
Lecture Notes on
The Curry-Howard Isomorphism

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 23
November 18, 2004

In this lecture we explore an interesting connection between logic and
programming languages. In brief, logical proofs embody certain construc-
tions which may be interpreted as programs. Under this interpretation,
propositions become types. It was first observed by the logicians Haskell
Curry [˜1960] and William Howard [˜1969] in different contexts that this is
in fact an isomorphism: in a certain fragment of logic, every proof describes
a program and every program describes a proof.

We will make the same observation here, using the methodology of
judgments that we have used to far in the course, applied to the devel-
opment of principles of logical reasoning. This formulation is due to Per
Martin-Löf [˜1983].

What is the meaning of a proposition? Martin-Löf argues that to under-
stand the meaning of a proposition means to understand when it is true.
Consequently, in order to explain the meaning of a logical connective, we
have to explain how to derive that a proposition with this connective is
true.

Thus the most basic of all judgments of logic is that of truth, written as
A true.

As the simplest example of a connective, consider conjunction. We say
that A ∧B true if A true and B true. Written as an inference rule:

A true B true

A ∧B true
∧I

We refer to this as an introduction rule because it introduces a connective
in the conclusion (here ‘∧’). The introduction rule tells us how to conclude
that A ∧B is true, thereby defining its meaning.

LECTURE NOTES NOVEMBER 18, 2004



L23.2 The Curry-Howard Isomorphism

The next question is how can we use the information that A ∧ B true.
According to the above explanation, if we know A ∧ B true, we should
know the two premises, that is A true and B true.

A ∧B true

A true
∧E1

A ∧B true

B true
∧E2

We refer to these as elimination rules, because they eliminate a connective in
the premise (here ‘∧’).

If we think of the introduction rule as defining the meaning of the con-
nective, how do we know that the elimination rules that we developed
from it are actually correct? We will consider this question later in this
lecture by introducing the notions of local soundness and completeness of
the rules. For now, we continue by filling out the store of available logical
connectives.

The next one we want to consider is implication. When is A ⊃ B
true? From our experience with proofs we know that in order to conclude
A ⊃ B true we assume that A is true and try to prove that B is true. If
we want to take this as a definition, we need a hypothetical judgment. We
write A1 true, . . . , An true ` A true for such a hypothetical judgment with
assumptions A1 true through An true. We abbreviate a collection of hy-
potheses with H . From the nature of reasoning from hypotheses we obtain
for free a hypothesis rule and a substitution principle.

H1, A true,H2 ` A true
Hyp

Unfortunately, there is a small ambiguity here: there may be several
hypotheses A true and from the form of the rule above we cannot tell which
one was meant. In order to make this unambiguous we record the number
of the assumption that was used.

Hypothesis rule.

A1 true, . . . , Ai true, . . . , An true ` Ai true
Hypi

Substitution principle.

If H1 ` A true and H1, A true,H2 ` C true then H1,H2 ` C true.

The latter is called a substitution principle because in order to obtain
evidence for C true we substitute derivations of A true for uses of the as-
sumption A true.

LECTURE NOTES NOVEMBER 18, 2004



The Curry-Howard Isomorphism L23.3

Now we have the concepts in place to be able to define implication by
its introduction rule.

H,A true ` B true

H ` A ⊃ B true
⊃I

The elimination rule is based on the substitution principle. Assume we
know that A ⊃ B true. By the above rule this means B true under the as-
sumption that A true. Now, if we had a proof of A true we could substitute
it for uses of the assumption in the proof of B true. As a rule:

H ` A ⊃ B true H ` A true

H ` B true
⊃E

Now we can prove, for example, that (A ∧B) ⊃ (B ∧A) true.

A ∧B true ` A ∧B true
Hyp1

A ∧B true ` B true
∧E2

A ∧B true ` A ∧B true
Hyp1

A ∧B true ` A true
∧E1

A ∧B true ` B ∧A true
∧I

· ` (A ∧B) ⊃ (B ∧A) true
⊃I

Note that this is holds for any propositions A and B, that is, it is a schematic
derivation just like inference rules are schematic.

We continue our analysis of logical connectives with disjunction A∨B.
The disjunction is true if either of the disjuncts is true. This means we have
two introduction rules.

H ` A true

H ` A ∨B true
∨I1

H ` B true

H ` A ∨B true
∨I2

In order to determine the elimination rule, we must consider how to use
the knowledge that A ∨ B true. Clearly, we do not know which of A true
or B true holds. This means if we are trying to prove C true and we know
A ∨ B true, we must be able to show C true no matter whether A true or
B true. In other words, we must proceed with a proof by cases. In the form
of an elimination rule:

H ` A ∨B true H,A true ` C true H,B true ` C true

H ` C true
∨E

As a sample proof, consider the statement

If A or B implies C, then A implies C.

LECTURE NOTES NOVEMBER 18, 2004



L23.4 The Curry-Howard Isomorphism

Formally:
((A ∨B) ⊃ C) ⊃ (A ⊃ C) true

The proof:

(A ∨B) ⊃ C true, A true ` A true
Hyp2

(A ∨B) ⊃ C true, A true ` A ∨B true
∨I1

(A ∨B) ⊃ C true, A true ` (A ∨B) ⊃ C true
Hyp1

(A ∨B) ⊃ C true, A true ` C true
⊃E

(A ∨B) ⊃ C true ` A ⊃ C true
⊃I

· ` ((A ∨B) ⊃ C) ⊃ (A ⊃ C) true
⊃I

Next we look at some degenerate cases. Consider truth (>) as a logical
constant. It should be provable no matter what assumptions we have.

H ` > true
>I

Because we put no information into the proof of >, we can obtain no infor-
mation out. Therefore, there is no elimination rule for >. We can observe
that > is like a 0-ary version of conjunction: ∧I has two premises and con-
sequently we have two elimination rules (∧E1 and ∧E2), while >I has no
premises and consequently no elimination rules.

Now consider falsehood (⊥). It represents a contradiction and should
therefore not be provable. In other words, there is no introduction rule.
Conversely, if we know ⊥ true we should be able to conclude anything.

H ` ⊥ true

H ` C true
⊥E

We can recognize falsehood as a disjunction of zero alternatives. Whereas
there are two introduction rules for ∨ and therefore two cases to consider
in the elimination rule, there are no introduction rules for ⊥ and therefore
no branches in the elimination rule.

Figure 1 summarizes the rules, adding hypotheses to the first rules
about conjunction in the straightforward way. We list the introduction
rules in the left column and elimination rules in the right column. We have
stacked the premises of the ∨E rules purely for typographical reasons.

A natural question is if these are all the logical connectives we may be
interested in, and if the given rules define logical reasoning completely if
restricted to the considered connectives. If we ignore universal and exis-
tential quantification, then the main missing connectives are logical equiv-

LECTURE NOTES NOVEMBER 18, 2004



The Curry-Howard Isomorphism L23.5

A1 true, . . . , Ai true, . . . , An true ` Ai true
Hypi

H ` A true H ` B true

H ` A ∧B true
∧I

H ` A ∧B true

H ` A true
∧E1

H ` A ∧B true

H ` B true
∧E2

H ` > true
>I

no >E rule

H,A true ` B true

H ` A ⊃ B true
⊃I

H ` A ⊃ B true H ` A true

H ` B true
⊃E

H ` A true

H ` A ∨B true
∨I1

H ` B true

H ` A ∨B true
∨I2

H ` A ∨B true
H,A true ` C true
H,B true ` C true

H ` C true
∨E

no ⊥I rule
H ` ⊥ true

H ` C true
⊥E

Figure 1: Rules of Intuitionistic Propositional Logic

alence A ≡ B and negation ¬A. These can be easily considered abbrevia-
tions, using

A ≡ B = (A ⊃ B) ∧ (B ⊃ A)
¬A = A ⊃ ⊥

On the question of the completeness of these rules, a debate is possible.
With the right proof-theoretic analysis we can show that A ∨ ¬A true is not
provable for an arbitrary A in this logic, essentially because we can prove
neither A true nor ¬A true, which are the two possibilities if we consider
the introduction rules for disjunction (∨).

The logic we have developed so far is, for historical reasons, called in-
tuitionistic logic. If we also allow arbitrary instances of the axiom schema of
excluded middle (XM),

H ` A ∨ ¬A true
XM

LECTURE NOTES NOVEMBER 18, 2004



L23.6 The Curry-Howard Isomorphism

we obtain what is called classical logic. Note how classical logic, in a rule
rather difficult to motivate, destroys the design principles and attempts at
explaining the meaning of the connectives. For example, to understand the
meaning of disjunction it is no longer sufficient to understand its introduc-
tion rules, but we must also understand the law of excluded middle, which
contains and appeal to negation and falsehood. All is not lost, but we can
say that the Curry-Howard isomorphism (the subject of this lecture whose
explanation is yet to come) will fail in the presence of the law of excluded
middle.

For the rest of this lecture we will only be interested in the intuitionistic
logic as defined with the rules in Figure 1. The first observation is that a
derivable judgment H ` A true does not contain any information about its
derivation. When we assert H ` A true is derivable we mean that it has a
derivation, but we do not exhibit such a derivation. This makes it difficult
to convince someone else of the truth of A under assumptions H . So what
we would like to do is to enrich the judgment with a proof term M which
contains enough information to reconstruct the derivation.

So we would like to uniformly replace the judgment A true with M : A
(read: M is a proof of A). For assumptions A true we do not actually have
a proof of A, we assume that there is a proof. We model this by using a
variable, where each assumption is labeled by a distinct variable.

So we want to translate a judgment

A1 true, . . . , An true ` A true

to the form
x1:A1, . . . , xn:An ` M : A

in such a why that the derivation of the first judgment can be reconstructed
directly from M . First, the hypothesis rule is straightforward:

A1 true, . . . , Ai true, . . . , An true ` Ai true
Hypi

becomes

x1:A1, . . . , xi:Ai, . . . , xn:An ` xi : Ai

Hyp

Since the assumptions are labeled by distinct variables, we no longer need
to annotate the justification with an integer and we just write Hyp.

The remaining rules mention a collection of hypotheses H = (A1 true, . . . , An true)
which we annotate uniformly with distinct variables, leading to a context
Γ = (x1:A1, . . . , xn:An).

LECTURE NOTES NOVEMBER 18, 2004



The Curry-Howard Isomorphism L23.7

We begin the logical connectives with conjunction. A proof of a con-
junction A ∧ B by the introduction rule ∧I consists of a pair of proofs, one
of A and one for B.

Γ ` M : A Γ ` N : B

Γ ` pair(M,N) : A ∧B
∧I

We can recover the old rule by ignoring the proof terms, which immediately
shows that the rule is sound with respect to the truth judgment. The two
elimination rules can be considered as extracting components of this pair
of proofs, which is why we use the suggesting names fst and snd.

Γ ` M : A ∧B

Γ ` fst(M) : A
∧E1

Γ ` M : A ∧B

Γ ` snd(M) : B
∧E2

The main observations of the Curry-Howard isomorphism should now
already be visible:

1. (Propositions-as-types) Propositions of logic correspond to types of
a programming language

2. (Proofs-as-programs) Proofs in logic correspond to expressions in a
programming language

3. (Proof-checking-as-type-checking) Verifying the correctness of a proof
corresponds to type-checking its corresponding expression.

We will consider later how computations are interpreted.
Now we go back to the logical connectives, considering implication.

We need to account for the fact that the introduction rule (⊃I) introduces a
new hypotheses. In the proof term this is handled as a binding construct.
To make the reconstruction problem unambiguous we record A in the ex-
pression. A more standard notation for fn(A, x.M) would be λx:A.M .

Γ, x:A ` M : B

Γ ` fn(A, x.M) : A ⊃ B
⊃I

In words: a proof of A ⊃ B is a function which maps a proof of A to a proof
of B. This is the functional interpretation of implication in intuitionistic
logic. The elimination rule just applies such a function to an argument
proof term.

Γ ` M : A ⊃ B Γ ` N : A

Γ ` apply(M,N) : B
⊃E

LECTURE NOTES NOVEMBER 18, 2004



L23.8 The Curry-Howard Isomorphism

In summary, logical implications corresponds to function types, analogous
to the way that logical conjunctions correspond to product types.

It is not hard to guess that logical disjunction will correspond to disjoint
sum types.

Γ ` M : A

Γ ` inl(B,M) : A ∨B
∨I1

Γ ` M : B

Γ ` inr(A,M) : A ∨B
∨I2

Proof by cases corresponds to the case construct over disjoint sums.

Γ ` M : A ∨B Γ, x:A ` N : C Γ, y:B ` P : C

Γ ` case(M,x.N, y.P ) : C
∨E

The logical constant > just becomes the unit type, and the logical con-
stant ⊥ the void (empty) type.

Γ ` unit : >
>I

Γ ` M : ⊥
Γ ` abort(C,M) : C

⊥E

The following table summarizes the correspondence between proposi-
tions and types under the Curry-Howard isomorphism:

Conjunction A ∧B τ × σ Product Type
Truth > 1 Unit Type
Implication A ⊃ B τ → σ Function Type
Disjunction A ∨B τ + σ Sum Type
Falsehood ⊥ 0 Void Type

As example, consider the following sample proofs, now written out
in proof terms rather than full derivations. We have elided some (in this
case, redundant) types1 in the terms. As remarked in the lecture about bi-
directional type-checking, if the term is normal and the type is known on
the outside, then no internal type annotations are necessary.

fn(x.pair(snd(x), fst(x))) : (A ∧B) ⊃ (B ∧A)
fn(x.fn(y.apply(x, inl(y)))) : ((A ∨B) ⊃ C) ⊃ (A ⊃ C)

At this point it should be easy to see that we could actually let ML do
some of the proof-checking for us. For example, with definitions

1that is, propositions

LECTURE NOTES NOVEMBER 18, 2004



The Curry-Howard Isomorphism L23.9

fun pair(x,y) = (x,y);
fun fst(x,y) = x;
fun snd(x,y) = y;

the first proof term above can be written as

- (fn x => pair (snd x, fst x));
val it = fn : ’a * ’b -> ’b * ’a

which constitutes a proof of (A ∧ B) ⊃ (B ∧ A). The principal difficulty
is that the presence of effects and recursion destroys the isomorphism. For
example,

fun loop(x) = loop(x);
val loop = fn : ’a -> ’b

but the corresponding proposition, A ⊃ B cannot be true in general. This
means type-checking along in ML does not implement proof-checking; we
also have to verify (by hand) the absence of effects and recursion.

We will not formalize this here, but it follows by straightforward in-
ductions that for a derivation D of A1 true, . . . , An true ` A true we can
systematically construct a derivation of x1:A1, . . . , xn:An ` M : A. More-
over, if x1:A1, . . . , xn:An ` M : A then by erasure of terms (and appro-
priate labeling of the hypothesis rule) we can construct a derivation of
A1 true, . . . , An true ` A true. These two translations are inverses of each
other. In other words, the correspondence is really an ismorphism between
proofs and programs.

It remains to consider what the role of computation is on the logical side.
The whole construction seems too beautiful and elegant for the operational
semantics of programs to be a simple accident without logical counterpart.
In order to investigate this we return to the question of how to ascertain the
“correctness” of the introduction and elimination rules for each connective.
For example, it would clearly be unsound to have an elimination rule that
allows us to infer A true from A ∨ B true. But how can we formally reject
such an incorrect elimination rule?

In our context here we break down the correctness of the elimination
rules with respect to the introduction rules into two questions: local sound-
ness and local completeness.

LECTURE NOTES NOVEMBER 18, 2004



L23.10 The Curry-Howard Isomorphism

Local soundness means that the elimination rules are not too strong. We
have to verify that we cannot obtain more knowledge from a judgment by
an elimination rule than we put into it by an introduction rule. More for-
mally, we must show that if we introduce a connective and then eliminate
it, we could derive the conclusion without this detour.

In the example of conjunction, this property is quite easy to see. We con-
sider the possible combinations of introductions followed by eliminations,
of which there are two.

D
A true

E
B true

A ∧B true
∧I

A true
∧E1

D
A true

E
B true

A ∧B true
∧I

B true
∧E2

In the first case, we can eliminate the detour because D is already a deriva-
tion of the conclusion, in the second case it is E . We write this as local
reductions on proofs that witness the local soundness of the rules.

D
A true

E
B true

A ∧B true
∧I

A true
∧E1 7→

D
A true

D
A true

E
B true

A ∧B true
∧I

B true
∧E2 7→

E
B true

If we annotate the derivations with proof terms we see that each local re-
duction is a rule of computation on proof terms.

D
M : A

E
N : B

pair(M,N) : A ∧B
∧I

fst(pair(M,N)) : A
∧E1

7→
D

M : A

D
M : A

E
N : B

pair(M,N) : A ∧B
∧I

snd(pair(M,N)) : B
∧E2

7→
E

N : B

LECTURE NOTES NOVEMBER 18, 2004



The Curry-Howard Isomorphism L23.11

Written out using only proof terms:

fst(pair(M,N)) 7→ M
snd(pair(M,N)) 7→ N

So proof reduction arises from showing that a “detour”, that is, the in-
troduction of a connective immediately followed by its elimination, can be
avoided, leading to a “more direct” proof of the conclusion. The logically
important property of this proof reduction is that it witnesses local sound-
ness: we cannot get more information out of the truth of a proposition than
we put into it.

Under the Curry-Howard isomorphism, computation then arises from
a notion of proof reduction by imposing a particular strategy of reduction.
For ML, this strategy is characterized by the search rules that specify where
a reduction may take place. It seems that nothing about the logical meaning
of a program forces the particular strategy adopted by ML, which means
that the logical reading underdetermines how to evaluate programs but
instead provides only the basic building blocks, namely the reductions.

To extend our analysis of proof reductions to implications, we need to
consider substitution. Recall the substitution principle:

If H1 ` A true and H1, A true,H2 ` C true then H1,H2 ` C true.

If we annotate this with proof terms we obtain:

If Γ1 ` M : A and Γ1, x:A, Γ2 ` N : C
then Γ1,Γ2 ` {M/x}N : C.

Now the pure proof reduction for an implication introduction followed
by its elimination has the form

D
H,A true ` B true

H ` A ⊃ B true
⊃I E

H ` A true

H ` B true
⊃E

7→
D′

H ` B true

where the existence of D′ is justified by the substitution property applied
to E and D. With proof terms:

D
Γ, x:A ` M : B

Γ ` fn(A, x.M) : A ⊃ B
⊃I E

Γ ` N : A

Γ ` apply(fn(A, x.M), N) : B
⊃E

7→
D′

Γ ` {N/x}M : B

LECTURE NOTES NOVEMBER 18, 2004



L23.12 The Curry-Howard Isomorphism

Written out using only proof terms:

apply(fn(A, x.M), N) 7→ {N/x}M

For sums, we have to check two combinations of introduction followed
by an elimination, because there are to rules for disjunction introduction.
We leave it to the reader to write out the proof reduction that witnesses
local soundness. The corresponding proof term reductions are

case(inl(B,M), x.N, y.P ) 7→ {M/x}N
case(inr(A,M), x.N, y.P ) 7→ {M/y}P

For truth (>) and falsehood (⊥) no local reductions arise, because truth
has only and introduction and falsehood only an elimination. Consequently,
there are no reduction rules for the unit and void types, which is consistent
with our definition of MinML.

One further remark regarding the connection between proof reductions
and rules of computation. The fact that proof reductions transform one
valid proof of Γ ` M : A to another valid proof Γ ` M ′ : A ensures type
preservation for the corresponding computation rules in the programming
languages.

There is a second check that is usually applied to the introduction and
elimination rules for a connective to verify that the elimination rules are
strong enough to recover all the information that has been put into a propo-
sition. We have to verify that if we assume we have a proof of a proposi-
tion, we can apply elimination rules in such a way that we can reconstruct a
proof of the original proposition by an introduction rule. We call this prop-
erty local completeness, which is witnessed by a local expansion. However,
local expansions do not have an immediate computational meaning, but
are connected to the canonical forms property (also called value inversion).
We do not explore this connection further and just show an example.

D
H ` A ∧B true =⇒

D
H ` A ∧B true

H ` A true
∧E1

D
H ` A ∧B true

H ` B true
∧E2

H ` A ∧B true
∧I

With proof terms:

D
Γ ` M : A ∧B =⇒

D
Γ ` M : A ∧B

Γ ` fst(M) : A
∧E1

D
Γ ` M : A ∧B

Γ ` snd(M) : B
∧E2

Γ ` pair(fst(M), snd(N)) : A ∧B
∧I

LECTURE NOTES NOVEMBER 18, 2004



The Curry-Howard Isomorphism L23.13

Or purely on terms (indicating the type of the left-hand side)

M : A ∧B =⇒ pair(fst(M), snd(M))

LECTURE NOTES NOVEMBER 18, 2004


