In this lecture we consider two different polarization strategies for structural intuitionistic natural deduction. If we decide to translate propositions positively we obtain, under the computational interpretation of proofs as computations, a call-by-value language. If we translate propositions negatively we obtain call-by-name. These embeddings are compositional, supporting Levy’s claim [Lev01] that call-by-push-value (CBPV) is a unifying approach to functional programming. With CPBV we can easily choose, at a fine-grained level, which computations are eager and which are lazy.

1 Call-by-Value as Positive Polarization

Let’s assume we have a source language

\[
\begin{align*}
\text{Types} & \quad A, B, C \ ::= & \quad A \supset B \mid A \land B \mid \top \mid \forall \{l : A_l\}_{l \in L} \\
\text{Expressions} & \quad E \ ::= & \quad x \mid \lambda x. E \mid E_1 E_2 \mid \langle E_1, E_2 \rangle \mid \pi_1 E \mid \pi_2 E \mid \langle \rangle \mid \top \mid l(E) \mid \text{case } (l(x) \Rightarrow E_l)_{l \in L} \mid A \lor B
\end{align*}
\]

We write \((A)^+\) for the positive polarization of \(A\), which is defined inductively as follows:

\[
\begin{align*}
(A \supset B)^+ &= \downarrow((A)^+ \rightarrow (B)^+)
\\
(A \land B)^+ &= (A)^+ \times (B)^+
\\
(T)^+ &= 1
\\
(\forall \{l : A_l\}_{l \in L})^+ &= +\{l : (A_l)^+\}_{l \in L}
\end{align*}
\]
This would seem to be a minimal positive polarization. Based on this, we can now write translations of expressions. The theorem we are aiming for is

$$\text{If } \Gamma \vdash E : A \text{ then } (\Gamma)^+ \vdash (E)^+ : \uparrow (A)^+$$

Note that the translation of an expression should be a computation, so we have to coerce $$(A)^+$$ to be a negative type in this judgment. This principle and the translation of types leaves very little leeway. Let's work through this carefully for functions. Assume

$$\Gamma \vdash \lambda x. E : A \supset B$$

Then

$$\Gamma^+ \vdash (\lambda x. E)^+ : \uparrow (A \supset B)^+$$

which works out to

$$\Gamma^+ \vdash (\lambda x. E)^+ : \uparrow \downarrow ((A)^+ \to \uparrow (B)^+)$$

We also know

$$\Gamma, x : (A)^+ \vdash (E)^+ : \uparrow (B)^+$$

From that, we can fill in

$$(\lambda x. E)^+ = \text{return thunk } (\lambda x. (E)^+)$$

What about application $$(E_1 \ E_2)^+$$? We know

$$\begin{align*}
(\Gamma)^+ & \vdash (E_1)^+ : \uparrow \downarrow ((A)^+ \to \uparrow (B)^+) \\
(\Gamma)^+ & \vdash (E_2)^+ : \uparrow (A)^+ \\
(\Gamma)^+ & \vdash (E_1 \ E_2)^+ : \uparrow (B)^+
\end{align*}$$

From this we can see that the types almost force:

$$(E_1 \ E_2)^+ \ = \ \text{let val } f = (E_1)^+ \text{ in let val } x = (E_2)^+ \text{ in (force } f \text{) } x$$

Also well-typed would be the result of swapping the two lets, or performing one more result binding at the end:

$$(E_1 \ E_2)^+ = \text{let val } f = (E_1)^+ \text{ in let val } x = (E_2)^+ \text{ in let val } y = (\text{force } f) x \text{ in return } y$$
In summary, for functions:

\[
\begin{align*}
(x)^+ &= \text{return } x \\
(\lambda x. E)^+ &= \text{return thunk } (\lambda x. (E)^+) \\
(E_1 E_2)^+ &= \text{let val } f = (E_1)^+ \text{ in let val } x = (E_2)^+ \text{ in (force } f) x
\end{align*}
\]

Translations of pairs is simpler, since we can arrange to use positive (eager) pairs in the target.

\[
\begin{align*}
(\langle E_1, E_2 \rangle)^+ &= \text{let val } x_1 = (E_1)^+ \text{ in let val } x_2 = (E_2)^+ \text{ in return } (x_1, x_2) \\
(\pi_1 E)^+ &= \text{let val } x = (E)^+ \text{ in match } x \text{ as } (y, z) \Rightarrow \text{return } y \\
(\pi_2 E)^+ &= \text{let val } x = (E)^+ \text{ in match } x \text{ as } (y, z) \Rightarrow \text{return } z
\end{align*}
\]

Similarly for \(\top\) and \(\vee\{l : A_l\}_{l \in L}\)

\[
\begin{align*}
(\langle \rangle)^+ &= \text{return } () \\
(l(E))^+ &= \text{let val } x = (E)^+ \text{ in return } l(x) \\
(\text{case } E \ (l(x) \Rightarrow E_l)_{l \in L})^+ &= \text{let val } x = (E)^+ \text{ in match } x \text{ as } (l(x) \Rightarrow (E_l)^+)_{l \in L}
\end{align*}
\]

At this point we have completed our embedding. We could, for example, give a call-by-value operational semantics on unpolarized expressions and then show that this particular translation is operationally adequate. We are more inclined to think of this translation as the definition of call-by-value and move on.

2 Call-by-Name as Negative Polarization

We now consider the negative polarization of an unpolarized type. For the conjunction, we clearly should choose the negative conjunction, corresponding to lazy pairs consistent with call-by-name.

\[
\begin{align*}
(A \lor B)^- &= \downarrow (A)^- \rightarrow (B)^- \\
(A \land B)^- &= \&\{\pi_1 : (A)^-, \pi_2 : (B)^-\} \\
(\top)^- &= \&\{\} \\
(\forall l : A_l)_{l \in L}^- &= \uparrow + \{l : \downarrow (A_l)^-\}_{l \in L}
\end{align*}
\]

Now the judgment \(\Gamma \vdash E : A\) will be translated to \((\Gamma)^+ \vdash (E^-)^+ : (A^-)^+\), where for the hypotheses with have

\[
(x_1 : A_1, \ldots, x_n : A_n)^+ = x_1 : \downarrow (A_1)^-, \ldots, x_n : \downarrow (A_n)^-
\]
The extra down shift for the context is forced since call-by-push-value allows only positively typed variables, while for the translation of an expression to a computation, no additional shift is necessary.

As we design the translation for expressions, let the types be or guide as usual.

\[
(\lambda x. E)^- : \downarrow (A)^- \rightarrow (B)^-
\]

\[
(x)^- : \downarrow (A)^-
\]

\[
(E)^- : (B)^-
\]

Clearly, we have

\[
(\lambda x. E)^- = \lambda x. (E)^-
\]

\[
(x)^- = \text{force } x
\]

In the same style of reasoning:

\[
(E_1 E_2)^- : (B)^-
\]

\[
(E_1)^- : \downarrow (A)^- \rightarrow (B)^-
\]

\[
(E_2)^- : (A)^-
\]

Again, it seems our hand is forced:

\[
(E_1 E_2)^- = (E_1)^- (\text{thunk } (E_2)^-)
\]

In summary, for functions:

\[
(x)^- = \text{force } x
\]

\[
(\lambda x. E)^- = \lambda x. (E)^-
\]

\[
(E_1 E_2)^- = (E_1)^- (\text{thunk } (E_2)^-)
\]

This clearly represent call-by-name. We pass a computation, packaged as a thunk, and force that thunk where the variable is used. In all call-by-need language such as Haskell, the value of this forced expression is memoized so that future evaluations of \text{force } x do not evaluate the thunk again but retrieve its value.

For conjunction, we abbreviate the process. Recall that \((A \land B)^- \equiv \&\{\pi_1 : (A)^-, \pi_2 : (B)^-\}\)

\[
((E_1, E_2))^- = \{\pi_1 \Rightarrow (E_1)^-, \pi_2 \Rightarrow (E_2)^-\}
\]

\[
(\pi_1 E) = (E)^-.\pi_1
\]

\[
(\pi_2 E) = (E)^-.\pi_2
\]

Truth \(\top\) is the nullary case of conjunction and consequently becomes \&\{\ \}. We the translate

\[
(\langle\rangle)^- = \{\}
\]
It seems implication and conjunction translates more directly for call-by-name than for call-by-value. However, disjunction has two shifts and is therefore more complicated.

\[(l(E))^- : \uparrow + \{ l : \downarrow (A_l)^- \} \text{ for } l \in L \]

\[E^- : (A_l)^- \]

so

\[(l(E))^- = \text{return } l(\text{thunk } (E)^-)\]

The elimination form is our most complex case

\[(\text{case } E (l(x) \Rightarrow E_l)_{l \in L})^- : (C)^- \]

\[(E)^- : \uparrow + \{ l : \downarrow (A_l)^- \} \text{ for } l \in L \]

\[(E_l)^- : (C)^- \]

\[(x)^- : \downarrow (A_l)^- \]

but if want to respect all these types, the following suggests itself

\[(\text{case } E (l(x) \Rightarrow E_l)_{l \in L})^- = \text{let val } y = (E)^- \text{ match } y \text{ as } (l(x) \Rightarrow (E_l)^-)_{l \in L} \]

Summarizing whole call-by-name translation (which is to say, the negative translation)

\[(x)^- = \text{force } x \]

\[(\lambda x. E)^- = \lambda x. (E)^- \]

\[(E_1 E_2)^- = (E_1)^- (\text{thunk } (E_2)^-) \]

\[(\langle E_1, E_2 \rangle)^- = \{ \pi_1 \Rightarrow (E_1)^-, \pi_2 \Rightarrow (E_2)^- \} \]

\[(\pi_1 E)^- = (E)^-.\pi_1 \]

\[(\pi_2 E)^- = (E)^-.\pi_2 \]

\[(\langle \rangle)^- = \{ \} \]

\[(l(E))^- = \text{return } l(\text{thunk } (E)^-) \]

\[(\text{case } E (l(x) \Rightarrow E_l)_{l \in L})^- = \text{let val } y = (E)^- \text{ match } y \text{ as } (l(x) \Rightarrow (E_l)^-)_{l \in L} \]

3 Destinations

The operational semantics of call-by-push-value is very direct using ordered inference. In the next lecture we will introduce the Concurrent Logical Framework (CLF) which, unfortunately, is linear and does not support
ordered specifications. One idea, not very elegant, is to create explicit sequences of assumptions. But there is a different way, namely to use destinations to tie the propositions together. In general, the ordered context

\[A_1 \ldots A_n \]

is represented by

\[A_1(d_0, d_1) A_2(d_1, d_2) \ldots A_n(d_{n-1}, d_n) \]

where all of \(d_0, d_1, d_2, \ldots, d_{n-1}, d_n\) are distinct parameters, and \(d_0\) and \(d_n\) represent the left and right endpoints [SP11]. You can think of them just as if they were channels in our previous linear specifications, but used in a disciplined way since the context is actually ordered.

In our particular example, the configuration would look like

\[
\begin{align*}
\text{eval}(M, d_{n+1}, d_n) & \rightarrow C_1 \\
\text{eval}(\lambda x. M, d) & \rightarrow C_2 \\
\text{eval}([V/x]M, d) & \rightarrow C_3
\end{align*}
\]

\[
\begin{align*}
\text{eval}(M, d) & \rightarrow C_1' \\
\text{eval}(\lambda x. M, d) & \rightarrow C_2' \\
\text{eval}([V/x]M, d) & \rightarrow C_3'
\end{align*}
\]

We can rearrange and optimize slightly, noting, for example, that we never need \(d_{n+1}\) and we use

\[
\begin{align*}
\text{eval}(M, d) & \\
\text{ret}(T, d) & \\
\text{cont}(d, K, d')
\end{align*}
\]

As a sample, we given the rules for functions, first in their ordered form and then in destination passing style. Note that the rules for applications must introduce a fresh destination.

<table>
<thead>
<tr>
<th>Ordered</th>
<th>Destination-Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{eval}(M \ V)) \rightarrow C_1 \quad \text{eval}(M, d) \rightarrow C_1')</td>
<td>(\text{eval}(\lambda x. M, d) \rightarrow C_2 \quad \text{eval}([V/x]M, d) \rightarrow C_3)</td>
</tr>
<tr>
<td>(\text{eval}(\lambda x. M) \rightarrow C_2 \quad \text{eval}(\lambda x. M, d) \rightarrow C_2')</td>
<td>(\text{eval}(\lambda x. M, d') \rightarrow C_2 \quad \text{eval}([V/x]M, d) \rightarrow C_3')</td>
</tr>
<tr>
<td>(\text{ret}(\lambda x. M) \rightarrow C_3)</td>
<td>(\text{ret}(\lambda x. M, d') \rightarrow C_3')</td>
</tr>
</tbody>
</table>

As a preview of CLF [WCPW02, CPWW02, WCPW04, SNS08, SN11], we show the relevant part of the file \texttt{cbpv.clf} which implements the above idea.
There are a few things we have not discussed, such as the indexing of values and computations by their positive or negative types. We first highlight the three rules on the right.

eval/app : eval (app M V) D
 \rightarrow \{\text{Exists } d'. \text{ eval } M d' \ast \text{ cont } d' (app1 V) D\}.

eval/lam : eval (lam (\!x. M !x)) D \rightarrow \{\text{retn } (lam (\!x. M !x)) D\}.

eval/app1 : retn (lam (\!x. M !x)) D' \ast \text{ cont } D' (app1 V) D
 \rightarrow \{\text{eval } (M !V) D\}.

Because we index values and computations, the code below is not only an operational specification but also a type checker for call-by-push-value. We have limited ourselves to the binary forms of \& and + since label sets are not so easily represented.

% Call-by-push-value in CLF
% Pure function fragment with shifts

neg : type.
pos : type.

arrow : pos -> neg -> neg. % A -> B
up : pos -> neg. % up A
down : neg -> pos. % down A

% values and computations, indexed by their type
val : pos -> type.
comp : neg -> type.

% negative types
% A -> B
lam : (val A -> comp B) -> comp (arrow A B).
app : comp (arrow A B) -> val A -> comp B.

% up A
return : val A -> comp (up A).
letval : comp (up A) -> (val A -> comp C) -> comp C.

% down A
thunk : comp A -> val (down A).
force : val (down A) -> comp A.
Call-by-Value and Call-by-Name

% runtime artefacts
dest : neg -> type.
frame : neg -> neg -> type.
app1 : val A -> frame (arrow A B) B.
letval1: (val A -> comp C) -> frame (up A) C.

% ssos predicates
eval : comp A -> dest A -> type.
retn : comp A -> dest A -> type.
cont : dest A -> frame A B -> dest B -> type.

% A -> B
eval/lam : eval (lam (\!x. M !x)) D -o {retn (lam (\!x. M !x)) D}.
eval/app : eval (app M V) D
 -o {Exists d’. eval M d’ * cont d’ (app1 V) D}.
eval/app1 : retn (lam (\!x. M !x)) D’ * cont D’ (app1 V) D
 -o {eval (M !V) D}.

% up A
eval/return : eval (return V) D -o {retn (return V) D}.
eval/letval : eval (letval M (\!x. N !x)) D
 -o {Exists d’. eval M d’
 * cont d’ (letval1 (\!x. N !x)) D}.
eval/letval1 : retn (return V) D’ * cont D’ (letval1 (\!x. N !x)) D
 -o {eval (N !V) D}.

% down A
eval/force : eval (force (thunk M)) D
 -o {eval M D}.

#query * 1 * 1
Pi d0. eval (lam (\!x. return x)) d0 -o {retn M d0}.

#query * 1 * 1
Pi d0. eval (app (lam (\!x. return x)) (thunk (lam (\!y. return y)))) d0
 -o {retn M d0}.
Exercises

Exercise 1 Both call-by-value and call-by-name lead to code that is considerably more complex than it needs to be, including, for example, patterns such as let val \(x' = \text{return} \ x \) in \(M \). These spurious introduction/elimination forms are called administrative redices. Begin by showing an example of an expression whose call-by-value translation contains an administrative redex.

If possible, rewrite the call-by-value translation using two different forms, one resulting directly in a value the other in a computation.

\[
\Gamma^+ |- (E)_p : (A)^+
\]
\[
\Gamma^+ |- (E)_n : \uparrow (A)^+
\]
calling upon the appropriate translation form. Try to write the refined translation so that no administrative redices arise. If this does not work, do you see another approach to avoiding administrative redices?

Exercise 2 Carry out Exercise 1 for call-by-name.

Exercise 3 Investigate a linear call-by-push-value combined with Levy’s by an adjunction with two shifts. Explore the expressive power of the result. Does linearity describe and interesting and useful properties of functional computation?

Exercise 4 Using a substitution-free operational semantics as in Exercise L21.1, specify a call-by-need operational semantics. Can you do this on call-by-push-value in general, or should it be integrated somehow (or described directly) on call-by-name?
References

