Assignment 8:
Cut Admissibility, Meta-Interpreters

15-317: Constructive Logic

Out: Thursday, October 30, 2008
Due: Tuesday, November 11, 2008, before class

You do not need to hand in this homework until Tuesday Nov 11. However, we encourage you to work through the problems before the midterm: there may be questions about this material on the exam!

1 Cut and Identity

Recall the rules for disjunction and implication:

\[
\Gamma \Rightarrow A \quad \forall R_1 \quad \frac{\Gamma \Rightarrow A \lor B}{\Gamma \Rightarrow A \lor B} \quad \forall R_2 \quad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \lor B} \quad \forall L
\]

\[
\frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \supset B} \quad \supset R
\]

\[
\frac{\Gamma, A \supset B \Rightarrow C}{\Gamma \Rightarrow A \supset B \Rightarrow C} \quad \supset L
\]

1.1 Identity

Identity: For all \(A \) and \(\Gamma \), the sequent \(\Gamma, A \Rightarrow A \) is derivable.

Task 1 (10 pts).
Prove the \(\supset \) case:
Assume

- \(\Gamma, A \Rightarrow A \) for all \(\Gamma \)
- \(\Gamma, B \Rightarrow B \) for all \(\Gamma \)

and show \(\Gamma, A \supset B \Rightarrow A \supset B \) for all \(\Gamma \).

1.2 Principal Cuts

- **Weakening**: If \(\Gamma \Rightarrow C \) then \(\Gamma, A \Rightarrow C \).
- **Cut**: If \(\Gamma \Rightarrow A \) and \(\Gamma, A \Rightarrow C \) then \(\Gamma \Rightarrow C \).
Task 2 (10 pts). Prove the principal cut case for \supset:

Given

$\frac{\mathcal{D}}{\Gamma, A \supset B \supset R}$ \hspace{1cm} $\frac{\mathcal{E}_1}{\Gamma, A \supset B \supset A}$ \hspace{1cm} $\frac{\mathcal{E}_2}{\Gamma, A \supset B \supset C}$

$\supset L$

construct a derivation of $\Gamma \supset C$.
You may use weakening if you need to.

Task 3 (5 pts). Prove a commutative cut case for \lor:

From

$\frac{\mathcal{D}_1}{\Gamma, B_1 \lor B_2, B_1 \supset A_1 \supset A_2}$ \hspace{1cm} $\frac{\mathcal{D}_2}{\Gamma, B_1 \lor B_2, B_2 \supset A_1 \supset A_2}$

$\lor E$

$\Gamma, B_1 \lor B_2 \supset A_1 \supset A_2 \supset C$

derive $\Gamma, B_1 \lor B_2 \supset C$.
You may use weakening if you need to.

2 Counting Proofs

In class, we defined an interpreter for Prolog that made subgoal order and backtracking explicit. In this problem, you will extend this interpreter to count the number of proofs of a proposition.

2.1 Base rules

We assume that every atomic proposition P is defined by exactly one clause $P \leftarrow B$.

$\frac{P \leftarrow B \ B \text{true}}{P \text{true}} \hspace{1cm} \frac{\text{true} \ A \ B \text{true}}{A \lor B \text{true}} \hspace{1cm} \frac{A \text{true}}{A \land B \text{true}} \hspace{1cm} \frac{B \text{true}}{A \lor B \text{true}}$ (no rule $\bot \text{true}$)

2.2 Abstract machine

Recall that S, the success stack, is a conjunction of propositions, and F, the failure stack, is a disjunction of propositions of the form $(B \land S)$.

$\frac{P \leftarrow B \ B/S/F}{P/S/F} \hspace{1cm} \frac{\top \lor \top \ F}{\top / \top / F}$ \hspace{1cm} $\frac{B/S/F}{A/(B \land S)/F}$ \hspace{1cm} $\frac{A/(B \land S)/F}{A \land B/S/F}$

$\frac{A/S/(B \land S) \lor F}{A \lor B/S/F}$ (no rule $\bot / S / \bot$) \hspace{1cm} $\frac{B/S/F}{\bot / S / (B \land S) \lor F}$
2.3 Counting Proofs

For these rules for these connectives, we can easily count the number of proofs a proposition has:

\[
\begin{align*}
|P| & = |B| \text{ where } P \leftarrow B \\
|\top| & = 1 \\
|A \land B| & = |A| \ast |B| \\
|\bot| & = 0 \\
|A \lor B| & = |A| + |B|
\end{align*}
\]

This definition makes sense if we assume that atoms are not defined recursively: recursive clauses can lead to propositions with infinitely many proofs. E.g. \(\text{nat} \leftarrow (\top \lor \text{nat})\) has one proof for each natural number.

Theorem 1. There are \(|A|\) many derivations of \(A\) true.

Task 1 (7 pts). Extend the interpreter so that it counts the number of proofs of a proposition as it proves it: Define a judgement \(A/S/F \mid n\) such that \((A \land S) \lor F\) has \(n\) proofs. Fill in the ?’s in the following rules:

\[
\begin{align*}
P \leftarrow B & \quad B/S/F \mid ? \\
\top & \quad \top \mid ? \\
\top & \quad \top/(B \land S) \lor F \mid ? \\
\top & \quad \top/(B \land S)/F \mid ? \\
A/(B \land S)/F \mid ? \\
A \land B/S/F \mid ? \\
\bot \mid ? \\
\bot \mid ? \\
\bot \mid ?
\end{align*}
\]

Task 2 (8 pts). Prove your revised interpreter sound by induction on the rules:

Theorem 2. If \(A/S/F \mid n\) then \(|(A \land S) \lor F| = n|.

You may use whatever properties of arithmetic you require (e.g. associativity of \(\ast\), distributivity of \(\ast\) over \(+\)).