
Uniprocessor Garbage Collection Techniques
�Submitted to ACM Computing Surveys�

Paul R� Wilson

Abstract

We survey basic garbage collection algorithms� and
variations such as incremental and generational collec�
tion� we then discuss low�level implementation consid�
erations and the relationships between storage man�
agement systems� languages� and compilers� Through�
out� we attempt to present a uni�ed view based on
abstract traversal strategies� addressing issues of con�
servatism� opportunism� and immediacy of reclama�
tion� we also point out a variety of implementation
details that are likely to have a signi�cant impact on
performance�

Contents

� Automatic Storage Reclamation �

��� Motivation � � � � � � � � � � � � � � � � �

��� The Two�Phase Abstraction � � � � � � � 	

��
 Object Representations � � � � � � � � � �

��	 Overview of the Paper � � � � � � � � � � �

� Basic Garbage Collection Techniques �

��� Reference Counting � � � � � � � � � � � � �

����� The Problem with Cycles � � � � 


����� The E�ciency Problem � � � � � 


����
 Deferred Reference Counting� � � �

����	 Variations on Reference Counting �

��� Mark�Sweep Collection � � � � � � � � � � �

��
 Mark�Compact Collection � � � � � � � � ��

��	 Copying Garbage Collection � � � � � � � ��

��	�� A Simple Copying Collector�
�Stop�and�Copy� Using Semi�
spaces� � � � � � � � � � � � � � � � ��

��	�� E�ciency of Copying Collection� ��

��� Non�Copying Implicit Collection � � � � �


��� Choosing Among Basic Tracing Tech�
niques � � � � � � � � � � � � � � � � � � � ��

��
 Problems with Simple Tracing Collectors ��

��� Conservatism in Garbage Collection � � �


� Incremental Tracing Collectors ��


�� Coherence and Conservatism � � � � � � ��

�� Tricolor Marking � � � � � � � � � � � � � ��


���� Incremental approaches � � � � � ��

�
 Write Barrier Algorithms � � � � � � � � ��


�
�� Snapshot�at�beginning
Algorithms � � � � � � � � � � � � ��


�
�� Incremental Update Write�Bar�
rier Algorithms � � � � � � � � � � ��


�	 Baker�s Read Barrier Algorithms � � � � ��

�	�� Incremental Copying � � � � � � � ��

�	�� Baker�s Incremental Non�copy�

ing Algorithm�The Treadmill � �


�	�
 Conservatism of Baker�s Read

Barrier � � � � � � � � � � � � � � � �	

�	�	 Variations on the Read Barrier � �	


�� Replication Copying Collection � � � � � ��

�� Coherence and Conservatism Revisited � ��


���� Coherence and Conservatism in
Non�copying collection � � � � � � ��


���� Coherence and Conservatism in
Copying Collection � � � � � � � � ��


���
 �Radical� Collection and Op�
portunistic Tracing � � � � � � � � ��


�
 Comparing Incremental Techniques � � � �


�� Real�time Tracing Collection � � � � � � ��


���� Root Set Scanning � � � � � � � � ��

���� Guaranteeing Su�cient Progress 
�

���
 Trading worst�case performance

for expected performance � � � � 
�

���	 Discussion � � � � � � � � � � � � � 
�


�� Choosing an Incremental Algorithm � � 
�

� Generational Garbage Collection ��

	�� Multiple Subheaps with Varying Col�
lection Frequencies � � � � � � � � � � � � 



	�� Advancement Policies � � � � � � � � � � 
�
	�
 Heap Organization � � � � � � � � � � � � 



	�
�� Subareas in copying schemes � � 


	�
�� Generations in Non�copying

Schemes � � � � � � � � � � � � � � 
�
	�
�
 Discussion � � � � � � � � � � � � � 
�

�



	�	 Tracking Intergenerational References � 
�

	�	�� Indirection Tables � � � � � � � � 
�

	�	�� Ungar�s Remembered Sets � � � � 
�

	�	�
 Page Marking � � � � � � � � � � � 	�

	�	�	 Word marking � � � � � � � � � � 	�

	�	�� Card Marking � � � � � � � � � � � 	�

	�	�� Store Lists � � � � � � � � � � � � 	�

	�	�
 Discussion � � � � � � � � � � � � � 	�

	�� The Generational Principle Revisited � � 	


	�� Pitfalls of Generational Collection � � � 	


	���� The �Pig in the Snake� Problem 	


	���� Small Heap�allocated Objects � � 		

	���
 Large Root Sets � � � � � � � � � 		

	�
 Real�time Generational Collection � � � 	�

� Locality Considerations ��

��� Varieties of Locality E�ects � � � � � � � 	�

��� Locality of Allocation and Short�lived
objects � � � � � � � � � � � � � � � � � � � 	


��
 Locality of Tracing Traversals � � � � � � 	�

��	 Clustering of Longer�Lived Objects � � � 	�

��	�� Static Grouping � � � � � � � � � 	�

��	�� Dynamic Reorganization � � � � � 	�

��	�
 Coordination with Paging � � � � ��

� Low�level Implementation Issues �	

��� Pointer Tags and Object Headers � � � � ��

��� Conservative Pointer Finding � � � � � � ��

��
 Linguistic Support and Smart Pointers � �


��	 Compiler Cooperation and Optimizations �


��	�� GC�Anytime vs� Safe�Points
Collection � � � � � � � � � � � � � �


��	�� Partitioned
Register Sets vs� Variable Rep�
resentation Recording � � � � � � �	

��	�
 Optimization of Garbage Col�
lection Itself � � � � � � � � � � � � �	

��� Free Storage Management � � � � � � � � ��

��� Compact Representations of Heap Data ��

� GC�related Language Features ��


�� Weak Pointers � � � � � � � � � � � � � � ��


�� Finalization � � � � � � � � � � � � � � � � �



�
 Multiple Differently�Managed Heaps � � �



 Overall Cost of Garbage Collection �


� Conclusions and Areas for Research �


� Automatic Storage Reclama�

tion

Garbage collection is the automatic reclamation of
computer storage �Knu��� Coh��� App���� While in
many systems programmers must explicitly reclaim
heap memory� at some point in the program� by us�
ing a �free� or �dispose� statement� garbage collected
systems free the programmer from this burden� The
garbage collector�s function is to �nd data objects�

that are no longer in use and make their space avail�
able for reuse by the the running program� An object
is considered garbage �and subject to reclamation� if it
is not reachable by the running program via any path
of pointer traversals� Live �potentially reachable� ob�
jects are preserved by the collector� ensuring that the
program can never traverse a �dangling� pointer into
a deallocated object�
This paper surveys basic and advanced techniques

in uniprocessor garbage collectors� especially those de�
veloped in the last decade� �For a more thorough
treatment of older techniques� see �Knu��� Coh�����
While it does not cover parallel or distributed col�
lection� it presents a uni�ed taxonomy of incremen�
tal techniques� which lays the groundwork for under�
standing parallel and distributed collection� Our fo�
cus is on garbage collection for procedural and object�
oriented languages� but much of the information here
will serve as background for understanding garbage
collection of other kinds of systems� such as functional
or logic programming languages� �For further reading
on various advanced topics in garbage collection� the
papers collected in �BC��� are a good starting point���

��� Motivation

Garbage collection is necessary for fully modular pro�
gramming� to avoid introducing unnecessary inter�
module dependencies� A software routine operating
on a data structure should not have to depend what

�We use the term �heap� in the simple sense of a storage
management technique which allows any dynamically allocated
object to be freed at any time�this is not to be confused with
heap data structures which maintain ordering constraints�

�We use the term �object� loosely� to include any kind of
structured data record� such as Pascal records or C structs� as
well as full��edged objects with encapsulation and inheritance�
in the sense of object�oriented programming�

�There is also a repository of papers in PostScript for�
mat available for anonymous Internet FTP from our FTP
host 	cs�utexas�edu
pub�garbage�� Among other things� this
repository contains collected papers from several garbage col�
lection workshops held in conjunction with ACM OOPSLA
conferences�

�



other routines may be operating on the same struc�
ture� unless there is some good reason to coordinate
their activities� If objects must be deallocated explic�
itly� some module must be responsible for knowing
when other modules are not interested in a particular
object�
Since liveness is a global property� this introduces

nonlocal bookkeeping into routines that might other�
wise be locally understandable and �exibly compos�
able� This bookkeeping inhibits abstraction and re�
duces extensibility� because when new functionality is
implemented� the bookkeeping code must be updated�
The runtime cost of the bookkeeping itself may be sig�
ni�cant� and in some cases it may introduce the need
for additional synchronization in concurrent applica�
tions�
The unnecessary complications and subtle interac�

tions created by explicit storage allocation are espe�
cially troublesome because programming mistakes of�
ten break the basic abstractions of the programming
language� making errors hard to diagnose� Failing to
reclaim memory at the proper point may lead to slow
memory leaks� with unreclaimedmemory gradually ac�
cumulating until the process terminates or swap space
is exhausted� Reclaimingmemory too soon can lead to
very strange behavior� because an object�s space may
be reused to store a completely di�erent object while
an old pointer still exists� The same memory may
therefore be interpreted as two di�erent objects simul�
taneously with updates to one causing unpredictable
mutations of the other�
These programming errors are particularly dan�

gerous because they often fail to show up repeat�
ably� making debugging very di�cult�they may never
show up at all until the program is stressed in an un�
usual way� If the allocator happens not to reuse a
particular object�s space� a dangling pointer may not
cause a problem� Later� after delivery� the application
may crash when it makes a di�erent set of memory de�
mands� or is linked with a di�erent allocation routine�
A slow leak may not be noticeable while a program is
being used in normal ways�perhaps for many years�
because the program terminates before too much extra
space is used� But if the code is incorporated into a
long�running server program� the server will eventu�
ally exhaust the available memory and crash��

Recently� tools have become available to help pro�

�Long�running server programs are also especiallyvulnerable
to leaks due to exception handling� Exception handling code
may fail to deallocate all of the objects allocated by an aborted
operation� and these occasional failures may cause a leak that
is extremely hard to diagnose�

grammers �nd the source of leaked objects in lan�
guages with explicit deallocation �HJ���� and these can
be extremely valuable� Unfortunately� these tools only
�nd actual leaks during particular program runs� not
possible leaks due to uncommon execution patterns�
Finding the source of a leaked object does not always
solve the problem� either� the programmer still must
be able to determine a point where the object should
be deallocated�if one exists� If one doesn�t exist� the
program must be restructured� �This kind of �gar�
bage debugging� is better than nothing� but it is very
fallible� and it must be repeated whenever programs
change� it is desirable to actually eliminate leaks in
general� rather than certain detectable leaks in partic�
ular��

Explicit allocation and reclamation lead to program
errors in more subtle ways as well� It is common for
programmers to allocate a moderate number of ob�
jects statically� so that it is unnecessary to allocate
them on the heap and decide when and where to re�
claim them� This leads to �xed limitations on pro�
grams� making them fail when those limitations are
exceeded� possibly years later when computer memo�
ries �and data sets� are much larger� This �brittleness�
makes code much less reusable� because the undocu�
mented limits cause it to fail� even if it�s being used in
a way consistent with its abstractions� �For example�
many compilers fail when faced with automatically�
generated programs that violate assumptions about
�normal� programming practices��

These problems lead many applications program�
mers to implement some form of application�speci�c
garbage collection within a large software system� to
avoid most of the headaches of explicit storage man�
agement� Many large programs have their own data
types that implement reference counting� for example�
Because they are coded up for a one�shot application�
these collectors are often both incomplete and buggy�
The garbage collectors themselves are therefore often
unreliable� as well as being hard to use because they
are not integrated into the programming language�
The fact that such kludges exist despite these prob�
lems is a testimony to the value of garbage collection�
and it suggests that garbage collection should be part
of programming language implementations�

It is widely believed that garbage collection is quite
expensive relative to explicit heap management� but
several studies have shown that garbage collection is
sometimes cheaper �App�
� than explicit deallocation�
and is usually competitive with it �Zor�
�� As we will
explain later� a well�implemented garbage collector






should slow running programs down by �very roughly�
�� percent� relative to explicit heap deallocation� for
a high�performance system�� A signi�cant number of
programmers regard such a cost as unacceptable� but
many others believe it to be a small price for the ben�
e�ts in convenience� development time� and reliability�
Reliable cost comparisons are di�cult� however�

partly because the use of explicit deallocation a�ects
the structure of programs in ways that may themselves
be expensive� either directly or by their impact on the
software development process�
For example� explicit heap management often moti�

vates extra copying of objects so that deallocation de�
cisions can be made locally�i�e�� each module makes
its own copy of a piece of information� and can deal�
locate it when it is �nished with it� This not only in�
curs extra heap allocation� but undermines an object�
oriented design strategy� where the identities of ob�
jects may be as important as the values they store�
�The e�ciency cost of this extra copying is hard to
measure� because you can�t fairly compare the same
program with and without garbage collection� the pro�
gram would have been written di�erently if garbage
collection were assumed��
In the long run� poor program structure may incur

extra development and maintenance costs� and may
cause programmer time to be spent on maintaining in�
elegant code rather than optimizing time�critical parts
of applications� even if garbage collection costs more
than explicit deallocation� the savings in human re�
sources may pay for themselves in increased attention
to other aspects of the system��

For these reasons� garbage�collected languages have
long been used for the programming of sophisticated
algorithms using complex data structures� Many
garbage�collected languages �such as Lisp and Pro�
log� were originally popular for arti�cial intelligence
programming� but have been found useful for general�
purpose programming� Functional and logic program�
ming languages generally incorporate garbage col�
lection� because their unpredictable execution pat�
terns make it especially di�cult to explicitly pro�
gram storage deallocation� The in�uential object�

�This is an estimate on our part� and in principle we think
garbage collection performance could be somewhat better
 in
practice� it is sometimes worse� Reasons for 	and limitations
of� such an estimate will be discussed in Sect� �� One practical
problem is that state�of�the�art garbage collectors have not gen�
erally been available for most high�performance programming
systems�

�For example� Rovner reports that an estimated ��� of de�
veloper e�ort in theMesa systemwas spent dealingwith di�cult
storage management issues �Rov����

oriented programming language Smalltalk incorpo�
rates garbage collection� more recently� garbage collec�
tion has been incorporated into many general�purpose
languages �such as Ei�el� Self and Dylan�� including
those designed in part for low�level systems program�
ming �such as Modula�
 and Oberon�� Several add�on
packages also exist to retro�t C and C�� with gar�
bage collection�
In the rest of this paper� we focus on garbage col�

lectors that are built into a language implementation�
or grafted onto a language by importing routines from
a library� The usual arrangement is that the heap al�
location routines perform special actions to reclaim
space� as necessary� when a memory request is not
easily satis�ed� Explicit calls to the �deallocator�
are unnecessary because calls to the collector are im�
plicit in calls to the allocator�the allocator invokes
the garbage collector as necessary to free up the space
it needs�
Most collectors require some cooperation from the

compiler �or interpreter�� as well� object formats must
be recognizable by the garbage collector� and certain
invariants must be preserved by the running code� De�
pending on the details of the garbage collector� this
may require slight changes to the compiler�s code gen�
erator� to emit certain extra information at compile
time� and perhaps execute di�erent instruction se�
quences at run time �Boe��� WH��� BC��� DMH����
�Contrary to widespread misconceptions� there is no
con�ict between using a compiled language and gar�
bage collection� state�of�the art implementations of
garbage�collected languages use sophisticated optimi�
zing compilers��

��� The Two�Phase Abstraction

Garbage collection automatically reclaims the space
occupied by data objects that the running program
can never access again� Such data objects are referred
to as garbage� The basic functioning of a garbage col�
lector consists� abstractly speaking� of two parts�

�� Distinguishing the live objects from the garbage
in some way �garbage detection�� and

�� Reclaiming the garbage objects� storage� so that
the running program can use it �garbage reclama�

tion��

In practice� these two phases may be functionally
or temporally interleaved� and the reclamation tech�
nique is strongly dependent on the garbage detection
technique�

	



In general� garbage collectors use a �liveness� cri�
terion that is somewhat more conservative than those
used by other systems� In an optimizing compiler�
a value may be considered dead at the point that it
can never be used again by the running program� as
determined by control �ow and data �ow analysis� A
garbage collector typically uses a simpler� less dynamic
criterion� de�ned in terms of a root set and reachability
from these roots�
At the moment the garbage collector is invoked� the

active variables are considered live� Typically� this in�
cludes statically�allocated global or module variables�
as well as local variables in activation records on the
activation stack�s�� and any variables currently in reg�
isters� These variables form the root set for the traver�
sal� Heap objects directly reachable from any of these
variables could be accessed by the running program�
so they must be preserved� In addition� since the pro�
gram might traverse pointers from those objects to
reach other objects� any object reachable from a live
object is also live� Thus the set of live objects is sim�
ply the set of objects on any directed path of pointers
from the roots�
Any object that is not reachable from the root set

is garbage� i�e�� useless� because there is no legal se�
quence of program actions that would allow the pro�
gram to reach that object� Garbage objects therefore
can�t a�ect the future course of the computation� and
their space may be safely reclaimed�

��� Object Representations

In most of this paper� we make the simplifying as�
sumption that heap objects are self�identifying� i�e��
that it is easy to determine the type of an object at run
time� Implementations of statically�typed garbage col�
lected languages typically have hidden �header� �elds
on heap objects� i�e�� an extra �eld containing type in�
formation� which can be used to decode the format of
the object itself� �This is especially useful for �nding
pointers to other objects�� Such information can eas�
ily be generated by the compiler� which must have the
information to generate correct code for references to
objects� �elds�
Dynamically�typed languages such as Lisp and

Smalltalk usually use tagged pointers� a slightly short�
ened representation of the hardware address is used�
with a small type�identifying �eld in place of the miss�
ing address bits� This also allows short immutable ob�
jects �in particular� small integers� to be represented
as unique bit patterns stored directly in the �address�
part of the �eld� rather than actually referred to by

an address� This tagged representation supports poly�
morphic �elds which may contain either one of these
�immediate� objects� or a pointer to an object on the
heap� Usually� these short tags are augmented by ad�
ditional information in heap�allocated objects� head�
ers�

For a purely statically�typed language� no per�
object runtime type information is actually necessary�
except the types of the root set variables� �This will be
discussed in Sect ����� Despite this� headers are often
used for statically�typed languages� because it sim�
pli�es implementations at little cost� �Conventional
�explicit� heap management systems often use object
headers for similar reasons��

�Garbage collectors using conservative pointer �nd�
ing �BW��� are usable with little or no coopera�
tion from the compiler�not even the types of named
variables�but we will defer discussion of these collec�
tors until Sect �����

��� Overview of the Paper

The remainder of this paper will discuss basic and
advanced topics in garbage collection�

The basic algorithms include reference count�
ing� mark�sweep� mark�compact� copying� and non�
copying implicit collection� these are discussed in
Sect� ��

Incremental techniques �Sect� 
� allow garbage col�
lection to proceed piecemeal while applications are
running� These techniques can reduce the disruptive�
ness of garbage collection� and may even provide real�
time guarantees� They can also be generalized into
concurrent collections� which proceed on another pro�
cessor� in parallel with actual program execution�

Generational schemes �Sect� 	� improve e�ciency
and�or locality by garbage collecting a smaller area
more often� while exploiting typical lifetime character�
istics to avoid undue overhead from long�lived objects�
Because most collections are of a small area� typical
pause times are also short� and for many applications
this is an acceptable alternative to incremental collec�
tion�

Section � discusses locality properties of garbage�
collected systems� which are rather di�erent from
those of conventional systems� Section � explores low�
level implementation considerations� such as object
formats and compiler cooperation� Section 
 describes
language�level constraints and features for garbage�
collected systems� Section � presents the basic con�
clusions of the paper and sketches research issues in

�



garbage collection of parallel� distributed� and persis�
tent systems�

� Basic Garbage Collection

Techniques

Given the basic two�part operation of a garbage collec�
tor� many variations are possible� The �rst part� dis�
tinguishing live objects from garbage� may be done in
two ways� by reference counting� or by tracing� �The
general term �tracing�� used to include both marking
and copying techniques� is taken from �LD�
��� Ref�
erence counting garbage collectors maintain counts of
the number of pointers to each object� and this count
is used as a local approximation of determining true
liveness� Tracing collectors determine liveness more
directly� by actually traversing the pointers that the
program could traverse� to �nd all of the objects the
program might reach� There are several varieties of
tracing collection� mark�sweep� mark�compact� copy�
ing� and non�copying implicit reclamation�� Because
each garbage detection scheme has a major in�uence
on reclamation and on reuse techniques� we will intro�
duce reclamation methods as we go�

��� Reference Counting

In a reference counting system �Col���� each object
has an associated count of the references �pointers� to
it� Each time a reference to the object is created� e�g��
when a pointer is copied from one place to another
by an assignment� the pointed�to object�s count is in�
cremented� When an existing reference to an object
is eliminated� the count is decremented� �See Fig� ���
The memory occupied by an object may be reclaimed
when the object�s count equals zero� since that in�
dicates that no pointers to the object exist and the
running program cannot reach it�
In a straightforward reference counting system� each

object typically has a header �eld of information de�
scribing the object� which includes a sub�eld for the
reference count� Like other header information� the
reference count is generally not visible at the language
level�
When the object is reclaimed� its pointer �elds are

examined� and any objects it holds pointers to also

�Some authors use the term �garbage collection� in a nar�
rower sense� which excludes reference counting and�or copy col�
lection systems
 we prefer the more inclusive sense because of its
popular usage and because it�s less awkward than �automatic
storage reclamation��

ROOT
SET

HEAP SPACE

1

1

1

2

1

1

1

2

Figure �� Reference counting�

have their reference counts decremented� since refer�
ences from a garbage object don�t count in determin�
ing liveness� Reclaiming one object may therefore lead
to the transitive decrementing of reference counts and
reclaiming many other objects� For example� if the
only pointer into some large data structure becomes
garbage� all of the reference counts of the objects in
that structure typically become zero� and all of the
objects are reclaimed�

In terms of the abstract two�phase garbage collec�
tion� the adjustment and checking of reference counts
implements the �rst phase� and the reclamation phase
occurs when reference counts hit zero� These opera�
tions are both interleaved with the execution of the
program� because they may occur whenever a pointer
is created or destroyed�

One advantage of reference counting is this incre�
mental nature of most of its operation�garbage col�
lection work �updating reference counts� is interleaved
closely with the running program�s own execution� It
can easily be made completely incremental and real

time� that is� performing at most a small and bounded
amount of work per unit of program execution�

Clearly� the normal reference count adjustments are
intrinsically incremental� never involving more than a
few operations for any given operation that the pro�
gram executes� The transitive reclamation of whole
data structures can be deferred� and also done a lit�
tle at a time� by keeping a list of freed objects whose
reference counts have become zero but which haven�t
yet been processed�

This incremental collection can easily satisfy �real
time� requirements� guaranteeing that memory man�
agement operations never halt the executing program

�



for more than a very brief period� This can support
applications in which guaranteed response time is crit�
ical� incremental collection ensures that the program
is allowed to perform a signi�cant� though perhaps ap�
preciably reduced� amount of work in any signi�cant
amount of time� �Subtleties of real�time requirements
will be discussed in the context of tracing collection
in Sect� 
����
One minor problem with reference counting systems

is that the reference counts themselves take up space�
In some systems� a whole machine word is used for
each object�s reference count �eld� actually allowing
it to represent any number of pointers that might ac�
tually exist in the whole system� In other systems� a
shorter �eld is used� with a provision for over�ow�if
the reference count reaches the maximum that can be
represented by the �eld size� its count is �xed at that
maximum value� and the object cannot be reclaimed�
Such objects �and other objects reachable from them�
must be reclaimed by another mechanism� typically by
a tracing collector that is run occasionally� as we will
explain below� such a fall�back reclamation strategy is
usually required anyway�
There are two major problems with reference count�

ing garbage collectors� they are not always e�ective�
and they are di�cult to make e�cient�

����� The Problem with Cycles

The e�ectiveness problem is that reference counting
fails to reclaim circular structures� If the pointers
in a group of objects create a �directed� cycle� the
objects� reference counts are never reduced to zero�
even if there is no path to the objects from the root set

�McB�
��
Figure � illustrates this problem� Consider the iso�

lated pair of objects on the right� Each holds a pointer
to the other� and therefore each has a reference count
of one� Since no path from a root leads to either�
however� the program can never reach them again�
Conceptually speaking� the problem here is that ref�

erence counting really only determines a conservative
approximation of true liveness� If an object is not
pointed to by any variable or other object� it is clearly
garbage� but the converse is often not true�
It may seem that circular structures would be very

unusual� but they are not� While most data struc�
tures are acyclic� it is not uncommon for normal pro�
grams to create some cycles� and a few programs cre�
ate very many of them� For example� nodes in trees
may have �backpointers�� to their parents� to facilitate
certain operations� More complex cycles are some�

ROOT
SET

HEAP SPACE

1

1

1

1

2

1

1

1

Figure �� Reference counting with unreclaimable cy�
cle�

times formed by the use of hybrid data structures
which combine advantages of simpler data structures�
as well as when the application�domain semantics of
data are most naturally expressed with cycles�
Systems using reference counting garbage collectors

therefore usually include some other kind of garbage
collector as well� so that if too much uncollectable
cyclic garbage accumulates� the other method can be
used to reclaim it�
Many programmers who use reference�counting sys�

tems �such as Interlisp and early versions of Smalltalk�
have modi�ed their programming style to avoid the
creation of cyclic garbage� or to break cycles before
they become a nuisance� This has a negative impact
on program structure� and many programs still have
storage �leaks� that accumulate cyclic garbage which
must be reclaimed by some other means�� These leaks�
in turn� can compromise the real�time nature of the al�
gorithm� because the system may have to fall back to
the use of a non�real�time collector at a critical mo�
ment�

����� The E
ciency Problem

The e�ciency problem with reference counting is that
its cost is generally proportional to the amount of
work done by the running program� with a fairly large
constant of proportionality� One cost is that when
a pointer is created or destroyed� its referent�s count
must be adjusted� If a variable�s value is changed from
one pointer to another� two objects� counts must be

��Bob��� describes modi�cations to reference counting to al�
low it to handle some special cases of cyclic structures� but this
restricts the programmer to certain stereotyped patterns�






adjusted�one object�s reference count must be incre�
mented� the other�s decremented and then checked to
see if it has reached zero�

Short�lived stack variables can incur a great deal
of overhead in a simple reference�counting scheme�
When an argument is passed� for example� a new
pointer appears on the stack� and usually disappears
almost immediately because most procedure activa�
tions �near the leaves of the call graph� return very
shortly after they are called� In these cases� reference
counts are incremented� and then decremented back
to their original value very soon� It is desirable to op�
timize away most of these increments and decrements
that cancel each other out�

����� Deferred Reference Counting�

Much of this cost can be optimized away by special
treatment of local variables �DB
�� Bak�
b�� Rather
than always adjusting reference counts and reclaiming
objects whose counts become zero� references from the
local variables are not included in this bookkeeping
most of the time� Usually� reference counts are only
adjusted to re�ect pointers from one heap object to
another� This means that reference counts may not be
accurate� because pointers from the stack may be cre�
ated or destroyed without being accounted for� that�
in turn� means that objects whose count drops to zero
may not actually be reclaimable� Garbage collection
can only be done when references from the stack are
taken into account as well�

Every now and then� the reference counts are
brought up to date by scanning the stack for pointers
to heap objects� Then any objects whose reference
counts are still zero may be safely reclaimed� The
interval between these phases is generally chosen to
be short enough that garbage is reclaimed often and
quickly� yet still long enough that the cost of peri�
odically updating counts �for stack references� is not
high�

This deferred reference counting �DB
�� avoids ad�
justing reference counts for most short�lived pointers
from the stack� and greatly reduces the overhead of
reference counting� When pointers from one heap ob�
ject to another are created or destroyed� however� the
reference counts must still be adjusted� This cost is
still roughly proportional to the amount of work done
by the running program in most systems� but with a
lower constant of proportionality�

����� Variations on Reference Counting

Another optimization of reference counting is to use
a very small count �eld� perhaps only a single bit�
to avoid the need for a large �eld per object �WF

��
Given that deferred reference counting avoids the need
to continually represent the count of pointers from the
stack� a single bit is su�cient for most objects� the
minority of objects whose reference counts are not zero
or one cannot be reclaimed by the reference counting
system� but are caught by a fall�back tracing collector�
A one�bit reference count can also be represented in
each pointer to an object� if there is an unused address
bit� rather than requiring a header �eld �SCN�	��
There is another cost of reference�counting collec�

tion that is harder to escape� When objects� counts
go to zero and they are reclaimed� some bookkeeping
must be done to make them available to the running
program� Typically this involves linking the freed ob�
jects into one or more �free lists� of reusable objects�
from which the program�s allocation requests are sat�
is�ed� �Other strategies will be discussed in the con�
text of mark�sweep collection� in Sect� ����� Objects�
pointer �elds must also be examined so that their ref�
erents can be freed�
It is di�cult to make these reclamation operations

take less than a few tens of instructions per object�
and the cost is therefore proportional to the number
of objects allocated by the running program�
These costs of reference counting collection have

combined with its failure to reclaim circular structures
to make it unattractive to most implementors in re�
cent years� As we will explain below� other techniques
are usually more e�cient and reliable� Still� refer�
ence counting has its advantages� The immediacy of
reclamation can have advantages for overall memory
usage and for locality of reference �DeT���� a refer�
ence counting system may perform with little degra�
dation when almost all of the heap space is occupied
by live objects� while other collectors rely on trading
more space for higher e�ciency�	 It can also be useful
for �nalization� that is� performing �clean�up� actions
�like closing �les� when objects die �Rov���� this will
be discussed in Sect� 
�
The inability to reclaim cyclic structures is not a

problem in some languages which do not allow the con�
struction of cyclic data structures at all �e�g�� purely
functional languages�� Similarly� the relatively high
cost of side�e�ecting pointers between heap objects is
not a problem in languages with few side�e�ects� Ref�

	As �WLM��� shows� generational techniques can recapture
some of this locality� but not all of it�

�



erence counts themselves may be valuable in some sys�
tems� For example� they may support optimizations in
functional language implementations by allowing de�
structive modi�cation of uniquely�referenced objects�
Distributed garbage collection can bene�t from the
local nature of garbage collection� compared to global
tracing� �In some con�gurations the cost of reference
counting is only incurred for pointers to objects on
other nodes� tracing collection is used within a node
and to compute changes to reference counts between
nodes�� Future systems may �nd other uses for ref�
erence counting� perhaps in hybrid collectors also in�
volving other techniques� or when augmented by spe�
cialized hardware �PS��� Wis��� GC�
� to keep CPU
costs down�
While reference counting is out of vogue for high�

performance implementations of general�purpose pro�
gramming languages� it is quite common in other ap�
plications� where acyclic data structures are common�
Most �le systems use reference counting to manage
�les and�or disk blocks� Because of its simplicity� sim�
ple reference counting is often used in various software
packages� including simple interpretive languages and
graphical toolkits� Despite its weakness in the area of
reclaiming cycles� reference counting is common even
in systems where cycles may occur�

��� Mark�Sweep Collection

Mark�sweep garbage collectors �McC��� are named for
the two phases that implement the abstract garbage
collection algorithm we described earlier�

�� Distinguish the live objects from the garbage�
This is done by tracing�starting at the root
set and actually traversing the graph of pointer
relationships�usually by either a depth��rst or
breadth��rst traversal� The objects that are
reached are marked in some way� either by alter�
ing bits within the objects� or perhaps by record�
ing them in a bitmap or some other kind of
table��


�� Reclaim the garbage� Once the live objects have
been made distinguishable from the garbage ob�
jects� memory is swept� that is� exhaustively ex�
amined� to �nd all of the unmarked �garbage� ob�
jects and reclaim their space� Traditionally� as
with reference counting� these reclaimed objects
are linked onto one or more free lists so that they
are accessible to the allocation routines�

�
More detailed descriptions of traversal and marking algo�
rithms can be found in �Knu��� and �Coh����

There are three major problems with traditional
mark�sweep garbage collectors� First� it is di�cult to
handle objects of varying sizes without fragmentation
of the available memory� The garbage objects whose
space is reclaimed are interspersed with live objects�
so allocation of large objects may be di�cult� several
small garbage objects may not add up to a large con�
tiguous space� This can be mitigated somewhat by
keeping separate free lists for objects of varying sizes�
and merging adjacent free spaces together� but dif�
�culties remain� �The system must choose whether
to allocate more memory as needed to create small
data objects� or to divide up large contiguous hunks of
free memory and risk permanently fragmenting them�
This fragmentation problem is not unique to mark�
sweep�it occurs in reference counting as well� and in
most explicit heap management schemes��

The second problem with mark�sweep collection is
that the cost of a collection is proportional to the size
of the heap� including both live and garbage objects�
All live objects must be marked� and all garbage ob�
jects must be collected� imposing a fundamental limi�
tation on any possible improvement in e�ciency�

The third problem involves locality of reference�
Since objects are never moved� the live objects re�
main in place after a collection� interspersed with free
space� Then new objects are allocated in these spaces�
the result is that objects of very di�erent ages be�
come interleaved in memory� This has negative im�
plications for locality of reference� and simple �non�
generational� mark�sweep collectors are often consid�
ered unsuitable for most virtual memory applications�
�It is possible for the �working set� of active objects
to be scattered across many virtual memory pages� so
that those pages are frequently swapped in and out
of main memory�� This problem may not be as bad
as many have thought� because objects are often cre�
ated in clusters that are typically active at the same
time� Fragmentation and locality problems are is un�
avoidable in the general case� however� and a potential
problem for some programs�

It should be noted that these problems may not be
insurmountable� with su�ciently clever implementa�
tion techniques� For example� if a bitmap is used for
mark bits� 
� bits can be checked at once with a 
��bit
integer ALU operation and conditional branch� If live
objects tend to survive in clusters in memory� as they
apparently often do� this can greatly diminish the con�
stant of proportionality of the sweep phase cost� the
theoretical linear dependence on heap size may not be
as troublesome as it seems at �rst glance� The clus�

�



tered survival of objects may also mitigate the local�
ity problems of re�allocating space amid live objects�
if objects tend to survive or die in groups in memory
�Hay���� the interspersing of objects used by di�erent
program phases may not be a major consideration�

��� Mark�Compact Collection

Mark�compact collectors remedy the fragmentation
and allocation problems of mark�sweep collectors�
As with mark�sweep� a marking phase traverses and
marks the reachable objects� Then objects are com�

pacted� moving most of the live objects until all of
the live objects are contiguous� This leaves the rest
of memory as a single contiguous free space� This is
often done by a linear scan through memory� �nding
live objects and �sliding� them down to be adjacent to
the previous object� Eventually� all of the live objects
have been slid down to be adjacent to a live neighbor�
This leaves one contiguous occupied area at one end of
heap memory� and implicitlymoving all of the �holes�
to the contiguous area at the other end�
This sliding compaction has several interesting

properties� The contiguous free area eliminates frag�
mentation problems so that allocating objects of vari�
ous sizes is simple� Allocation can be implemented as
the incrementing of a pointer into a contiguous area of
memory� in much the way that di�erent�sized objects
can be allocated on a stack� In addition� the garbage
spaces are simply �squeezed out�� without disturb�
ing the original ordering of objects in memory� This
can ameliorate locality problems� because the alloca�
tion ordering is usually more similar to subsequent
access orderings than an arbitrary ordering imposed
by a copying garbage collector �CG

� Cla
���
While the locality that results from sliding com�

paction is advantageous� the collection process itself
shares the mark�sweep�s unfortunate property that
several passes over the data are required� After the
initial marking phase� sliding compactors make two or
three more passes over the live objects �CN�
�� One
pass computes the new locations that objects will be
moved to� subsequent passes must update pointers to
refer to objects� new locations� and actually move the
objects� These algorithms may be therefore be signif�
icantly slower than mark�sweep if a large percentage
of data survives to be compacted�
An alternative approach is to use Daniel J� Ed�

wards� two�pointer algorithm��� which scans inward
from both ends of a heap space to �nd opportunities

��Described in an exercise on page ��� of �Knu����

for compaction� One pointer scans downward from the
top of the heap� looking for live objects� and the other
scans upward from the bottom� looking for holes to
put them in� �Many variations of this algorithm are
possible� to deal with multiple areas holding di�erent�
sized objects� and to avoid intermingling objects from
widely�dispersed areas�� For a more complete treat�
ment of compacting algorithms� see �CN�
��

��� Copying Garbage Collection

Like mark�compact �but unlike mark�sweep�� copying
garbage collection does not really �collect� garbage�
Rather� it moves all of the live objects into one area�
and the rest of the heap is then known to be available
because it contains only garbage� �Garbage collec�
tion� in these systems is thus only implicit� and some
researchers avoid applying that term to the process�
Copying collectors� like marking�and�compacting

collectors� move the objects that are reached by the
traversal to a contiguous area� While mark�compact
collectors use a separate marking phase that traverses
the live data� copying collectors integrate the traversal
of the data and the copying process� so that most ob�
jects need only be traversed once� Objects are moved
to the contiguous destination area as they are reached
by the traversal� The work needed is proportional to
the amount of live data �all of which must be copied��
The term scavenging is applied to the copying

traversal� because it consists of picking out the worth�
while objects amid the garbage� and taking them away�

����� A Simple Copying Collector� �Stop�

and�Copy� Using Semispaces�

A very common kind of copying garbage collector is
the semispace collector �FY��� using the Cheney algo�
rithm for the copying traversal �Che
��� We will use
this collector as a reference model for much of this
paper���

In this scheme� the space devoted to the heap is
subdivided into two contiguous semispaces� During
normal program execution� only one of these semi�
spaces is in use� as shown in Fig� 
� Memory is alloca�
ted linearly upward through this �current� semispace

��As a historical note� the �rst copying collector was Min�
sky�s collector for Lisp ��� �Min���� Rather than copying data
from one area of memory to another� a single heap space was
used� The live data were copied out to a �le on disk� and
then read back in� in a contiguous area of the heap space�
On modern machines this would be unbearably slow� because
�le operations�writing and reading every live object�are now
many times slower than memory operations�

��



TOSPACE

ROOT
SET

FROMSPACE

Figure 
� A simple semispace garbage collector before
garbage collection�

TOSPACE

ROOT
SET

FROMSPACE

Figure 	� Semispace collector after garbage collection�

as demanded by the executing program� As with a
mark�compact collector� the ability to allocate from
a large� contiguous free space makes allocation sim�
ple and fast� much like allocating on a stack� there is
no fragmentation problem when allocating objects of
various sizes�
When the running program demands an allocation

that will not �t in the unused area of the current semis�
pace� the program is stopped and the copying garbage
collector is called to reclaim space �hence the term
�stop�and�copy��� All of the live data are copied from
the current semispace �fromspace� to the other semis�
pace �tospace�� Once the copying is completed� the
tospace semispace is made the �current� semispace�
and program execution is resumed� Thus the roles
of the two spaces are reversed each time the garbage
collector is invoked� �See Fig� 	��

Perhaps the simplest form of copying traversal is
the Cheney algorithm �Che
��� The immediately�
reachable objects form the initial queue of objects
for a breadth��rst traversal� A �scan� pointer is ad�
vanced through the �rst object� location by location�
Each time a pointer into fromspace is encountered�
the referred�to�object is transported to the end of the
queue� and the pointer to the object is updated to re�
fer to the new copy� The free pointer is then advanced
and the scan continues� This e�ects the �node ex�
pansion� for the breadth��rst traversal� reaching �and
copying� all of the descendants of that node� �See
Fig� �� Reachable data structures in fromspace are
shown at the top of the �gure� followed by the �rst
several states of tospace as the collection proceeds�
tospace is shown in linear address order to emphasize
the linear scanning and copying��
Rather than stopping at the end of the �rst object�

the scanning process simply continues through sub�
sequent objects� �nding their o�spring and copying
them as well� A continuous scan from the beginning
of the queue has the e�ect of removing consecutive
nodes and �nding all of their o�spring� The o�spring
are copied to the end of the queue� Eventually the
scan reaches the end of the queue� signifying that all
of the objects that have been reached �and copied�
have also been scanned for descendants� This means
that there are no more reachable objects to be copied�
and the scavenging process is �nished�
Actually� a slightly more complex process is needed�

so that objects that are reached by multiple paths are
not copied to tospace multiple times� When an ob�
ject is transported to tospace� a forwarding pointer is
installed in the old version of the object� The for�
warding pointer signi�es that the old object is obso�
lete and indicates where to �nd the new copy of the
object� When the scanning process �nds a pointer
into fromspace� the object it refers to is checked for
a forwarding pointer� If it has one� it has already
been moved to tospace� so the pointer by which it was
reached is simply updated to point to its new loca�
tion� This ensures that each live object is transported
exactly once� and that all pointers to the object are
updated to refer to the new copy�

����� E
ciency of Copying Collection�

A copying garbage collector can be made arbitrarily ef�
�cient if su�cient memory is available �Lar

� App�
��
The work done at each collection is proportional to
the amount of live data at the time of garbage collec�
tion� Assuming that approximately the same amount

��



A B

Scan Free

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

C

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

v)

A

C D

E

F

B

Scan Free

A

B

ROOT 
SET

i)

ii)

iii)

iv)

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A B

Scan Free

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

C

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

D

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A B

Scan Free

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

C

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

D

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

E

A B

Scan Free

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

C

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

D

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

E F

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

Figure �� The Cheney algorithm�s breadth��rst copying�

��



of data is live at any given time during the program�s
execution� decreasing the frequency of garbage collec�
tions will decrease the total amount of garbage collec�
tion e�ort�
A simple way to decrease the frequency of garbage

collections is to increase the amount of memory in the
heap� If each semispace is bigger� the program will run
longer before �lling it� Another way of looking at this
is that by decreasing the frequency of garbage collec�
tions� we are increasing the average age of objects at
garbage collection time� Objects that become garbage
before a garbage collection needn�t be copied� so the
chance that an object will never have to be copied is
increased�
Suppose� for example� that during a program run

twenty megabytes of memory are allocated� but only
one megabyte is live at any given time� If we have
two three�megabyte semispaces� garbage will be col�
lected about ten times� �Since the current semispace
is one third full after a collection� that leaves two
megabytes that can be allocated before the next col�
lection�� This means that the system will copy about
half as much data as it allocates� as shown in the top
part of Fig� �� �Arrows represent copying of live ob�
jects between semispaces at garbage collections��
On the other hand� if the size of the semispaces is

doubled� � megabytes of free space will be available af�
ter each collection� This will force garbage collections
a third as often� or about 
 or 	 times during the run�
This straightforwardly reduces the cost of garbage col�
lection by more than half� as shown in the bottom part
of Fig� �� �For the moment� we ignore virtual memory
paging costs� assuming that the larger heap area can
be cached in RAM rather than paged to disk� As we
will explain in Sect� ��
� paging costs may make the
use of a larger heap area impractical if there is not a
correspondingly large amount of RAM��

��� Non�Copying Implicit Collection

Recently� Wang �Wan��� and Baker �Bak��b� have �in�
dependently� proposed a new kind of non�copying col�
lector with some of the e�ciency advantages of a copy�
ing scheme� Their insight is that in a copying collector�
the �spaces� of the collector are really just a particular
implementation of sets� The tracing process removes
objects from the set subject to garbage collection� and
when tracing is complete� anything remaining in the
set is known to be garbage� so the set can be reclaimed
in its entirety� Another implementation of sets could
do just as well� provided that it has similar perfor�
mance characteristics� In particular� given a pointer

to an object� it must be easy to determine which set it
is a member of� in addition� it must be easy to switch
the roles of the sets� just as fromspace and tospace
roles are exchanged in a copy collector� �In a copying
collector� the set is an area of memory� but in a non�
copying collector it can be any kind of set of chunks
of memory that formerly held live objects��

The non�copying system adds two pointer �elds and
a �color� �eld to each object� These �elds are invisible
to the application programmer� and serve to link each
hunk of storage into a doubly�linked list that serves
as a set� The color �eld indicates which set an object
belongs to�

The operation of this collector is simple� and iso�
morphic to the copy collector�s operation� �Wang
therefore refers to this as a �fake copying� collector��
Chunks of free space are initially linked to form a
doubly�linked list� while chunks holding allocated ob�
jects are linked together into another list�

When the free list is exhausted� the collector tra�
verses the live objects and �moves� them from the allo�
cated set �which we could call the fromset� to another
set �the toset�� This is implemented by unlinking the
object from the doubly�linked fromset list� toggling its
color �eld� and linking it into the toset�s doubly�linked
list�

Just as in a copy collector� space reclamation is im�
plicit� When all of the reachable objects have been
traversed and moved from the fromset to the toset�
the fromset is known to contain only garbage� It is
therefore a list of free space� which can immediately
be put to use as a free list� �As we will explain in sec�
tion 
�	��� Baker�s scheme is actually somewhat more
complex� because his collector is incremental�� The
cost of the collection is proportional to the number of
live objects� and the garbage objects are all reclaimed
in small constant time�

This scheme can be optimized in ways that are anal�
ogous to those used in a copying collector�allocation
can be fast because the allocated and free lists can
be contiguous� and separated only by an allocation
pointer� Rather than actually unlinking objects from
one list and linking them into another� the allocator
can simply advance a pointer which points into the list
and divides the allocated segment from the free seg�
ment� Similarly� a Cheney�style breadth��rst traversal
can be implemented with only a pair of pointers� and
the scanned and free lists can be contiguous� so that
advancing the scan pointer only requires advancing
the pointer that separates them�

This scheme has both advantages and disadvantages

�




AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Figure �� Memory usage in a semispace GC� with 
 MB �top� and � MB �bottom� semispaces

�	



compared to a copy collector� On the minus side� the
per�object constants are probably a little bit higher�
and fragmentation problems are still possible� On the
plus side� the tracing cost for large objects is not as
high� As with a mark�sweep collector� the whole ob�
ject needn�t be copied� if it can�t contain pointers�
it needn�t be scanned either� Perhaps more impor�
tantly for many applications� this scheme does not
require the actual language�level pointers between ob�
jects to be changed� and this imposes fewer constraints
on compilers� As we�ll explain later� this is particu�
larly important for parallel and real�time incremental
collectors�

The space costs of this technique are usually roughly
comparable to those of a copying collector� Two
pointer �elds are required per object� but live objects
being traced do not require space for both fromspace
and tospace versions� In most cases� this appears to
make the space cost smaller than that of a copying
collector� but in some cases fragmentation costs �due
to the inability to compact data� may outweigh those
savings�

��� Choosing Among Basic Tracing
Techniques

Treatments of garbage collection algorithms in text�
books often stress asymptotic complexity� but all basic
algorithms have roughly similar costs� especially when
we view garbage collection as part of the overall free
storage management scheme� Allocation and garbage
collection are two sides of the basic memory reuse coin�
and any algorithm incurs costs at allocation time� if
only to initialize the �elds of new objects� A common
criterion for �high performance� garbage collection is
that the cost of garbage collecting objects be compa�
rable� on average� to the cost of allocating objects�

Any e�cient tracing collection scheme therefore has
three basic cost components� which are ��� the initial
work required at each collection� such as root set scan�
ning� ��� the work done at allocation �proportional to
the amount of allocation� or the number of objects
allocated� and �
� the work done during garbage de�
tection �e�g�� tracing��

The initial work is usually relatively �xed for a par�
ticular program� by the size of the root set� The
work done at allocation is generally proportional to
the number of objects allocated� plus an initialization
cost proportional to their sizes� The garbage detec�
tion cost is proportional to the amount of live data
that must be traced�

The latter two costs are usually similar� in that the
amount of live data traced is usually some signi�cant
percentage of the amount of allocated memory� Thus
algorithms whose cost is proportional to the amount
of allocation �e�g�� mark�sweep� may be competitive
with those whose cost is proportional to the amount
of live data traced �e�g�� copying��

For example� suppose that �� percent of all allo�
cated data survive a collection� and �� percent never
need to be traced� In deciding which algorithm is more
e�cient� the asymptotic complexity is less important
than the associated constants� If the cost of sweeping
an object is ten times less than the cost of copying it�
the mark�sweep collector costs about the same as as
copy collector� �If a mark�sweep collector�s sweeping
cost is billed to the allocator� and it is small relative
to the cost of initializing the objects� then it becomes
obvious that the sweep phase is just not terribly ex�
pensive�� While current copying collectors appear to
be more e�cient than current mark�sweep collectors�
the di�erence is not large for state�of�the art imple�
mentations�

In systems where memory is not much larger than
the expected amount of live data� nonmoving collec�
tors have an an advantage over copying collectors in
that they don�t need space for two versions of each live
object �the �from� and �to� versions�� When space
is very tight� reference counting collectors are partic�
ularly attractive because their performance is essen�
tially independent of the ratio of live data to total
storage�

Further� real high�performance systems often use
hybrid techniques to adjust tradeo�s for di�erent cate�
gories of objects� Many high�performance copy collec�
tors use a separate large object area �CWB��� UJ����
to avoid copying large objects from space to space�
The large objects are kept �o� to the side� and usually
managed in�place by some variety of marking traversal
and free list technique� Other hybrids may use non�
copying techniques most of the time� but occasionally
compact some of the data using copying techniques to
avoid permanent fragmentation �e�g�� �LD�
���

A major point in favor of in�place collectors is the
ability to make them conservative with respect to data
values that may or may not be pointers� This allows
them to be used for languages like C� or o��the�shelf
optimizing compilers �BW��� Bar��� BDS���� which
can make it di�cult or impossible to unambiguously
identify all pointers at run time� A non�moving col�
lector can be conservative because anything that looks
like a pointer object can be left where it is� and the

��



�possible� pointer to it doesn�t need to be changed�
In contrast� a copying collector must know whether
a value is a pointer�and whether to move the ob�
ject and update the pointer� �Conservative pointer�
�nding techniques will be discussed in more detail in
Sect� �����

Similarly� the choice of a non�moving collector can
greatly simplify the interfaces between modules writ�
ten in di�erent languages and compiled using di�erent
compilers� It is possible to pass pointers to garbage�
collectible objects as arguments to foreign routines
that were not written or compiled with garbage col�
lection in mind� This is not practical with a copying
collector� because the pointers that �escape� into for�
eign routines would have to be found and updated
when their referents moved�

��	 Problemswith Simple Tracing Col�
lectors

It is widely known that the asymptotic complexity of
copying garbage collection is excellent�the copying
cost approaches zero as memory becomes very large�
Treadmill collection shares this property� but other
collectors can be similarly e�cient if the constants
associated with memory reclamation and reallocation
are small enough� In that case� garbage detection is
the major cost�

Unfortunately� it is di�cult in practice to achieve
high e�ciency in a simple garbage collector� because
large amounts of memory are too expensive� If virtual
memory is used� the poor locality of the allocation
and reclamation cycle will generally cause excessive
paging� �Every location in the heap is used before
any location�s space is reclaimed and reused�� Simply
paging out the recently�allocated data is expensive for
a high�speed processor �Ung�	�� and the paging caused
by the copying collection itself may be tremendous�
since all live data must be touched in the process��

It therefore doesn�t generally pay to make the heap
area larger than the available main memory� �For a
mathematical treatment of this tradeo�� see �Lar

���
Even as main memory becomes steadily cheaper� lo�
cality within cache memory becomes increasingly im�
portant� so the problem is partly shifted to a di�erent
level of the memory hierarchy �WLM����

In general� we can�t achieve the potential e�ciency
of simple garbage collection� increasing the size of
memory to postpone or avoid collections can only be
taken so far before increased paging time negates any
advantage�

It is important to realize that this problem is
not unique to copying collectors� All e�cient gar�
bage collection strategies involve similar space�time
tradeo�s�garbage collections are postponed so that
garbage detection work is done less often� and that
means that space is not reclaimed as quickly� On av�
erage� that increases the amount of memory wasted
due to unreclaimed garbage�

�Deferred reference counting� like tracing collection�
also trades space for time�in giving up continual in�
cremental reclamation to avoid spending CPU cycles
in adjusting reference counts� one gives up space for
objects that become garbage and are not immedi�
ately reclaimed� At the time scale on which memory
is reused� the resulting locality characteristics must
share basic performance tradeo� characteristics with
generational collectors of the copying or mark�sweep
varieties� which will be discussed later��

While copying collectors were originally designed to
improve locality� in their simple versions this improve�
ment is not large� and their locality can in fact be
worse than that of non�compacting collectors� These
systems may improve the locality of reference to long�
lived data objects� which have been compacted into
a contiguous area� However� this e�ect is typically
swamped by the e�ects of references due to alloca�
tion� Large amounts of memory are touched between

collections� and this alone makes them unsuitable for
a virtual memory environment�

The major locality problem is not with the locality
of compacted data� or with the locality of the garbage
collection process itself� The problem is an indirect

result of the use of garbage collection�by the time
space is reclaimed and reused� it�s likely to have been
paged out� simply because too many other pages have
been allocated in between� Compaction is helpful� but
the help is generally too little� too late� With a simple
semispace copy collector� locality is likely to be worse
than that of a mark�sweep collector� because the copy
collector uses more total memory�only half the mem�
ory can be used between collections� Fragmentation
of live data is not as detrimental as the regular reuse
of two spaces���

The only way to have good locality is to ensure that
memory is large enough to hold the regularly�reused

��Slightly more complicated copying schemes appear to avoid
this problem �Ung��� WM���� but �WLM��� demonstrates that
cyclic memory reuse patterns can fare poorly in hierarchical
memories because of recency�based 	e�g�� LRU� replacement
policies� This suggests that freed memory should be reused
in a LIFO fashion 	i�e�� in the opposite order of its previous
allocation�� if the entire reuse pattern can�t be kept in memory�

��



area� �Another approach would be to rely on opti�
mizations such as prefetching� but this is not feasi�
ble at the level of virtual memory�disks simply can�t
keep up with the rate of allocation because of the enor�
mous speed di�erential between RAM and disk�� Gen�
erational collectors address this problem by reusing
a smaller amount of memory more often� they will
be discussed in Sect� 	� �For historical reasons� is
widely believed that only copying collectors can be
made generational� but this is not the case� Gener�
ational non�copying collectors are slightly harder to
construct� but they do exist and are quite practical
�DWH���� WJ�
���

Finally� the temporal distribution of a simple trac�
ing collector�s work is also troublesome in an inter�
active programming environment� it can be very dis�
ruptive to a user�s work to suddenly have the system
become unresponsive and spend several seconds gar�
bage collecting� as is common in such systems� For
large heaps� the pauses may be on the order of sec�
onds� or even minutes if a large amount of data is
dispersed through virtual memory� Generational col�
lectors alleviate this problem� because most garbage
collections only operate on a subset of memory� Even�
tually they must garbage collect larger areas� however�
and the pauses may be considerably longer� For real
time applications� this may not be acceptable�

��
 Conservatism in Garbage Collec�
tion

An ideal garbage collector would be able to reclaim
every object�s space just after the last use of the ob�
ject� Such an object is not implementable in practice�
of course� because it cannot in general be determined
when the last use occurs� Real garbage collectors can
only provide a reasonable approximation of this be�
havior� using conservative approximations of this om�
niscience� The art of e�cient garbage collector design
is largely one of introducing small degrees of conser�
vatism which signi�cantly reduce the work done in
detecting garbage� �This notion of conservatism is
very general� and should not be confused with the
speci�c pointer�identi�cation techniques used by so�
called �conservative� garbage collectors� All garbage
collectors are conservative in one or more ways��

The �rst conservative assumption most collectors
make is that any variable in the stack� globals� or reg�
isters is live� even though the variable may actually
never be referenced again� �There may be interactions
between the compiler�s optimizations and the garbage

collector�s view of the reachability graph� A compiler�s
data and control �ow analysis may detect dead values
and optimize them away entirely� Compiler optimiza�
tions may also extend the e�ective lifetime of vari�
ables� causing extra garbage to be retained� but this
is not typically a problem in practice��

Tracing collectors introduce a major temporal form
of conservatism� simply by allowing garbage to go un�
collected between collection cycles� Reference count�
ing collectors are conservative topologically� failing to
distinguish between di�erent paths that share an edge
in the graph of pointer relationships�

As the remainder of this survey will show� there are
many possible kinds and degrees of conservatism with
di�erent performance tradeo�s�

� Incremental Tracing Collec�

tors

For truly real�time applications� �ne�grained incre�
mental garbage collection appears to be necessary�
Garbage collection cannot be carried out as one atomic
action while the program is halted� so small units
of garbage collection must be interleaved with small
units of program execution� As we said earlier� it is
relatively easy to make reference counting collectors
incremental� Reference counting�s problems with ef�
�ciency and e�ectiveness discourage its use� however�
and it is therefore desirable to make tracing �copying
or marking� collectors incremental�

In much of the following discussion� the di�erence
between copying and mark�sweep collectors is not par�
ticularly important� The incremental tracing for gar�
bage detection is more interesting than the reclama�
tion of detected garbage�

The di�culty with incremental tracing is that while
the collector is tracing out the graph of reachable data
structures� the graph may change�the running pro�
gram may mutate the graph while the collector �isn�t
looking�� For this reason� discussions of incremen�
tal collectors typically refer to the running program
as the mutator �DLM�
��� �From the garbage collec�
tor�s point of view� the actual application is merely a
coroutine or concurrent process with an unfortunate
tendency to modify data structures that the collec�
tor is attempting to traverse�� An incremental scheme
must have some way of keeping track of the changes to
the graph of reachable objects� perhaps re�computing
parts of its traversal in the face of those changes�

An important characteristic of incremental tech�

�



