
Lecture Notes on

Program Equivalence

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 24
November 30, 2004

When are two programs equal? Without much reflection one might say
that two programs are equal if they evaluate to the same value, or if both
of them run forever. This explicitly ignores the issue of effects, and we will
continue to think about a pure language until later in this lecture. So, in a
pure language the statement above reduces the equality of programs to the
equality of values. But when should two values be equal? For example,
how about the following two functions.

id1 = λx.x

id2 = λx.x + 0

The first observation is that they are both values, so they definitely will not
diverge.

Now, id1 and id2 return the same integer when applied to an integer,
but id1 has more types than id2. We conclude from that the we should
compare two values at a type. In general, the judgment has the form

v ' v′ : τ

where we assume that · ` v : τ and · ` v′ : τ . Here we want to ask if

(λx.x) ' (λx.x + 0) : int → int?

The answer to this question depends on our point of view. If we care
about efficiency, for example, they are not equal since the left-hand side
always takes one fewer step than the right-hand side. If we care about the
syntactic form of the function, they are not equal either. On the other hand,

SUPPLEMENTARY NOTES NOVEMBER 30, 2004



L24.2 Program Equivalence

if we only care about the result of the function when applied to all possible
arguments, then the two should be considered equal at the given type, since
both of them are (mathematically) the identity function on integers.

In this lecture we are concerned with observational equivalence between
programs: we consider to programs (and values) equal if whatever we can
observe about their behavior is identical. In pure functional languages, the
only thing you can observe about a program is the final value it returns. But
there are further restrictions. For example, we cannot observe the internal
structure of functions. In implementations, they have been compiled to
machine code—all we see is a token such as fn indicating the given value
cannot be printed.

If we cannot observe the structure of a function, what can be observe
about a function? We can apply it to arguments and observe its result. But
this result may again be a function whose structure we cannot see directly.
It appears we are moving in a vicious circle, trying to define observational
equivalence of functions in terms of itself.

Fortunately, there is a way out. We once again use types in order to
create order out of chaos. In our example above, the functions λx.x and
λx.x + 0 should be equal at type int → int because apply both of them to
equal arguments of type int will always yield equal results of type int. And
values of type int are directly observable—they form a basic data type of
our language.

Using this intuition we can now define two relations of observational
equivalence for a pure, call-by-value language by simultaneous induction
on the structure of a type of the expressions we are comparing. We write
e ⇑ if the evaluation of e does not terminate. We also use the convention
that when we write e ∼= e′ : τ that · ` e : τ and · ` e′ : τ and similarly for
values without restating this every time.

e ∼= e′ : τ iff either e ⇑ and e′ ⇑
or e 7→∗ v and e′ 7→∗ v′ with v ' v′ : τ

v ' v′ : int iff v = v′ = n for an integer n.
v ' v′ : bool iff v = v′ = true or v = v′ = false

v ' v′ : τ1 → τ2 iff for all v1 ' v′1 : τ1 we have v v1
∼= v′ v′1 : τ2

The last clause requires careful analysis. Functions are not observable
directly, although we can apply them to arguments to observe their result.
The case of values of function type can therefore be summarized as: “Two
functions are equal at type τ1 → τ2 if they deliver equal results of type τ2 when ap-
plied to equal arguments of type τ1.” Note that on the right-hand side the types
are smaller than on the left-hand side, so the definition is well-founded. It

SUPPLEMENTARY NOTES NOVEMBER 30, 2004



Program Equivalence L24.3

is also allowed that neither of the two functions terminates when given
equal arguments. This follows from comparing the expressions v v1 and
v′ v′1 which have to be evaluated first.

We can use this definition to prove our original assertion that λx.x '
λx.x + 0 : int → int.

v1 ' v′1 : int Assumption
v1 = v′1 = n for some integer n By definition of '
n ' n : int By definition of '
(λx.x)n 7→∗ n By definition of 7→
(λx.x + 0)n 7→∗ n By definition of 7→
(λx.x)n ∼= (λx.x + 0)n : int By definition of ∼=
(λx.x) v1

∼= (λx.x + 0) v′1 : int Since v1 = v′1 = n

(λx.x) ' (λx.x + 0) : int → int By definition of '

In many cases equivalence proofs are not that straightforward, but re-
quire considerable effort. As a slightly more complicated example consider

id1 = λx.x

id3 = rec f. λx.if x = 0 then 0 else f(x − 1) + 1

We notice that id1 and id3 are in fact not equal at type int → int because
id3 (−1) diverges, while id1 (−1) 7→∗ −1. However, when applied to nat-
ural numbers, that is, integers greater or equal to 0, then they are obser-
vationally equal (both return the argument). In order to capture this we
introduce nat ≤ int under the subset interpretation of subtyping and ex-
tend observational equivalence with the clause

v ' v′ : nat iff v = v′ = k for some k ≥ 0.
With these definitions we need a lemma, which can be proven by in-

duction on k. For this, we introduce the definition

id
′

3 = λx. if x = 0 then 0 else id3 (x − 1) + 1

which has the property that id3 7→ id
′

3 and id
′

3 is a value. Now we can
prove:

For any k ≥ 0, we have id1 k ∼= id
′

3 k : nat.

Proof: By induction on k.

Case: k = 0. Then id1 0 7→ 0 and id
′

3 0 7→ if 0 = 0 then 0 else id3(k − 1) +
1 7→∗ 0.

SUPPLEMENTARY NOTES NOVEMBER 30, 2004



L24.4 Program Equivalence

Case: k = k′+1. Then id1 k 7→ k and id
′

3 k 7→∗
id3(k−1)+1 7→∗

id
′

3(k
′)+1.

By induction hypothesis, id
′

3(k
′) ∼= id1(k

′) so id
′

3(k
′) ∼= k′ and id

′

3 k 7→∗

k′ + 1 = k, which is what we needed to show. �

From this it follows directly by definition of ' that id1 = id3, since
v1 ' v′1 : nat iff v1 = v′1 = k for some k and id3 7→ id

′

3.
Some care must be taken in general to define observational equivalence

correctly with respect to what is observable. For example, in a call-by-name
language we would have to apply functions to arbitrary expressions, in-
stead of testing them just on values.

It should also be clear that in the presence of effects, be it store effects or
control effects, the definition of observational equivalence must be changed
substantially to account for the effects.

In the remainder of this lecture we briefly explore the question of equiv-
alence in a setting where we have only effects. In particular, we are no
longer interested in termination or the value produced by a computation,
but just the externally observable effects it has. This is a fundamental shift
in perspective on the notion of computation, but one that is appropriate in
the realm of concurrency. For example, we may have server process that
never finishes, but forever answers request. It does not return a value (be-
cause it never does return), but it interacts with the outside world by receiv-
ing requests and sending replies. In this setting, observational equivalence
implies that the server answers with equal reply given equal requests. This
is a bit imprecise in the setting where we also have non-determinism, that
is, a process might evolve in different ways.

For this, we introduce the notion of a sequential process expression. Se-
quential processes can evolve non-deterministically and have externally
observable actions, but they do not yet integrate concurrency which is re-
served for the next lecture. We start with (observable) actions α which, at
present consist either of names a (eventually denoting an input action) and
co-names ā (eventually denoting an output action). A sequential process
expression P is defined by the following grammar.

P : : = A | α1.P1 + · · · + αn.Pn

We write 0 for a sum of zero elements; it corresponds to a process that
has terminated (it can take no further actions). Note that “.” is not related
to variable binding here, it simply separates the prefix α from the process
expression P . The process identifiers A are defined by, possibly recursive
equations

A
def
= PA.

SUPPLEMENTARY NOTES NOVEMBER 30, 2004



Program Equivalence L24.5

Sequential process expression evolve in a rather straightforward way. We
can unfold a definition of a process identifier, or we can select one non-
deterministically from a sum. When such an action is taken, the result is

observable. We define a single-step judgment P
α

−→ P ′ meaning that P

transitions in one step to P ′ exhibiting action α.

M + α.P + N
α

−→ P
Sum

(A
def
= PA) PA

α
−→ P ′

A
α

−→ P ′
Def

The Sum rule non-deterministically selects an element of a sum and
exhibits action α. Because of the syntax of the language, we cannot replace
a part of the sum. We write M and N for sums.

An examples, consider a tea and coffee vending machine with the fol-
lowing informal behavior: if we put in twopence1 we can obtain tea by
pusing an appropriately labeled button, or we can deposit 2 more pennies
and the obtain coffee. This machine can be depicted as

A

B

C

2p

2p

tea coffee

and described as a sequential process as follows:

A
def
= 2p.(tea.A + 2p.coffee.A)

The vending machine has three states: an initial state A (in which it only
waits for the input of 2p), a state B where we can either get the tea, or put
in another 2p, and a state C where can only ge the coffee. We can make this
explicit with this alternative definition

A
def
= 2p.B

B
def
= tea.A + 2p.C

C
def
= coffee.A

1This example is taken from Robin Milner’s book on Communicating and Mobile Processes:
the π-Calculus, Cambridge University Press, 1999.

SUPPLEMENTARY NOTES NOVEMBER 30, 2004



L24.6 Program Equivalence

Now we return to the question of observational equivalence. If we think
just about the actions that the vending machine can exhibit, they can be
described by the regular expression:

(2p · (tea + 2p · coffee))∗.

However, this regular expression does not characterize the vending ma-
chine as it interacts with its environment. In order to see that, consider the
following (broken) vending machine.

A'

B'

C'

2p

2p

tea coffee

2p

tea

B0'

A′
def
= 2p.B′ + 2p.B′

0

B′ def
= tea.A′ + 2p.C ′

B′

0

def
= tea.A′

C ′ def
= coffee.A′

In words, this machine differs from the first one as follows: when we sup-
ply it with 2p when in state A′, it will non-deterministically go to state B′

as before, or go into a new state B′

0 in which we can only obtain tea, but not
deposit any additional money. Clearly, this machine is broken. However,
the sequence of actions it can produce, namely

(2p · (tea + 2p · coffee) + 2p · tea)∗

is exactly the same as for the first machine.
What has gone wrong is the the reactive behavior of the system has

changed. But this is what we will be interested in when analyzing com-
municating processes. Here, every input or output will be seen as an in-
teraction with the environment, and then the two vending machines are
clearly not equivalent.

In order to capture in what sense they are equivalent we define the no-
tion of strong simulation. Let S be a relation on the states of a process or

SUPPLEMENTARY NOTES NOVEMBER 30, 2004



Program Equivalence L24.7

between several processes. We say that S is a strong simulation if when-

ever P
α

−→ P ′ and P S Q then there exists a state Q′ such that Q
α

−→ Q′

and P ′ S Q′. We say that Q strongly simulates P is there exists a strong
simulation S such that P S Q.

For example, the first machine above strongly simulates the second in
the sense that there is a strong simulation S such that A′SA. We write this
simulation as ≤1. It is defined by

A′ ≤1 A

B′ ≤1 B B′

0 ≤1 B

C ′ ≤1 C

In order to prove that this is a strong simulation we have to verify the con-
ditions in the definition for every transition of the second machine.

Case: A′
2p
−→ B′ and A′ ≤1 A. We have to show there is state Q such that

A
2p
−→ Q and B′ ≤ Q. Q = B satisfies this condition. We abbreviate this

argument in the following case by just showing the relevant transition.

Case: A′
2p
−→ B′

0 and A′ ≤1 A. Then A
2p
−→ B and B′

0 ≤1 B.

Case: B′ tea
−→ A′ and B′ ≤1 B. Then B

tea
−→ A and A′ ≤1 A.

Case: B′
2p
−→ C ′ and B′ ≤1 B. Then B

2p
−→ C and C ′ ≤1 C .

Case: B′

0

tea
−→ A′ and B′

0 ≤1 B. Then B
tea
−→ A and A′ ≤1 A.

Case: C ′ coffee
−→ A′ and C ′ ≤1 C . Then C

tea
−→ A and A′ ≤1 A.

This covers all cases, so A strongly simulates A′. The perhaps surpris-
ing fact is that A′ also strongly simulates A, although we need a different
relation. We define

A ≤2 A′

B ≤2 B′

C ≤2 C ′

so that B′

0 is not related to any other state. Then ≤2 shows that A′ strongly
simulates A. Intuitively, this is the case, because the second machine can

SUPPLEMENTARY NOTES NOVEMBER 30, 2004



L24.8 Program Equivalence

simulate every step the first machine can take. It can also exhibit some
additional undesired behavior, but this does not matter when we construct
a strong simulation.

Now it seems like we have defeated our original purpose, since the
two vending machines should not be observationally equivalent, but each
one can strongly simulate the other. It turns out that the notion we are in-
terested in is not mutual strong simulation, but strong bisimulation which
means that there is a single relation between the states that acts as a strong
simulation in both directions. Under this definition, the two vending ma-
chines are not equivalent, because any bi-simulation would have to relate
B′ and B′

0 to B, but B′

0 could never simulate B because it cannot simulate
the transition to C .

In summary, we have isolated the notion of strong bisimulation that we
can use to compare the behavior of sequential processes with observable
actions and non-deterministic choice. In the next lecture we will make our
language of processes richer, allowing for concurrency and interaction.

SUPPLEMENTARY NOTES NOVEMBER 30, 2004


