivations was to devise rules that model math-
ematical reasoning as directly as possible, although clearly in much more
detail than in a typical mathematical argument.

The specific interpretation of the truth judgment underlying these rules
is intuitionistic or constructive. This differs from the classical or Boolean in-
terpretation of truth. For example, classical logic accepts the proposition
A ∨ (A⊃B) as true for arbitrary A and B, although in the system we have
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Introduction Rules Elimination Rules

A true B true
A ∧B true

∧I
A ∧B true

A true
∧EL

A ∧B true
B true

∧ER

> true
>I

no >E rule

A true
u

...
B true

A⊃B true
⊃Iu

A⊃B true A true
B true

⊃E

A true
A ∨B true

∨IL
B true

A ∨B true
∨IR

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

no ⊥I rule
⊥ true
C true

⊥E

Figure 1: Rules for intuitionistic natural deduction

presented so far this would have no proof. Classical logic is based on the
principle that every proposition must be true or false. If we distinguish
these cases we see that A ∨ (A⊃B) should be accepted, because in case
that A is true, the left disjunct holds; in case A is false, the right disjunct
holds. In contrast, intuitionistic logic is based on explicit evidence, and ev-
idence for a disjunction requires evidence for one of the disjuncts. We will
return to classical logic and its relationship to intuitionistic logic later; for
now our reasoning remains intuitionistic since, as we will see in Lecture 2,
it has a direct connection to functional computation, which classical logic
lacks.

We summarize the rules of inference for the truth judgment introduced
so far in Figure 1.
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7 Notational Definition

So far, we have defined the meaning of the logical connectives by their in-
troduction rules, which is the so-called verificationist approach. Another
common way to define a logical connective is by a notational definition. A
notational definition gives the meaning of the general form of a proposi-
tion in terms of another proposition whose meaning has already been de-
fined. For example, we can define logical equivalence, written A ≡ B as
(A⊃B) ∧ (B⊃A). This definition is justified, because we already under-
stand implication and conjunction.

As mentioned above, another common notational definition in intu-
itionistic logic is ¬A = (A⊃⊥). Several other, more direct definitions of
intuitionistic negation also exist, and we will see some of them later in the
course. Perhaps the most intuitive one is to say that ¬A true if A false, but
this requires the new judgment of falsehood.

Notational definitions can be convenient, but they can be a bit cumber-
some at times. We sometimes give a notational definition and then derive
introduction and elimination rules for the connective. It should be under-
stood that these rules, even if they may be called introduction or elimina-
tion rules, have a different status from those that define a connective.

8 Harmony

In the verificationist definition of the logical connectives via their introduc-
tion rules we have briefly justified the elimination rules. In this section we
study the balance between introduction and elimination rules more closely.
In order to show that the two are in harmony we establish two properties:
local soundness and local completeness.
Local soundness shows that the elimination rules are not too strong: no
matter how we apply elimination rules to the result of an introduction we
cannot gain any new information. We demonstrate this by showing that we
can find a more direct proof of the conclusion of an elimination than one
that first introduces and then eliminates the connective in question. This is
witnessed by a local reduction of the given introduction and the subsequent
elimination.
Local completeness shows that the elimination rules are not too weak:
there is always a way to apply elimination rules so that we can reconsti-
tute a proof of the original proposition from the results by applying intro-
duction rules. This is witnessed by a local expansion of an arbitrary given
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derivation into one that introduces the primary connective.
Connectives whose introduction and elimination rules are in harmony

in the sense that they are locally sound and complete are properly defined
from the verificationist perspective. If not, the proposed connective should
be viewed with suspicion. Another criterion we would like to apply uni-
formly is that both introduction and elimination rules do not refer to other
propositional constants or connectives (besides the one we are trying to de-
fine), which could create a dangerous dependency of the various connec-
tives on each other. As we present correct definitions we will occasionally
also give some counterexamples to illustrate the consequences of violating
the principles behind the patterns of valid inference.

In the discussion of each individual connective below we use the nota-
tion

D
A true =⇒R

D′

A true

for the local reduction of a deductionD to another deductionD′ of the same
judgment A true. In fact, =⇒R can itself be considered a higher level judg-
ment relating two proofs, D and D′, although we will not directly exploit
this point of view. Similarly,

D
A true =⇒E

D′

A true

is the notation of the local expansion of D to D′.

Conjunction. We start with local soundness. Since there are two elimina-
tion rules and one introduction, it turns out we have two cases to consider.
In either case, we can easily reduce.

D
A true

E
B true

A ∧B true
∧I

A true
∧EL =⇒R

D
A true

D
A true

E
B true

A ∧B true
∧I

B true
∧ER =⇒R

E
B true

Local completeness requires us to apply eliminations to an arbitrary
proof of A ∧B true in such a way that we can reconstitute a proof of A ∧B
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from the results.

D
A ∧B true =⇒E

D
A ∧B true

A true
∧EL

D
A ∧B true

B true
∧ER

A ∧B true
∧I

As an example where local completeness might fail, consider the case
where we “forget” the right elimination rule for conjunction. The remain-
ing rule is still locally sound, but not locally complete because we cannot
extract a proof of B from the assumption A ∧ B. Now, for example, we
cannot prove (A ∧B)⊃(B ∧A) even though this should clearly be true.

Substitution Principle. We need the defining property for hypothetical
judgments before we can discuss implication. Intuitively, we can always
substitute a deduction of A true for any use of a hypothesis A true. In
order to avoid ambiguity, we make sure assumptions are labelled and we
substitute for all uses of an assumption with a given label. Note that we
can only substitute for assumptions that are not discharged in the subproof
we are considering. The substitution principle then reads as follows:

If

A true
u

E
C true

is a hypothetical proof of C true under the undischarged hy-
pothesis A true labelled u, and

D
A true

is a proof of A true then

D
A true

u

E
C true

is our notation for substituting D for all uses of the hypothesis
labelled u in E . This deduction, also sometime written as [D/u]E
no longer depends on u.
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Implication. To witness local soundness, we reduce an implication intro-
duction followed by an elimination using the substitution operation.

A true
u

E
B true

A⊃B true
⊃Iu D

A true
B true

⊃E =⇒R

D
A true

u

E
B true

The conditions on the substitution operation is satisfied, because u is intro-
duced at the ⊃Iu inference and therefore not discharged in E .

Local completeness is witnessed by the following expansion.

D
A⊃B true =⇒E

D
A⊃B true A true

u

B true
⊃E

A⊃B true
⊃Iu

Here u must be chosen fresh: it only labels the new hypothesis A true which
is used only once.

Disjunction. For disjunction we also employ the substitution principle
because the two cases we consider in the elimination rule introduce hy-
potheses. Also, in order to show local soundness we have two possibilities
for the introduction rule, in both situations followed by the only elimina-
tion rule.

D
A true

A ∨B true
∨IL

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w =⇒R

D
A true

u

E
C true

D
B true

A ∨B true
∨IR

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w =⇒R

D
B true

w

F
C true

An example of a rule that would not be locally sound is

A ∨B true
A true

∨EL?
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and, indeed, we would not be able to reduce

B true
A ∨B true

∨IR

A true
∨EL?

In fact, as noted before, we can now derive a contradiction from no assump-
tion, which means the whole system is incorrect.

> true
>I

⊥ ∨> true
∨IR

⊥ true
∨EL?

Local completeness of disjunction distinguishes cases on the known A∨
B true, using A ∨B true as the conclusion.

D
A ∨B true =⇒E

D
A ∨B true

A true
u

A ∨B true
∨IL

B true
w

A ∨B true
∨IR

A ∨B true
∨Eu,w

Visually, this looks somewhat different from the local expansions for con-
junction or implication. It looks like the elimination rule is applied last,
rather than first. Mostly, this is due to the notation of natural deduction:
the above represents the step from using the knowledge of A ∨ B true and
eliminating it to obtain the hypotheses A true and B true in the two cases.

Truth. The local constant > has only an introduction rule, but no elimi-
nation rule. Consequently, there are no cases to check for local soundness:
any introduction followed by any elimination can be reduced.

However, local completeness still yields a local expansion: Any proof
of > true can be trivially converted to one by >I .

D
> true =⇒E > true

>I

Falsehood. As for truth, there is no local reduction because local sound-
ness is trivially satisfied since we have no introduction rule.

Local completeness is slightly tricky. Literally, we have to show that
there is a way to apply an elimination rule to any proof of ⊥ true so that
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we can reintroduce a proof of ⊥ true from the result. However, there will
be zero cases to consider, so we apply no introductions. Nevertheless, the
following is the right local expansion.

D
⊥ true =⇒E

D
⊥ true
⊥ true

⊥E

Reasoning about situation when falsehood is true may seem vacuous, but
is common in practice because it corresponds to reaching a contradiction.
In intuitionistic reasoning, this occurs when we prove A⊃⊥ which is often
abbreviated as ¬A. In classical reasoning it is even more frequent, due to
the rule of proof by contradiction.

9 Verifications and Uses

The verificationist point of view on the meaning of a proposition is that
it is determined by its verifications. Intuitively, a verification should be a
proof that only analyzes the constituents of a proposition. This restriction
of the space of all possible proofs is necessary so that the definition is well-
founded. For example, if in order to understand the meaning of A, we
would have to understand the meaning of B⊃A and B, the whole pro-
gram of understanding the meaning of the connectives by their proofs is
in jeopardy because B could be a proposition containing, say, A. But the
meaning of A would then in turn depend on the meaning of A, creating a
vicious cycle.

In this section we will make the structure of verifications more explicit.
We write A↑ for the judgment “A has a verification”. Naturally, this should
mean that A is true, and that the evidence for that has a special form. Even-
tually we will also establish the converse: if A is true than A has a verifica-
tion.

Conjunction is easy to understand. A verification of A ∧B should con-
sist of a verification of A and a verification of B.

A↑ B↑
A ∧B↑

∧I

We reuse here the names of the introduction rule, because this rule is strictly
analogous to the introduction rule for the truth of a conjunction.
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Implication, however, introduces a new hypothesis which is not explic-
itly justified by an introduction rule but just a new label. For example, in
the proof

A ∧B true
u

A true
∧EL

(A ∧B)⊃A true
⊃Iu

the conjunction A ∧B is not justified by an introduction.
The informal discussion of proof search strategies earlier, namely to use

introduction rules from the bottom up and elimination rules from the top
down contains the answer. We introduce a second judgment, A↓ which
means “A may be used”. A↓ should be the case when either A true is a
hypothesis, or A is deduced from a hypothesis via elimination rules. Our
local soundness arguments provide some evidence that we cannot deduce
anything incorrect in this manner.

We now go through the connectives in turn, defining verifications and
uses.

Conjunction. In summary of the discussion above, we obtain:

A↑ B↑
A ∧B↑

∧I
A ∧B↓

A↓
∧EL

A ∧B↓
B↓

∧ER

The left elimination rule can be read as: “If we can use A ∧ B we can use A”,
and similarly for the right elimination rule.

Implication. The introduction rule creates a new hypothesis, which we
may use in a proof. The assumption is therefore of the judgment A↓

A↓
u

...
B↑

A⊃B↑
⊃u

In order to use an implication A⊃B we require a verification of A. Just
requiring that A may be used would be too weak, as can be seen when
trying to prove ((A⊃A)⊃B)⊃B↑. It should also be clear from the fact
that we are not eliminating a connective from A.

A⊃B↓ A↑
B↓

⊃E
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Disjunction. The verifications of a disjunction immediately follow from
their introduction rules.

A↑
A ∨B↑

∨IL

B↑
A ∨B↑

∨IR

A disjunction is used in a proof by cases, called here ∨E. This intro-
duces two new hypotheses, and each of them may be used in the corre-
sponding subproof. Whenever we set up a hypothetical judgment we are
trying to find a verification of the conclusion, possibly with uses of hy-
potheses. So the conclusion of ∨E should be a verification.

A ∨B↓

A↓
u

...
C↑

B↓
w

...
C↑

C↑
∨Eu,w

Truth. The only verification of truth is the trival one.

>↑
>I

A hypothesis >↓ cannot be used because there is no elimination rule for >.

Falsehood. There is no verification of falsehood because we have no in-
troduction rule.

We can use falsehood, signifying a contradiction from our current hy-
potheses, to verify any conclusion. This is the zero-ary case of a disjunction.

⊥↓
C↑

⊥E

Atomic propositions. How do we construct a verification of an atomic
proposition P ? We cannot break down the structure of P because there is
none, so we can only proceed if we already know P is true. This can only
come from a hypothesis, so we have a rule that lets us use the knowledge
of an atomic proposition to construct a verification.

P↓
P↑

↓↑
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This rule has a special status in that it represents a change in judgments
but is not tied to a particular local connective. We call this a judgmental rule
in order to distinguish it from the usual introduction and elimination rules
that characterize the connectives.

Global soundness. Local soundness is an intrinsic property of each con-
nective, asserting that the elimination rules for it are not too strong given
the introduction rules. Global soundness is its counterpart for the whole
system of inference rules. It says that if an arbitrary proposition A has a
verification then we may use A without gaining any information. That is,
for arbitrary propositions A and C:

If A↑ and

A↓
...

C↑ then C↑.

We would want to prove this using a substitution principle, except that the
judgment A↑ and A↓ do not match.

Global completeness. Local completeness is also an intrinsic property of
each connective. It asserts that the elimination rules are not too weak, given
the introduction rule. Global completeness is its counterpart for the whole
system of inference rules. It says that if we may use A then we can construct
from this a verification of A. That is, for arbitrary propositions A:

A↓
...

A↑.

Global completeness follows from local completeness rather directly by in-
duction on the structure of A.

Global soundness and completeness are properties of whole deductive
systems. Their proof must be carried out in a mathematical metalanguage
which makes them a bit different than the formal proofs that we have done
so far within natural deduction. Of course, we would like them to be cor-
rect as well, which means they should follow the same principles of valid
inference that we have laid out so far.

There are two further properties we would like, relating truth, verifica-
tions, and uses. The first is that if A has a verification or A may be used,
then A is true. This is rather evident since we have just specialized the in-
troduction and elimination rules, except for the judgmental rule ↓↑. But
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under the interpretation of verification and use as truth, this inference be-
comes redundant.

Significantly more difficult is the property that if A is true then A has
a verification. Since we justified the meaning of the connectives from their
verifications, a failure of this property would be devastating to the verifi-
cationist program. Fortunately it holds and can be proved by exhibiting
a process of proof normalization that takes an arbitrary proof of A true and
constructs a verification of A.

All these properties in concert show that our rules are well constructed,
locally as well as globally. Experience with many other logical systems in-
dicates that this is not an isolated phenomenon: we can employ the verifi-
cationist point of view to give coherent sets of rules not just for constructive
logic, but for classical logic, temporal logic, spatial logic, modal logic, and
many other logics that are of interest in computer science. Taken together,
these constitute strong evidence that separating judgments from proposi-
tions and taking a verificationist point of view in the definition of the logical
connectives is indeed a proper and useful foundation for logic.

10 Derived Rules of Inference

One popular device for shortening derivations is to introduce derived rules
of inference. For example,

A⊃B true B⊃C true
A⊃C true

is a derived rule of inference. Its derivation is the following:

B⊃C true
A⊃B true A true

u

B true
⊃E

C true
⊃E

A⊃C true
⊃Iu

Note that this is simply a hypothetical deduction, using the premises of
the derived rule as assumptions. In other words, a derived rule of infer-
ence is nothing but an evident hypothetical judgment; its justification is a
hypothetical deduction.

We can freely use derived rules in proofs, since any occurrence of such
a rule can be expanded by replacing it with its justification.
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11 Logical Equivalences

We now consider several classes of logical equivalences in order to develop
some intuitions regarding the truth of propositions. Each equivalence has
the form A≡B, but we consider only the basic connectives and constants
(∧, ⊃, ∨, >, ⊥) in A and B. Later on we consider negation as a special case.
We use some standard conventions that allow us to omit some parentheses
while writing propositions. We use the following operator precedences

¬ > ∧ > ∨ > ⊃ > ≡

where ∧, ∨, and ⊃ are right associative. For example

¬A⊃A ∨ ¬¬A⊃⊥

stands for
(¬A)⊃((A ∨ (¬(¬A)))⊃⊥)

In ordinary mathematical usage, A≡B≡C stands for (A≡B)∧(B≡C); in
the formal language we do not allow iterated equivalences without explicit
parentheses in order to avoid confusion with propositions such as (A ≡
A) ≡ >.

Commutativity. Conjunction and disjunction are clearly commutative, while
implication is not.

(C1) A ∧B ≡ B ∧A true

(C2) A ∨B ≡ B ∨A true

(C3) A⊃B is not commutative

Idempotence. Conjunction and disjunction are idempotent, while self-
implication reduces to truth.

(I1) A ∧A ≡ A true

(I2) A ∨A ≡ A true

(I3) A⊃A ≡ > true
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Interaction Laws. These involve two interacting connectives. In princi-
ple, there are left and right interaction laws, but because conjunction and
disjunction are commutative, some coincide and are not repeated here.

(L1) A ∧ (B ∧ C) ≡ (A ∧B) ∧ C true

(L2) A ∧ > ≡ A true

(L3) A ∧ (B⊃C) do not interact

(L4) A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C) true

(L5) A ∧ ⊥ ≡ ⊥ true

(L6) A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) true

(L7) A ∨ > ≡ > true

(L8) A ∨ (B⊃C) do not interact

(L9) A ∨ (B ∨ C) ≡ (A ∨B) ∨ C true

(L10) A ∨ ⊥ ≡ A true

(L11) A⊃(B ∧ C) ≡ (A⊃B) ∧ (A⊃C) true

(L12) A⊃> ≡ > true

(L13) A⊃(B⊃C) ≡ (A ∧B)⊃C true

(L14) A⊃(B ∨ C) do not interact

(L15) A⊃⊥ do not interact

(L16) (A ∧B)⊃C ≡ A⊃(B⊃C) true

(L17) >⊃C ≡ C true

(L18) (A⊃B)⊃C do not interact

(L19) (A ∨B)⊃C ≡ (A⊃C) ∧ (B⊃C) true

(L20) ⊥⊃C ≡ > true
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Exercises

Exercise 1 Prove interaction laws (L4) and (L6) using natural deduction.

Exercise 2 Prove interaction laws (L13), (L19), and (L20) using natural deduc-
tion.

Exercise 3 Using the definition of ¬A as A⊃⊥, derive interaction laws of nega-
tion with conjunction, implication, disjunction, truth, falsehood, and negation. If
no interaction law exists, indicate which direction of a potential equivalence holds
and which does not.

Exercise 4 Prove global completeness of the elimination rules with respect to the
introduction rules, that is, A↓ ` A↑ for any proposition A using atomic proposi-
tions, conjunction, implication, disjunction, truth, and falsehood.

Exercise 5 Proofs of judgments A true are parametric in their schematic propo-
sitional variables, denoted in this exercise by P,Q,R. For example, if we have a
proof

D
P ∧ (P ⊃Q)⊃Q true

then we can substitute other propositions for P and Q in D and obtain other valid
proofs. For example:

[>/P ][(R ∨ S)/Q]D
> ∧ (>⊃(R ∨ S))⊃(R ∨ S) true

In general, the substitution [B/P ]D proceeds by replacing every occurrence
of the propositional variable P in any judgment in D by the proposition B. If D
proves A true, then [B/P ]D proves [B/P ]A true.

Now consider verifications A↑ and uses A↓.

(i) Show by counterexample that we cannot simply replace a propositional vari-
able P by an arbitrary proposition B in a verification of A↑ and obtain a
verification of [B/P ]A↑.

(ii) Correct this deficiency by defining a new substitution operation [[B/P ]]D
which works correctly on proofs D of A↑ and A↓.

(iii) Prove that your new substitution operation is correct.
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Exercise 6 Logical equivalence, A ≡ B, can also be defined as a primitive rather
than as a notational definition.

• Give introduction and elimination rules for A ≡ B. Make sure they are
pure, that is, they do not use any other logical connectives.

• Show that your rules are locally sound and complete by exhibiting local re-
ductions and expansions.

• Define verifications and uses.

• Carefully state in which way the two definitions of logical equivalence are
equivalent and prove it.

Exercise 7 An alternative way to define negation as a primitive connective is to
use a judgment that is not only hypothetical in a new assumption A true but also
parametric in a new propositional variable p.

A true
u

...
p true

¬A true
¬Ip,u

¬A true A true
C true

¬E

(i) Show that the elimination rule is locally sound and complete with respect to
the introduction rule, exhibiting local reductions and expansions.

(ii) Define verifications and uses for ¬A.

(iii) Prove that the two definitions of negation, notationally and via the introduc-
tion rule above, agree. State carefully in which sense they are equivalent.

Exercise 8 Explore a possible definition of exclusive or, A ⊕ B = (A ∧ ¬B) ∨
(¬A ∧ B), by introduction and elimination rules that are locally sound and com-
plete. Make sure your rules are pure, that is, do not mention other constant or
connectives. If successful, show local soundness and completeness as well as veri-
fications and uses. If not, discuss the reason for the failure.

Exercise 9 The rule governing uses of A∨B requires the conclusion to be a veri-
fication C↑. Explore an additional potential rule where the conclusion is permitted
to be C↓.

A ∨B↓

A↓
u

...
C↓

B↓
w

...
C↓

C↓
∨Eu,w
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Give arguments for and against such a rule, using examples and counterexamples
as appropriate. Which properties of verifications may be jeopardized with this rule,
if any? Are their new judgments we can now establish that we could not without
this rule, or does it only affect the structure of the verifications themselves? Would
a pragmatics feel differently about this rule than a verificationist?

Exercise 10 The connectives were defined from the verificationist perspective. Take
the pragmatist perspective, interpreting the elimination rules as the definition of
the connective and justify the introduction rules from them. Explain the rule of
local reduction and expansion (or whatever analogue you devise).

Exercise 11 Natural deduction elegantly expresses intuitionistic logic, but does
not work as well for classical logic. There are three commonly used additional rules
to obtain classical reasoning: the law of exluded middle (xm), indirect proof
(ip), and double negation elimination (¬¬e).

A ∨ ¬A true
xm

A true
u

...
⊥ true
A true

ipu ¬¬A true
A true

¬¬e

Carefully state in which way they are equivalent and then prove it.

Exercise 12 Reconsider the missing interaction laws (L3), (L8), (L14), (L15),
(L18). In each case, find a proposition, not using negation, that is classically
equivalent and prove it. Try to find one that might reasonably be considered an
interaction law. For example, A⊃⊥ ≡ A⊃⊥∨⊥, but that would hardly be con-
sidered an interaction law. You may use any of the rules in Exercise 11, whatever
is convenient.

Exercise 13 Write out classical interaction laws of negation with conjunction,
disjunction, implication, truth, falsehood, and negation. Your laws should be
strong enough that every proposition can be shown to be equivalent to one where
negation is only applied to atomic propositions. The interaction laws of negation
with conjunction and disjunction are usually called De Morgan’s laws. Prove one
direction each of the laws for conjunction, disjunction, and implication using nat-
ural deduction with any of the rules in Exercise 11.
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