
Lectures Notes on
Progress

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 7
September 21, 2004

In this lecture we prove the progress property for MinML, discuss type
safety, and consider which other language features may be desirable or un-
desirable in a language definition. We also consider how we have to change
the operational semantics and the statement of the progress theorem when
run-time errors are permitted in the language, such as division by zero. As
a reminder, type safety consists of preservation (proved in the last lecture)
and progress in the following form.

1. (Preservation) If · ` e : τ and e 7→ e′ then · ` e′ : τ

2. (Progress) If · ` e : τ then either

(i) e 7→ e′ for some e′, or

(ii) e value

3. (Determinism) If · ` e : τ and e 7→ e′ and e 7→ e′′ then e′ = e′′.

Determinism is of particular interest for sequential languages, where we
generally expect it to hold.

Not all these properties are of equal importance, and we may have
perfectly well-designed languages in which some of these properties fail.
However, we want to clearly classify languages based on these properties
and understand if they hold, or fail to hold. Please consult the notes of the
previous lecture for a further discussion of some of these issues.

LECTURE NOTES SEPTEMBER 21, 2004

L7.2 Progress

Progress. We now turn our attention to the progress theorem. This asserts
that the computation of closed well-typed expressions will never get stuck,
although it is quite possible that it does not terminate. For example,

rec (int , x.x)

reduces in one step to itself.
The critical observation behind the proof of the progress theorem is that

a value of function type will indeed be a function, a value of boolean type
will indeed by either true or false , etc. If that were not the case, then we
might reach an expression such as

apply (num(0), num(1))

which is a stuck expression because num(0) and num(1) are values, so nei-
ther any of the search rules nor the reduction rule for application can be
applied. We state these critical properties as an inversion lemmas, because
they are not immediately syntactically obvious.

Lemma 1 (Value Inversion)
(i) If · ` v : int and v value then v = num(n) for some integer n.

(ii) If · ` v : bool and v value then v = true or v = false .

(iii) If · ` v : arrow (τ1, τ2) and v value then v = fn (τ1, x.e) for some x.e.

Proof: We distinguish cases on v value and then apply inversion to the
given typing judgment. We show only the proof of property (ii).

Case: v = num(n). Then we would have · ` num(n) : bool , which is
impossible by inspection of the typing rules.

Case: v = true . Then we are done, since, indeed v = true or v =
false .

Case: v = false . Symmetric to the previous case.

Case: v = fn (τ, x.e). As in the first case, this is impossible by inspection
of the typing rules. �

The preceding value inversion lemmas is also called the canonical forms
theorem [Ch. 10.2]. Now we can prove the progress theorem.

LECTURE NOTES SEPTEMBER 21, 2004

Progress L7.3

Theorem 2 (Progress)
If · ` e : τ then

(i) either e 7→ e′ for some e′,

(ii) or e value.

Proof: By rule induction on the given typing derivation. Again, we show
only the cases for booleans and functions.

Case
x:τ ∈ ·
· ` x : τ

VarTyp

This case is impossible since the context is empty.

Case

· ` true : bool
TrueTyp

Then true value.

Case

· ` false : bool
FalseTyp

Then false value.

Case
· ` e1 : bool · ` e2 : τ · ` e3 : τ

· ` if (e1, e2, e3) : τ
IfTyp

In this case it is clear that if (e1, e2, e3) cannot be a value, so we have to
show that if (e1, e2, e3) 7→ e′ for some e′.

Either e1 7→ e′1 for some e′1 or e1 value By i.h.

e1 7→ e′1 First subcase
if (e1, e2, e3) 7→ if (e′1, e2, e3) By rule

e1 value Second subcase
e1 = true or e1 = false By value inversion

e1 = true First subsubcase
if (true , e2, e3) 7→ e2 By rule

e1 = false Second subsubcase
if (false , e2, e3) 7→ e3 By rule

LECTURE NOTES SEPTEMBER 21, 2004

L7.4 Progress

Case

·, x:τ1 ` e2 : τ2

· ` fn (τ1, x.e2) : arrow (τ1, τ2)
FnTyp

Then fn (τ1, x.e2) value.

Case

· ` e1 : arrow (τ2, τ) · ` e2 : τ2

· ` apply (e1, e2) : τ
AppTyp

Either e1 7→ e′1 for some e′1 or e1 value By i.h.

e1 7→ e′1 First subcase
apply (e1, e2) 7→ apply (e′1, e2) By rule

e1 value Second subcase
Either e2 7→ e′2 for some e′2 or e2 value By i.h.

e2 7→ e′2 First subsubcase
apply (e1, e2) 7→ apply (e1, e

′
2) By rule (since e1 value)

e2 value Second subsubcase
e1 = fn (τ2, x.e′1) By value inversion
apply (e1, e2) 7→ {e2/x}e′1 By rule (since e2 value)

Case

·, x:τ ` e′ : τ

· ` rec (τ, x.e′) : τ
RecTyp

rec (τ, x.e′) 7→ {rec (τ, x.e′)/x}e′ By rule

�

Determinism. We will leave the proof of determinism to the reader—it is
not difficult given all the examples and techniques we have seen so far.

Call-by-Value vs. Call-by-Name. The MinML language as described so
far is a call-by-value language because the argument of a function call is

LECTURE NOTES SEPTEMBER 21, 2004

Progress L7.5

evaluated before passed to the function. This is captured the following
rules.

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

cbv.1

v1 value e2 7→ e′2
apply (v1, e2) 7→ apply (v1, e

′
2)

cbv.2

v2 value

apply (fn (τ2, x.e1), v2) 7→ {v2/x}e1
cbv.f

We can create a call-by-name variant by not permitting the evaluation of
the argument (rule cbv.2 disappears), but just passing it into the function
(replace cbv.r by cbn.r). The first rule just carries over.

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

cbn.1

apply (fn (τ1, x.e1), e2) 7→ {e2/x}e cbn.f

Evaluation Order. Our specification of MinML requires the we first eval-
uate e1 and then e2 in application apply (e1, e2). We can also reduce from
right to left by switching the two search rules. The last one remains the
same.

e2 7→ e′2
apply (e1, e

′
2) 7→ apply (e1, e

′
2)

cbvr.1

e1 7→ e′1 v2 value

apply (e1, v2) 7→ apply (e′1, v2)
cbvr.2

v2 value

apply (fn (τ2, x.e1), v2) 7→ {v2/x}e1
cbvr.f

The O’Caml dialect of ML indeed evaluates from right-to-left, while Stan-
dard ML evaluates from left-to-right. There does not seem to be an intrinsic
reason to prefer one over the other, except perhaps that evaluating a term
in the order it is written appears slightly more natural.

Accounting for Errors 1 It is not always possible to avoid run-time errors,
due to limitations in type systems. To illustrate how they can be accounted

1This section adapted from notes by Daniel Spoonhower, Fall 2003.

LECTURE NOTES SEPTEMBER 21, 2004

L7.6 Progress

for we will add another primitive operator over integers, division. Unlike
addition, subtraction, and multiplication, the division of integers is a partial
function. That is, it does not yield a result for all possible inputs. In partic-
ular, consider the expression div(num(2), num(0)) . We would like to
include division in our type-safe language, but so far we have no way of
accounting for what “happens” when we evaluate a division by zero.

(One possibility is to add an additional value of type int that is the
result of such an expression. This value is sometimes called “NaN” or “not-
a-number” when it appears in specifications of floating-point arithmetic. If
we were to do so, however, we would have other problems to consider; for
example, what is the result of num(1) = NaN ?)

We will add a new expression to our language, shown below, to cap-
ture the state when an expression is “undefined”. (This expression is also
sometimes known wrong or as the “stuck state.”)

e ::= . . . | error

(Is error a value? Why or why not? It may become more clear when we
introduce a typing rule for error below.)

With error in hand, we can give an evaluation rule that applies to the
expression above.

div(num(k), num(0)) 7→ error
DivZero

We haven’t quite finished with evaluation yet, however: consider the
following expression:

if(div(num(2), num(0)),...) 7→ if(error,...) 7→ ?

Even though we’ve made progress with division, we still are stuck at the
if . We will need to add new rules to propagate errors through all of our
existing constructs. Analogously to our search evaluation rules, we add:

apply(error , e2) 7→ error
v1 value

apply(v1, error) 7→ error

if(error , e1, e2) 7→ error let(error , x.e) 7→ error

v1 value . . . vj−1 value
o(v1, . . . , vj−1, error , ej+1, . . . , en) 7→ error

Here, o stands for a primitive operations with n arguments.

LECTURE NOTES SEPTEMBER 21, 2004

Progress L7.7

Typing For Errors Before we can go ahead and extend our safety proof,
we must give a type to our new expression. Since no actual computation is
performed once we have encountered an error , we can assign any type to
an expression that has failed (i.e., there is no way to distinguish one error
from another).

Γ ` error : τ
ErrorTyp

Preservation

If · ` e : τ and e 7→ e′ then · ` e′ : τ . We have previously shown this proof
by induction over the derivation of e 7→ e′, so we have six new cases to
consider. We show only two.

Rule DivZero e′ = error
There are no assumptions to this rule, so we have no subderivations to

consider. However, we only need to show that · ` e′ : τ . Since e′ = error ,
this is easy enough.

· ` error : τ By rule

Rule IfError e′ = error
Again we have no assumptions and so, again, no subderivations. In

fact, this case looks just like the last case!

· ` error : τ By rule

All of our new cases for preservation look exactly like this since each
evaluates (in one step) to the error expression. With these new cases, our
extended proof of preservation is complete.

Progress

Here we must extend the theorem: if · ` e : τ then either

i. e value or

ii. e 7→ e′ for some e′ or

iii. e is error

This proof was given by rule induction over the derivation of · ` e : τ ,
and we have one new typing rule to consider, so we have one additional
case.

LECTURE NOTES SEPTEMBER 21, 2004

L7.8 Progress

Rule ErrorTyp e = error

e is error By assumption

Easy enough! Have we finished? No, because we have extended the in-
duction hypothesis, we have an additional subcase to consider each time
we applied it.

Consider the case for IfTyp:

...
· ` e : bool

...
· ` e1 : τ

...
· ` e2 : τ

· ` if(e, e1, e2) : τ

Previously, we applied the induction hypothesis to the first subderivation
to conclude:

Either e value or e 7→ e′

Now must must consider each of:

Either e value or e 7→ e′ or e is error

The first two subcases are identical to those in our old proof, but we must
finish the third.

e is error By case (iii) of i.h.
if(error , e1, e2) 7→ error By rule

We have shown that there is a step to be made and so progress is main-
tained.

In each of the applications of the induction hypothesis, we will have
a new subcase, and (if we’ve set things up correctly) we should have a
new rule to apply. If we find a subcase and no rule to apply, it probably
means that we’ve forgotten a rule; conversely, if a new rule doesn’t apply
anywhere, it was probably unnecessary.

(Is it clear now why we don’t want error to be a value? Think about
value inversion with respect to error .)

LECTURE NOTES SEPTEMBER 21, 2004

