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Abstract

We survey basic garbage collection algorithms� and
variations such as incremental and generational collec�
tion� we then discuss low�level implementation consid�
erations and the relationships between storage man�
agement systems� languages� and compilers� Through�
out� we attempt to present a uni�ed view based on
abstract traversal strategies� addressing issues of con�
servatism� opportunism� and immediacy of reclama�
tion� we also point out a variety of implementation
details that are likely to have a signi�cant impact on
performance�
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� Automatic Storage Reclama�

tion

Garbage collection is the automatic reclamation of
computer storage �Knu��� Coh��� App���� While in
many systems programmers must explicitly reclaim
heap memory� at some point in the program� by us�
ing a �free� or �dispose� statement� garbage collected
systems free the programmer from this burden� The
garbage collector�s function is to �nd data objects�

that are no longer in use and make their space avail�
able for reuse by the the running program� An object
is considered garbage �and subject to reclamation� if it
is not reachable by the running program via any path
of pointer traversals� Live �potentially reachable� ob�
jects are preserved by the collector� ensuring that the
program can never traverse a �dangling� pointer into
a deallocated object�
This paper surveys basic and advanced techniques

in uniprocessor garbage collectors� especially those de�
veloped in the last decade� �For a more thorough
treatment of older techniques� see �Knu��� Coh�����
While it does not cover parallel or distributed col�
lection� it presents a uni�ed taxonomy of incremen�
tal techniques� which lays the groundwork for under�
standing parallel and distributed collection� Our fo�
cus is on garbage collection for procedural and object�
oriented languages� but much of the information here
will serve as background for understanding garbage
collection of other kinds of systems� such as functional
or logic programming languages� �For further reading
on various advanced topics in garbage collection� the
papers collected in �BC��� are a good starting point���

��� Motivation

Garbage collection is necessary for fully modular pro�
gramming� to avoid introducing unnecessary inter�
module dependencies� A software routine operating
on a data structure should not have to depend what

�We use the term �heap� in the simple sense of a storage
management technique which allows any dynamically allocated
object to be freed at any time�this is not to be confused with
heap data structures which maintain ordering constraints�

�We use the term �object� loosely� to include any kind of
structured data record� such as Pascal records or C structs� as
well as full��edged objects with encapsulation and inheritance�
in the sense of object�oriented programming�

�There is also a repository of papers in PostScript for�
mat available for anonymous Internet FTP from our FTP
host 	cs�utexas�edu
pub�garbage�� Among other things� this
repository contains collected papers from several garbage col�
lection workshops held in conjunction with ACM OOPSLA
conferences�
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other routines may be operating on the same struc�
ture� unless there is some good reason to coordinate
their activities� If objects must be deallocated explic�
itly� some module must be responsible for knowing
when other modules are not interested in a particular
object�
Since liveness is a global property� this introduces

nonlocal bookkeeping into routines that might other�
wise be locally understandable and �exibly compos�
able� This bookkeeping inhibits abstraction and re�
duces extensibility� because when new functionality is
implemented� the bookkeeping code must be updated�
The runtime cost of the bookkeeping itself may be sig�
ni�cant� and in some cases it may introduce the need
for additional synchronization in concurrent applica�
tions�
The unnecessary complications and subtle interac�

tions created by explicit storage allocation are espe�
cially troublesome because programming mistakes of�
ten break the basic abstractions of the programming
language� making errors hard to diagnose� Failing to
reclaim memory at the proper point may lead to slow
memory leaks� with unreclaimedmemory gradually ac�
cumulating until the process terminates or swap space
is exhausted� Reclaimingmemory too soon can lead to
very strange behavior� because an object�s space may
be reused to store a completely di�erent object while
an old pointer still exists� The same memory may
therefore be interpreted as two di�erent objects simul�
taneously with updates to one causing unpredictable
mutations of the other�
These programming errors are particularly dan�

gerous because they often fail to show up repeat�
ably� making debugging very di�cult�they may never
show up at all until the program is stressed in an un�
usual way� If the allocator happens not to reuse a
particular object�s space� a dangling pointer may not
cause a problem� Later� after delivery� the application
may crash when it makes a di�erent set of memory de�
mands� or is linked with a di�erent allocation routine�
A slow leak may not be noticeable while a program is
being used in normal ways�perhaps for many years�
because the program terminates before too much extra
space is used� But if the code is incorporated into a
long�running server program� the server will eventu�
ally exhaust the available memory and crash��

Recently� tools have become available to help pro�

�Long�running server programs are also especiallyvulnerable
to leaks due to exception handling� Exception handling code
may fail to deallocate all of the objects allocated by an aborted
operation� and these occasional failures may cause a leak that
is extremely hard to diagnose�

grammers �nd the source of leaked objects in lan�
guages with explicit deallocation �HJ���� and these can
be extremely valuable� Unfortunately� these tools only
�nd actual leaks during particular program runs� not
possible leaks due to uncommon execution patterns�
Finding the source of a leaked object does not always
solve the problem� either� the programmer still must
be able to determine a point where the object should
be deallocated�if one exists� If one doesn�t exist� the
program must be restructured� �This kind of �gar�
bage debugging� is better than nothing� but it is very
fallible� and it must be repeated whenever programs
change� it is desirable to actually eliminate leaks in
general� rather than certain detectable leaks in partic�
ular��

Explicit allocation and reclamation lead to program
errors in more subtle ways as well� It is common for
programmers to allocate a moderate number of ob�
jects statically� so that it is unnecessary to allocate
them on the heap and decide when and where to re�
claim them� This leads to �xed limitations on pro�
grams� making them fail when those limitations are
exceeded� possibly years later when computer memo�
ries �and data sets� are much larger� This �brittleness�
makes code much less reusable� because the undocu�
mented limits cause it to fail� even if it�s being used in
a way consistent with its abstractions� �For example�
many compilers fail when faced with automatically�
generated programs that violate assumptions about
�normal� programming practices��

These problems lead many applications program�
mers to implement some form of application�speci�c
garbage collection within a large software system� to
avoid most of the headaches of explicit storage man�
agement� Many large programs have their own data
types that implement reference counting� for example�
Because they are coded up for a one�shot application�
these collectors are often both incomplete and buggy�
The garbage collectors themselves are therefore often
unreliable� as well as being hard to use because they
are not integrated into the programming language�
The fact that such kludges exist despite these prob�
lems is a testimony to the value of garbage collection�
and it suggests that garbage collection should be part
of programming language implementations�

It is widely believed that garbage collection is quite
expensive relative to explicit heap management� but
several studies have shown that garbage collection is
sometimes cheaper �App�
� than explicit deallocation�
and is usually competitive with it �Zor�
�� As we will
explain later� a well�implemented garbage collector






should slow running programs down by �very roughly�
�� percent� relative to explicit heap deallocation� for
a high�performance system�� A signi�cant number of
programmers regard such a cost as unacceptable� but
many others believe it to be a small price for the ben�
e�ts in convenience� development time� and reliability�
Reliable cost comparisons are di�cult� however�

partly because the use of explicit deallocation a�ects
the structure of programs in ways that may themselves
be expensive� either directly or by their impact on the
software development process�
For example� explicit heap management often moti�

vates extra copying of objects so that deallocation de�
cisions can be made locally�i�e�� each module makes
its own copy of a piece of information� and can deal�
locate it when it is �nished with it� This not only in�
curs extra heap allocation� but undermines an object�
oriented design strategy� where the identities of ob�
jects may be as important as the values they store�
�The e�ciency cost of this extra copying is hard to
measure� because you can�t fairly compare the same
program with and without garbage collection� the pro�
gram would have been written di�erently if garbage
collection were assumed��
In the long run� poor program structure may incur

extra development and maintenance costs� and may
cause programmer time to be spent on maintaining in�
elegant code rather than optimizing time�critical parts
of applications� even if garbage collection costs more
than explicit deallocation� the savings in human re�
sources may pay for themselves in increased attention
to other aspects of the system��

For these reasons� garbage�collected languages have
long been used for the programming of sophisticated
algorithms using complex data structures� Many
garbage�collected languages �such as Lisp and Pro�
log� were originally popular for arti�cial intelligence
programming� but have been found useful for general�
purpose programming� Functional and logic program�
ming languages generally incorporate garbage col�
lection� because their unpredictable execution pat�
terns make it especially di�cult to explicitly pro�
gram storage deallocation� The in�uential object�

�This is an estimate on our part� and in principle we think
garbage collection performance could be somewhat better
 in
practice� it is sometimes worse� Reasons for 	and limitations
of� such an estimate will be discussed in Sect� �� One practical
problem is that state�of�the�art garbage collectors have not gen�
erally been available for most high�performance programming
systems�

�For example� Rovner reports that an estimated ��� of de�
veloper e�ort in theMesa systemwas spent dealingwith di�cult
storage management issues �Rov����

oriented programming language Smalltalk incorpo�
rates garbage collection� more recently� garbage collec�
tion has been incorporated into many general�purpose
languages �such as Ei�el� Self and Dylan�� including
those designed in part for low�level systems program�
ming �such as Modula�
 and Oberon�� Several add�on
packages also exist to retro�t C and C�� with gar�
bage collection�
In the rest of this paper� we focus on garbage col�

lectors that are built into a language implementation�
or grafted onto a language by importing routines from
a library� The usual arrangement is that the heap al�
location routines perform special actions to reclaim
space� as necessary� when a memory request is not
easily satis�ed� Explicit calls to the �deallocator�
are unnecessary because calls to the collector are im�
plicit in calls to the allocator�the allocator invokes
the garbage collector as necessary to free up the space
it needs�
Most collectors require some cooperation from the

compiler �or interpreter�� as well� object formats must
be recognizable by the garbage collector� and certain
invariants must be preserved by the running code� De�
pending on the details of the garbage collector� this
may require slight changes to the compiler�s code gen�
erator� to emit certain extra information at compile
time� and perhaps execute di�erent instruction se�
quences at run time �Boe��� WH��� BC��� DMH����
�Contrary to widespread misconceptions� there is no
con�ict between using a compiled language and gar�
bage collection� state�of�the art implementations of
garbage�collected languages use sophisticated optimi�
zing compilers��

��� The Two�Phase Abstraction

Garbage collection automatically reclaims the space
occupied by data objects that the running program
can never access again� Such data objects are referred
to as garbage� The basic functioning of a garbage col�
lector consists� abstractly speaking� of two parts�

�� Distinguishing the live objects from the garbage
in some way �garbage detection�� and

�� Reclaiming the garbage objects� storage� so that
the running program can use it �garbage reclama�

tion��

In practice� these two phases may be functionally
or temporally interleaved� and the reclamation tech�
nique is strongly dependent on the garbage detection
technique�

	



In general� garbage collectors use a �liveness� cri�
terion that is somewhat more conservative than those
used by other systems� In an optimizing compiler�
a value may be considered dead at the point that it
can never be used again by the running program� as
determined by control �ow and data �ow analysis� A
garbage collector typically uses a simpler� less dynamic
criterion� de�ned in terms of a root set and reachability
from these roots�
At the moment the garbage collector is invoked� the

active variables are considered live� Typically� this in�
cludes statically�allocated global or module variables�
as well as local variables in activation records on the
activation stack�s�� and any variables currently in reg�
isters� These variables form the root set for the traver�
sal� Heap objects directly reachable from any of these
variables could be accessed by the running program�
so they must be preserved� In addition� since the pro�
gram might traverse pointers from those objects to
reach other objects� any object reachable from a live
object is also live� Thus the set of live objects is sim�
ply the set of objects on any directed path of pointers
from the roots�
Any object that is not reachable from the root set

is garbage� i�e�� useless� because there is no legal se�
quence of program actions that would allow the pro�
gram to reach that object� Garbage objects therefore
can�t a�ect the future course of the computation� and
their space may be safely reclaimed�

��� Object Representations

In most of this paper� we make the simplifying as�
sumption that heap objects are self�identifying� i�e��
that it is easy to determine the type of an object at run
time� Implementations of statically�typed garbage col�
lected languages typically have hidden �header� �elds
on heap objects� i�e�� an extra �eld containing type in�
formation� which can be used to decode the format of
the object itself� �This is especially useful for �nding
pointers to other objects�� Such information can eas�
ily be generated by the compiler� which must have the
information to generate correct code for references to
objects� �elds�
Dynamically�typed languages such as Lisp and

Smalltalk usually use tagged pointers� a slightly short�
ened representation of the hardware address is used�
with a small type�identifying �eld in place of the miss�
ing address bits� This also allows short immutable ob�
jects �in particular� small integers� to be represented
as unique bit patterns stored directly in the �address�
part of the �eld� rather than actually referred to by

an address� This tagged representation supports poly�
morphic �elds which may contain either one of these
�immediate� objects� or a pointer to an object on the
heap� Usually� these short tags are augmented by ad�
ditional information in heap�allocated objects� head�
ers�

For a purely statically�typed language� no per�
object runtime type information is actually necessary�
except the types of the root set variables� �This will be
discussed in Sect ����� Despite this� headers are often
used for statically�typed languages� because it sim�
pli�es implementations at little cost� �Conventional
�explicit� heap management systems often use object
headers for similar reasons��

�Garbage collectors using conservative pointer �nd�
ing �BW��� are usable with little or no coopera�
tion from the compiler�not even the types of named
variables�but we will defer discussion of these collec�
tors until Sect �����

��� Overview of the Paper

The remainder of this paper will discuss basic and
advanced topics in garbage collection�

The basic algorithms include reference count�
ing� mark�sweep� mark�compact� copying� and non�
copying implicit collection� these are discussed in
Sect� ��

Incremental techniques �Sect� 
� allow garbage col�
lection to proceed piecemeal while applications are
running� These techniques can reduce the disruptive�
ness of garbage collection� and may even provide real�
time guarantees� They can also be generalized into
concurrent collections� which proceed on another pro�
cessor� in parallel with actual program execution�

Generational schemes �Sect� 	� improve e�ciency
and�or locality by garbage collecting a smaller area
more often� while exploiting typical lifetime character�
istics to avoid undue overhead from long�lived objects�
Because most collections are of a small area� typical
pause times are also short� and for many applications
this is an acceptable alternative to incremental collec�
tion�

Section � discusses locality properties of garbage�
collected systems� which are rather di�erent from
those of conventional systems� Section � explores low�
level implementation considerations� such as object
formats and compiler cooperation� Section 
 describes
language�level constraints and features for garbage�
collected systems� Section � presents the basic con�
clusions of the paper and sketches research issues in
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garbage collection of parallel� distributed� and persis�
tent systems�

� Basic Garbage Collection

Techniques

Given the basic two�part operation of a garbage collec�
tor� many variations are possible� The �rst part� dis�
tinguishing live objects from garbage� may be done in
two ways� by reference counting� or by tracing� �The
general term �tracing�� used to include both marking
and copying techniques� is taken from �LD�
��� Ref�
erence counting garbage collectors maintain counts of
the number of pointers to each object� and this count
is used as a local approximation of determining true
liveness� Tracing collectors determine liveness more
directly� by actually traversing the pointers that the
program could traverse� to �nd all of the objects the
program might reach� There are several varieties of
tracing collection� mark�sweep� mark�compact� copy�
ing� and non�copying implicit reclamation�� Because
each garbage detection scheme has a major in�uence
on reclamation and on reuse techniques� we will intro�
duce reclamation methods as we go�

��� Reference Counting

In a reference counting system �Col���� each object
has an associated count of the references �pointers� to
it� Each time a reference to the object is created� e�g��
when a pointer is copied from one place to another
by an assignment� the pointed�to object�s count is in�
cremented� When an existing reference to an object
is eliminated� the count is decremented� �See Fig� ���
The memory occupied by an object may be reclaimed
when the object�s count equals zero� since that in�
dicates that no pointers to the object exist and the
running program cannot reach it�
In a straightforward reference counting system� each

object typically has a header �eld of information de�
scribing the object� which includes a sub�eld for the
reference count� Like other header information� the
reference count is generally not visible at the language
level�
When the object is reclaimed� its pointer �elds are

examined� and any objects it holds pointers to also

�Some authors use the term �garbage collection� in a nar�
rower sense� which excludes reference counting and�or copy col�
lection systems
 we prefer the more inclusive sense because of its
popular usage and because it�s less awkward than �automatic
storage reclamation��
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Figure �� Reference counting�

have their reference counts decremented� since refer�
ences from a garbage object don�t count in determin�
ing liveness� Reclaiming one object may therefore lead
to the transitive decrementing of reference counts and
reclaiming many other objects� For example� if the
only pointer into some large data structure becomes
garbage� all of the reference counts of the objects in
that structure typically become zero� and all of the
objects are reclaimed�

In terms of the abstract two�phase garbage collec�
tion� the adjustment and checking of reference counts
implements the �rst phase� and the reclamation phase
occurs when reference counts hit zero� These opera�
tions are both interleaved with the execution of the
program� because they may occur whenever a pointer
is created or destroyed�

One advantage of reference counting is this incre�
mental nature of most of its operation�garbage col�
lection work �updating reference counts� is interleaved
closely with the running program�s own execution� It
can easily be made completely incremental and real

time� that is� performing at most a small and bounded
amount of work per unit of program execution�

Clearly� the normal reference count adjustments are
intrinsically incremental� never involving more than a
few operations for any given operation that the pro�
gram executes� The transitive reclamation of whole
data structures can be deferred� and also done a lit�
tle at a time� by keeping a list of freed objects whose
reference counts have become zero but which haven�t
yet been processed�

This incremental collection can easily satisfy �real
time� requirements� guaranteeing that memory man�
agement operations never halt the executing program
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for more than a very brief period� This can support
applications in which guaranteed response time is crit�
ical� incremental collection ensures that the program
is allowed to perform a signi�cant� though perhaps ap�
preciably reduced� amount of work in any signi�cant
amount of time� �Subtleties of real�time requirements
will be discussed in the context of tracing collection
in Sect� 
����
One minor problem with reference counting systems

is that the reference counts themselves take up space�
In some systems� a whole machine word is used for
each object�s reference count �eld� actually allowing
it to represent any number of pointers that might ac�
tually exist in the whole system� In other systems� a
shorter �eld is used� with a provision for over�ow�if
the reference count reaches the maximum that can be
represented by the �eld size� its count is �xed at that
maximum value� and the object cannot be reclaimed�
Such objects �and other objects reachable from them�
must be reclaimed by another mechanism� typically by
a tracing collector that is run occasionally� as we will
explain below� such a fall�back reclamation strategy is
usually required anyway�
There are two major problems with reference count�

ing garbage collectors� they are not always e�ective�
and they are di�cult to make e�cient�

����� The Problem with Cycles

The e�ectiveness problem is that reference counting
fails to reclaim circular structures� If the pointers
in a group of objects create a �directed� cycle� the
objects� reference counts are never reduced to zero�
even if there is no path to the objects from the root set

�McB�
��
Figure � illustrates this problem� Consider the iso�

lated pair of objects on the right� Each holds a pointer
to the other� and therefore each has a reference count
of one� Since no path from a root leads to either�
however� the program can never reach them again�
Conceptually speaking� the problem here is that ref�

erence counting really only determines a conservative
approximation of true liveness� If an object is not
pointed to by any variable or other object� it is clearly
garbage� but the converse is often not true�
It may seem that circular structures would be very

unusual� but they are not� While most data struc�
tures are acyclic� it is not uncommon for normal pro�
grams to create some cycles� and a few programs cre�
ate very many of them� For example� nodes in trees
may have �backpointers�� to their parents� to facilitate
certain operations� More complex cycles are some�
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Figure �� Reference counting with unreclaimable cy�
cle�

times formed by the use of hybrid data structures
which combine advantages of simpler data structures�
as well as when the application�domain semantics of
data are most naturally expressed with cycles�
Systems using reference counting garbage collectors

therefore usually include some other kind of garbage
collector as well� so that if too much uncollectable
cyclic garbage accumulates� the other method can be
used to reclaim it�
Many programmers who use reference�counting sys�

tems �such as Interlisp and early versions of Smalltalk�
have modi�ed their programming style to avoid the
creation of cyclic garbage� or to break cycles before
they become a nuisance� This has a negative impact
on program structure� and many programs still have
storage �leaks� that accumulate cyclic garbage which
must be reclaimed by some other means�� These leaks�
in turn� can compromise the real�time nature of the al�
gorithm� because the system may have to fall back to
the use of a non�real�time collector at a critical mo�
ment�

����� The E
ciency Problem

The e�ciency problem with reference counting is that
its cost is generally proportional to the amount of
work done by the running program� with a fairly large
constant of proportionality� One cost is that when
a pointer is created or destroyed� its referent�s count
must be adjusted� If a variable�s value is changed from
one pointer to another� two objects� counts must be

��Bob��� describes modi�cations to reference counting to al�
low it to handle some special cases of cyclic structures� but this
restricts the programmer to certain stereotyped patterns�






adjusted�one object�s reference count must be incre�
mented� the other�s decremented and then checked to
see if it has reached zero�

Short�lived stack variables can incur a great deal
of overhead in a simple reference�counting scheme�
When an argument is passed� for example� a new
pointer appears on the stack� and usually disappears
almost immediately because most procedure activa�
tions �near the leaves of the call graph� return very
shortly after they are called� In these cases� reference
counts are incremented� and then decremented back
to their original value very soon� It is desirable to op�
timize away most of these increments and decrements
that cancel each other out�

����� Deferred Reference Counting�

Much of this cost can be optimized away by special
treatment of local variables �DB
�� Bak�
b�� Rather
than always adjusting reference counts and reclaiming
objects whose counts become zero� references from the
local variables are not included in this bookkeeping
most of the time� Usually� reference counts are only
adjusted to re�ect pointers from one heap object to
another� This means that reference counts may not be
accurate� because pointers from the stack may be cre�
ated or destroyed without being accounted for� that�
in turn� means that objects whose count drops to zero
may not actually be reclaimable� Garbage collection
can only be done when references from the stack are
taken into account as well�

Every now and then� the reference counts are
brought up to date by scanning the stack for pointers
to heap objects� Then any objects whose reference
counts are still zero may be safely reclaimed� The
interval between these phases is generally chosen to
be short enough that garbage is reclaimed often and
quickly� yet still long enough that the cost of peri�
odically updating counts �for stack references� is not
high�

This deferred reference counting �DB
�� avoids ad�
justing reference counts for most short�lived pointers
from the stack� and greatly reduces the overhead of
reference counting� When pointers from one heap ob�
ject to another are created or destroyed� however� the
reference counts must still be adjusted� This cost is
still roughly proportional to the amount of work done
by the running program in most systems� but with a
lower constant of proportionality�

����� Variations on Reference Counting

Another optimization of reference counting is to use
a very small count �eld� perhaps only a single bit�
to avoid the need for a large �eld per object �WF

��
Given that deferred reference counting avoids the need
to continually represent the count of pointers from the
stack� a single bit is su�cient for most objects� the
minority of objects whose reference counts are not zero
or one cannot be reclaimed by the reference counting
system� but are caught by a fall�back tracing collector�
A one�bit reference count can also be represented in
each pointer to an object� if there is an unused address
bit� rather than requiring a header �eld �SCN�	��
There is another cost of reference�counting collec�

tion that is harder to escape� When objects� counts
go to zero and they are reclaimed� some bookkeeping
must be done to make them available to the running
program� Typically this involves linking the freed ob�
jects into one or more �free lists� of reusable objects�
from which the program�s allocation requests are sat�
is�ed� �Other strategies will be discussed in the con�
text of mark�sweep collection� in Sect� ����� Objects�
pointer �elds must also be examined so that their ref�
erents can be freed�
It is di�cult to make these reclamation operations

take less than a few tens of instructions per object�
and the cost is therefore proportional to the number
of objects allocated by the running program�
These costs of reference counting collection have

combined with its failure to reclaim circular structures
to make it unattractive to most implementors in re�
cent years� As we will explain below� other techniques
are usually more e�cient and reliable� Still� refer�
ence counting has its advantages� The immediacy of
reclamation can have advantages for overall memory
usage and for locality of reference �DeT���� a refer�
ence counting system may perform with little degra�
dation when almost all of the heap space is occupied
by live objects� while other collectors rely on trading
more space for higher e�ciency�	 It can also be useful
for �nalization� that is� performing �clean�up� actions
�like closing �les� when objects die �Rov���� this will
be discussed in Sect� 
�
The inability to reclaim cyclic structures is not a

problem in some languages which do not allow the con�
struction of cyclic data structures at all �e�g�� purely
functional languages�� Similarly� the relatively high
cost of side�e�ecting pointers between heap objects is
not a problem in languages with few side�e�ects� Ref�

	As �WLM��� shows� generational techniques can recapture
some of this locality� but not all of it�

�



erence counts themselves may be valuable in some sys�
tems� For example� they may support optimizations in
functional language implementations by allowing de�
structive modi�cation of uniquely�referenced objects�
Distributed garbage collection can bene�t from the
local nature of garbage collection� compared to global
tracing� �In some con�gurations the cost of reference
counting is only incurred for pointers to objects on
other nodes� tracing collection is used within a node
and to compute changes to reference counts between
nodes�� Future systems may �nd other uses for ref�
erence counting� perhaps in hybrid collectors also in�
volving other techniques� or when augmented by spe�
cialized hardware �PS��� Wis��� GC�
� to keep CPU
costs down�
While reference counting is out of vogue for high�

performance implementations of general�purpose pro�
gramming languages� it is quite common in other ap�
plications� where acyclic data structures are common�
Most �le systems use reference counting to manage
�les and�or disk blocks� Because of its simplicity� sim�
ple reference counting is often used in various software
packages� including simple interpretive languages and
graphical toolkits� Despite its weakness in the area of
reclaiming cycles� reference counting is common even
in systems where cycles may occur�

��� Mark�Sweep Collection

Mark�sweep garbage collectors �McC��� are named for
the two phases that implement the abstract garbage
collection algorithm we described earlier�

�� Distinguish the live objects from the garbage�
This is done by tracing�starting at the root
set and actually traversing the graph of pointer
relationships�usually by either a depth��rst or
breadth��rst traversal� The objects that are
reached are marked in some way� either by alter�
ing bits within the objects� or perhaps by record�
ing them in a bitmap or some other kind of
table��


�� Reclaim the garbage� Once the live objects have
been made distinguishable from the garbage ob�
jects� memory is swept� that is� exhaustively ex�
amined� to �nd all of the unmarked �garbage� ob�
jects and reclaim their space� Traditionally� as
with reference counting� these reclaimed objects
are linked onto one or more free lists so that they
are accessible to the allocation routines�

�
More detailed descriptions of traversal and marking algo�
rithms can be found in �Knu��� and �Coh����

There are three major problems with traditional
mark�sweep garbage collectors� First� it is di�cult to
handle objects of varying sizes without fragmentation
of the available memory� The garbage objects whose
space is reclaimed are interspersed with live objects�
so allocation of large objects may be di�cult� several
small garbage objects may not add up to a large con�
tiguous space� This can be mitigated somewhat by
keeping separate free lists for objects of varying sizes�
and merging adjacent free spaces together� but dif�
�culties remain� �The system must choose whether
to allocate more memory as needed to create small
data objects� or to divide up large contiguous hunks of
free memory and risk permanently fragmenting them�
This fragmentation problem is not unique to mark�
sweep�it occurs in reference counting as well� and in
most explicit heap management schemes��

The second problem with mark�sweep collection is
that the cost of a collection is proportional to the size
of the heap� including both live and garbage objects�
All live objects must be marked� and all garbage ob�
jects must be collected� imposing a fundamental limi�
tation on any possible improvement in e�ciency�

The third problem involves locality of reference�
Since objects are never moved� the live objects re�
main in place after a collection� interspersed with free
space� Then new objects are allocated in these spaces�
the result is that objects of very di�erent ages be�
come interleaved in memory� This has negative im�
plications for locality of reference� and simple �non�
generational� mark�sweep collectors are often consid�
ered unsuitable for most virtual memory applications�
�It is possible for the �working set� of active objects
to be scattered across many virtual memory pages� so
that those pages are frequently swapped in and out
of main memory�� This problem may not be as bad
as many have thought� because objects are often cre�
ated in clusters that are typically active at the same
time� Fragmentation and locality problems are is un�
avoidable in the general case� however� and a potential
problem for some programs�

It should be noted that these problems may not be
insurmountable� with su�ciently clever implementa�
tion techniques� For example� if a bitmap is used for
mark bits� 
� bits can be checked at once with a 
��bit
integer ALU operation and conditional branch� If live
objects tend to survive in clusters in memory� as they
apparently often do� this can greatly diminish the con�
stant of proportionality of the sweep phase cost� the
theoretical linear dependence on heap size may not be
as troublesome as it seems at �rst glance� The clus�

�



tered survival of objects may also mitigate the local�
ity problems of re�allocating space amid live objects�
if objects tend to survive or die in groups in memory
�Hay���� the interspersing of objects used by di�erent
program phases may not be a major consideration�

��� Mark�Compact Collection

Mark�compact collectors remedy the fragmentation
and allocation problems of mark�sweep collectors�
As with mark�sweep� a marking phase traverses and
marks the reachable objects� Then objects are com�

pacted� moving most of the live objects until all of
the live objects are contiguous� This leaves the rest
of memory as a single contiguous free space� This is
often done by a linear scan through memory� �nding
live objects and �sliding� them down to be adjacent to
the previous object� Eventually� all of the live objects
have been slid down to be adjacent to a live neighbor�
This leaves one contiguous occupied area at one end of
heap memory� and implicitlymoving all of the �holes�
to the contiguous area at the other end�
This sliding compaction has several interesting

properties� The contiguous free area eliminates frag�
mentation problems so that allocating objects of vari�
ous sizes is simple� Allocation can be implemented as
the incrementing of a pointer into a contiguous area of
memory� in much the way that di�erent�sized objects
can be allocated on a stack� In addition� the garbage
spaces are simply �squeezed out�� without disturb�
ing the original ordering of objects in memory� This
can ameliorate locality problems� because the alloca�
tion ordering is usually more similar to subsequent
access orderings than an arbitrary ordering imposed
by a copying garbage collector �CG

� Cla
���
While the locality that results from sliding com�

paction is advantageous� the collection process itself
shares the mark�sweep�s unfortunate property that
several passes over the data are required� After the
initial marking phase� sliding compactors make two or
three more passes over the live objects �CN�
�� One
pass computes the new locations that objects will be
moved to� subsequent passes must update pointers to
refer to objects� new locations� and actually move the
objects� These algorithms may be therefore be signif�
icantly slower than mark�sweep if a large percentage
of data survives to be compacted�
An alternative approach is to use Daniel J� Ed�

wards� two�pointer algorithm��� which scans inward
from both ends of a heap space to �nd opportunities

��Described in an exercise on page ��� of �Knu����

for compaction� One pointer scans downward from the
top of the heap� looking for live objects� and the other
scans upward from the bottom� looking for holes to
put them in� �Many variations of this algorithm are
possible� to deal with multiple areas holding di�erent�
sized objects� and to avoid intermingling objects from
widely�dispersed areas�� For a more complete treat�
ment of compacting algorithms� see �CN�
��

��� Copying Garbage Collection

Like mark�compact �but unlike mark�sweep�� copying
garbage collection does not really �collect� garbage�
Rather� it moves all of the live objects into one area�
and the rest of the heap is then known to be available
because it contains only garbage� �Garbage collec�
tion� in these systems is thus only implicit� and some
researchers avoid applying that term to the process�
Copying collectors� like marking�and�compacting

collectors� move the objects that are reached by the
traversal to a contiguous area� While mark�compact
collectors use a separate marking phase that traverses
the live data� copying collectors integrate the traversal
of the data and the copying process� so that most ob�
jects need only be traversed once� Objects are moved
to the contiguous destination area as they are reached
by the traversal� The work needed is proportional to
the amount of live data �all of which must be copied��
The term scavenging is applied to the copying

traversal� because it consists of picking out the worth�
while objects amid the garbage� and taking them away�

����� A Simple Copying Collector� �Stop�

and�Copy� Using Semispaces�

A very common kind of copying garbage collector is
the semispace collector �FY��� using the Cheney algo�
rithm for the copying traversal �Che
��� We will use
this collector as a reference model for much of this
paper���

In this scheme� the space devoted to the heap is
subdivided into two contiguous semispaces� During
normal program execution� only one of these semi�
spaces is in use� as shown in Fig� 
� Memory is alloca�
ted linearly upward through this �current� semispace

��As a historical note� the �rst copying collector was Min�
sky�s collector for Lisp ��� �Min���� Rather than copying data
from one area of memory to another� a single heap space was
used� The live data were copied out to a �le on disk� and
then read back in� in a contiguous area of the heap space�
On modern machines this would be unbearably slow� because
�le operations�writing and reading every live object�are now
many times slower than memory operations�

��
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Figure 
� A simple semispace garbage collector before
garbage collection�
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Figure 	� Semispace collector after garbage collection�

as demanded by the executing program� As with a
mark�compact collector� the ability to allocate from
a large� contiguous free space makes allocation sim�
ple and fast� much like allocating on a stack� there is
no fragmentation problem when allocating objects of
various sizes�
When the running program demands an allocation

that will not �t in the unused area of the current semis�
pace� the program is stopped and the copying garbage
collector is called to reclaim space �hence the term
�stop�and�copy��� All of the live data are copied from
the current semispace �fromspace� to the other semis�
pace �tospace�� Once the copying is completed� the
tospace semispace is made the �current� semispace�
and program execution is resumed� Thus the roles
of the two spaces are reversed each time the garbage
collector is invoked� �See Fig� 	��

Perhaps the simplest form of copying traversal is
the Cheney algorithm �Che
��� The immediately�
reachable objects form the initial queue of objects
for a breadth��rst traversal� A �scan� pointer is ad�
vanced through the �rst object� location by location�
Each time a pointer into fromspace is encountered�
the referred�to�object is transported to the end of the
queue� and the pointer to the object is updated to re�
fer to the new copy� The free pointer is then advanced
and the scan continues� This e�ects the �node ex�
pansion� for the breadth��rst traversal� reaching �and
copying� all of the descendants of that node� �See
Fig� �� Reachable data structures in fromspace are
shown at the top of the �gure� followed by the �rst
several states of tospace as the collection proceeds�
tospace is shown in linear address order to emphasize
the linear scanning and copying��
Rather than stopping at the end of the �rst object�

the scanning process simply continues through sub�
sequent objects� �nding their o�spring and copying
them as well� A continuous scan from the beginning
of the queue has the e�ect of removing consecutive
nodes and �nding all of their o�spring� The o�spring
are copied to the end of the queue� Eventually the
scan reaches the end of the queue� signifying that all
of the objects that have been reached �and copied�
have also been scanned for descendants� This means
that there are no more reachable objects to be copied�
and the scavenging process is �nished�
Actually� a slightly more complex process is needed�

so that objects that are reached by multiple paths are
not copied to tospace multiple times� When an ob�
ject is transported to tospace� a forwarding pointer is
installed in the old version of the object� The for�
warding pointer signi�es that the old object is obso�
lete and indicates where to �nd the new copy of the
object� When the scanning process �nds a pointer
into fromspace� the object it refers to is checked for
a forwarding pointer� If it has one� it has already
been moved to tospace� so the pointer by which it was
reached is simply updated to point to its new loca�
tion� This ensures that each live object is transported
exactly once� and that all pointers to the object are
updated to refer to the new copy�

����� E
ciency of Copying Collection�

A copying garbage collector can be made arbitrarily ef�
�cient if su�cient memory is available �Lar

� App�
��
The work done at each collection is proportional to
the amount of live data at the time of garbage collec�
tion� Assuming that approximately the same amount

��
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Figure �� The Cheney algorithm�s breadth��rst copying�
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of data is live at any given time during the program�s
execution� decreasing the frequency of garbage collec�
tions will decrease the total amount of garbage collec�
tion e�ort�
A simple way to decrease the frequency of garbage

collections is to increase the amount of memory in the
heap� If each semispace is bigger� the program will run
longer before �lling it� Another way of looking at this
is that by decreasing the frequency of garbage collec�
tions� we are increasing the average age of objects at
garbage collection time� Objects that become garbage
before a garbage collection needn�t be copied� so the
chance that an object will never have to be copied is
increased�
Suppose� for example� that during a program run

twenty megabytes of memory are allocated� but only
one megabyte is live at any given time� If we have
two three�megabyte semispaces� garbage will be col�
lected about ten times� �Since the current semispace
is one third full after a collection� that leaves two
megabytes that can be allocated before the next col�
lection�� This means that the system will copy about
half as much data as it allocates� as shown in the top
part of Fig� �� �Arrows represent copying of live ob�
jects between semispaces at garbage collections��
On the other hand� if the size of the semispaces is

doubled� � megabytes of free space will be available af�
ter each collection� This will force garbage collections
a third as often� or about 
 or 	 times during the run�
This straightforwardly reduces the cost of garbage col�
lection by more than half� as shown in the bottom part
of Fig� �� �For the moment� we ignore virtual memory
paging costs� assuming that the larger heap area can
be cached in RAM rather than paged to disk� As we
will explain in Sect� ��
� paging costs may make the
use of a larger heap area impractical if there is not a
correspondingly large amount of RAM��

��� Non�Copying Implicit Collection

Recently� Wang �Wan��� and Baker �Bak��b� have �in�
dependently� proposed a new kind of non�copying col�
lector with some of the e�ciency advantages of a copy�
ing scheme� Their insight is that in a copying collector�
the �spaces� of the collector are really just a particular
implementation of sets� The tracing process removes
objects from the set subject to garbage collection� and
when tracing is complete� anything remaining in the
set is known to be garbage� so the set can be reclaimed
in its entirety� Another implementation of sets could
do just as well� provided that it has similar perfor�
mance characteristics� In particular� given a pointer

to an object� it must be easy to determine which set it
is a member of� in addition� it must be easy to switch
the roles of the sets� just as fromspace and tospace
roles are exchanged in a copy collector� �In a copying
collector� the set is an area of memory� but in a non�
copying collector it can be any kind of set of chunks
of memory that formerly held live objects��

The non�copying system adds two pointer �elds and
a �color� �eld to each object� These �elds are invisible
to the application programmer� and serve to link each
hunk of storage into a doubly�linked list that serves
as a set� The color �eld indicates which set an object
belongs to�

The operation of this collector is simple� and iso�
morphic to the copy collector�s operation� �Wang
therefore refers to this as a �fake copying� collector��
Chunks of free space are initially linked to form a
doubly�linked list� while chunks holding allocated ob�
jects are linked together into another list�

When the free list is exhausted� the collector tra�
verses the live objects and �moves� them from the allo�
cated set �which we could call the fromset� to another
set �the toset�� This is implemented by unlinking the
object from the doubly�linked fromset list� toggling its
color �eld� and linking it into the toset�s doubly�linked
list�

Just as in a copy collector� space reclamation is im�
plicit� When all of the reachable objects have been
traversed and moved from the fromset to the toset�
the fromset is known to contain only garbage� It is
therefore a list of free space� which can immediately
be put to use as a free list� �As we will explain in sec�
tion 
�	��� Baker�s scheme is actually somewhat more
complex� because his collector is incremental�� The
cost of the collection is proportional to the number of
live objects� and the garbage objects are all reclaimed
in small constant time�

This scheme can be optimized in ways that are anal�
ogous to those used in a copying collector�allocation
can be fast because the allocated and free lists can
be contiguous� and separated only by an allocation
pointer� Rather than actually unlinking objects from
one list and linking them into another� the allocator
can simply advance a pointer which points into the list
and divides the allocated segment from the free seg�
ment� Similarly� a Cheney�style breadth��rst traversal
can be implemented with only a pair of pointers� and
the scanned and free lists can be contiguous� so that
advancing the scan pointer only requires advancing
the pointer that separates them�

This scheme has both advantages and disadvantages

�
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Figure �� Memory usage in a semispace GC� with 
 MB �top� and � MB �bottom� semispaces
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compared to a copy collector� On the minus side� the
per�object constants are probably a little bit higher�
and fragmentation problems are still possible� On the
plus side� the tracing cost for large objects is not as
high� As with a mark�sweep collector� the whole ob�
ject needn�t be copied� if it can�t contain pointers�
it needn�t be scanned either� Perhaps more impor�
tantly for many applications� this scheme does not
require the actual language�level pointers between ob�
jects to be changed� and this imposes fewer constraints
on compilers� As we�ll explain later� this is particu�
larly important for parallel and real�time incremental
collectors�

The space costs of this technique are usually roughly
comparable to those of a copying collector� Two
pointer �elds are required per object� but live objects
being traced do not require space for both fromspace
and tospace versions� In most cases� this appears to
make the space cost smaller than that of a copying
collector� but in some cases fragmentation costs �due
to the inability to compact data� may outweigh those
savings�

��� Choosing Among Basic Tracing
Techniques

Treatments of garbage collection algorithms in text�
books often stress asymptotic complexity� but all basic
algorithms have roughly similar costs� especially when
we view garbage collection as part of the overall free
storage management scheme� Allocation and garbage
collection are two sides of the basic memory reuse coin�
and any algorithm incurs costs at allocation time� if
only to initialize the �elds of new objects� A common
criterion for �high performance� garbage collection is
that the cost of garbage collecting objects be compa�
rable� on average� to the cost of allocating objects�

Any e�cient tracing collection scheme therefore has
three basic cost components� which are ��� the initial
work required at each collection� such as root set scan�
ning� ��� the work done at allocation �proportional to
the amount of allocation� or the number of objects
allocated� and �
� the work done during garbage de�
tection �e�g�� tracing��

The initial work is usually relatively �xed for a par�
ticular program� by the size of the root set� The
work done at allocation is generally proportional to
the number of objects allocated� plus an initialization
cost proportional to their sizes� The garbage detec�
tion cost is proportional to the amount of live data
that must be traced�

The latter two costs are usually similar� in that the
amount of live data traced is usually some signi�cant
percentage of the amount of allocated memory� Thus
algorithms whose cost is proportional to the amount
of allocation �e�g�� mark�sweep� may be competitive
with those whose cost is proportional to the amount
of live data traced �e�g�� copying��

For example� suppose that �� percent of all allo�
cated data survive a collection� and �� percent never
need to be traced� In deciding which algorithm is more
e�cient� the asymptotic complexity is less important
than the associated constants� If the cost of sweeping
an object is ten times less than the cost of copying it�
the mark�sweep collector costs about the same as as
copy collector� �If a mark�sweep collector�s sweeping
cost is billed to the allocator� and it is small relative
to the cost of initializing the objects� then it becomes
obvious that the sweep phase is just not terribly ex�
pensive�� While current copying collectors appear to
be more e�cient than current mark�sweep collectors�
the di�erence is not large for state�of�the art imple�
mentations�

In systems where memory is not much larger than
the expected amount of live data� nonmoving collec�
tors have an an advantage over copying collectors in
that they don�t need space for two versions of each live
object �the �from� and �to� versions�� When space
is very tight� reference counting collectors are partic�
ularly attractive because their performance is essen�
tially independent of the ratio of live data to total
storage�

Further� real high�performance systems often use
hybrid techniques to adjust tradeo�s for di�erent cate�
gories of objects� Many high�performance copy collec�
tors use a separate large object area �CWB��� UJ����
to avoid copying large objects from space to space�
The large objects are kept �o� to the side� and usually
managed in�place by some variety of marking traversal
and free list technique� Other hybrids may use non�
copying techniques most of the time� but occasionally
compact some of the data using copying techniques to
avoid permanent fragmentation �e�g�� �LD�
���

A major point in favor of in�place collectors is the
ability to make them conservative with respect to data
values that may or may not be pointers� This allows
them to be used for languages like C� or o��the�shelf
optimizing compilers �BW��� Bar��� BDS���� which
can make it di�cult or impossible to unambiguously
identify all pointers at run time� A non�moving col�
lector can be conservative because anything that looks
like a pointer object can be left where it is� and the
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�possible� pointer to it doesn�t need to be changed�
In contrast� a copying collector must know whether
a value is a pointer�and whether to move the ob�
ject and update the pointer� �Conservative pointer�
�nding techniques will be discussed in more detail in
Sect� �����

Similarly� the choice of a non�moving collector can
greatly simplify the interfaces between modules writ�
ten in di�erent languages and compiled using di�erent
compilers� It is possible to pass pointers to garbage�
collectible objects as arguments to foreign routines
that were not written or compiled with garbage col�
lection in mind� This is not practical with a copying
collector� because the pointers that �escape� into for�
eign routines would have to be found and updated
when their referents moved�

��	 Problemswith Simple Tracing Col�
lectors

It is widely known that the asymptotic complexity of
copying garbage collection is excellent�the copying
cost approaches zero as memory becomes very large�
Treadmill collection shares this property� but other
collectors can be similarly e�cient if the constants
associated with memory reclamation and reallocation
are small enough� In that case� garbage detection is
the major cost�

Unfortunately� it is di�cult in practice to achieve
high e�ciency in a simple garbage collector� because
large amounts of memory are too expensive� If virtual
memory is used� the poor locality of the allocation
and reclamation cycle will generally cause excessive
paging� �Every location in the heap is used before
any location�s space is reclaimed and reused�� Simply
paging out the recently�allocated data is expensive for
a high�speed processor �Ung�	�� and the paging caused
by the copying collection itself may be tremendous�
since all live data must be touched in the process��

It therefore doesn�t generally pay to make the heap
area larger than the available main memory� �For a
mathematical treatment of this tradeo�� see �Lar

���
Even as main memory becomes steadily cheaper� lo�
cality within cache memory becomes increasingly im�
portant� so the problem is partly shifted to a di�erent
level of the memory hierarchy �WLM����

In general� we can�t achieve the potential e�ciency
of simple garbage collection� increasing the size of
memory to postpone or avoid collections can only be
taken so far before increased paging time negates any
advantage�

It is important to realize that this problem is
not unique to copying collectors� All e�cient gar�
bage collection strategies involve similar space�time
tradeo�s�garbage collections are postponed so that
garbage detection work is done less often� and that
means that space is not reclaimed as quickly� On av�
erage� that increases the amount of memory wasted
due to unreclaimed garbage�

�Deferred reference counting� like tracing collection�
also trades space for time�in giving up continual in�
cremental reclamation to avoid spending CPU cycles
in adjusting reference counts� one gives up space for
objects that become garbage and are not immedi�
ately reclaimed� At the time scale on which memory
is reused� the resulting locality characteristics must
share basic performance tradeo� characteristics with
generational collectors of the copying or mark�sweep
varieties� which will be discussed later��

While copying collectors were originally designed to
improve locality� in their simple versions this improve�
ment is not large� and their locality can in fact be
worse than that of non�compacting collectors� These
systems may improve the locality of reference to long�
lived data objects� which have been compacted into
a contiguous area� However� this e�ect is typically
swamped by the e�ects of references due to alloca�
tion� Large amounts of memory are touched between

collections� and this alone makes them unsuitable for
a virtual memory environment�

The major locality problem is not with the locality
of compacted data� or with the locality of the garbage
collection process itself� The problem is an indirect

result of the use of garbage collection�by the time
space is reclaimed and reused� it�s likely to have been
paged out� simply because too many other pages have
been allocated in between� Compaction is helpful� but
the help is generally too little� too late� With a simple
semispace copy collector� locality is likely to be worse
than that of a mark�sweep collector� because the copy
collector uses more total memory�only half the mem�
ory can be used between collections� Fragmentation
of live data is not as detrimental as the regular reuse
of two spaces���

The only way to have good locality is to ensure that
memory is large enough to hold the regularly�reused

��Slightly more complicated copying schemes appear to avoid
this problem �Ung��� WM���� but �WLM��� demonstrates that
cyclic memory reuse patterns can fare poorly in hierarchical
memories because of recency�based 	e�g�� LRU� replacement
policies� This suggests that freed memory should be reused
in a LIFO fashion 	i�e�� in the opposite order of its previous
allocation�� if the entire reuse pattern can�t be kept in memory�
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area� �Another approach would be to rely on opti�
mizations such as prefetching� but this is not feasi�
ble at the level of virtual memory�disks simply can�t
keep up with the rate of allocation because of the enor�
mous speed di�erential between RAM and disk�� Gen�
erational collectors address this problem by reusing
a smaller amount of memory more often� they will
be discussed in Sect� 	� �For historical reasons� is
widely believed that only copying collectors can be
made generational� but this is not the case� Gener�
ational non�copying collectors are slightly harder to
construct� but they do exist and are quite practical
�DWH���� WJ�
���

Finally� the temporal distribution of a simple trac�
ing collector�s work is also troublesome in an inter�
active programming environment� it can be very dis�
ruptive to a user�s work to suddenly have the system
become unresponsive and spend several seconds gar�
bage collecting� as is common in such systems� For
large heaps� the pauses may be on the order of sec�
onds� or even minutes if a large amount of data is
dispersed through virtual memory� Generational col�
lectors alleviate this problem� because most garbage
collections only operate on a subset of memory� Even�
tually they must garbage collect larger areas� however�
and the pauses may be considerably longer� For real
time applications� this may not be acceptable�

��
 Conservatism in Garbage Collec�
tion

An ideal garbage collector would be able to reclaim
every object�s space just after the last use of the ob�
ject� Such an object is not implementable in practice�
of course� because it cannot in general be determined
when the last use occurs� Real garbage collectors can
only provide a reasonable approximation of this be�
havior� using conservative approximations of this om�
niscience� The art of e�cient garbage collector design
is largely one of introducing small degrees of conser�
vatism which signi�cantly reduce the work done in
detecting garbage� �This notion of conservatism is
very general� and should not be confused with the
speci�c pointer�identi�cation techniques used by so�
called �conservative� garbage collectors� All garbage
collectors are conservative in one or more ways��

The �rst conservative assumption most collectors
make is that any variable in the stack� globals� or reg�
isters is live� even though the variable may actually
never be referenced again� �There may be interactions
between the compiler�s optimizations and the garbage

collector�s view of the reachability graph� A compiler�s
data and control �ow analysis may detect dead values
and optimize them away entirely� Compiler optimiza�
tions may also extend the e�ective lifetime of vari�
ables� causing extra garbage to be retained� but this
is not typically a problem in practice��

Tracing collectors introduce a major temporal form
of conservatism� simply by allowing garbage to go un�
collected between collection cycles� Reference count�
ing collectors are conservative topologically� failing to
distinguish between di�erent paths that share an edge
in the graph of pointer relationships�

As the remainder of this survey will show� there are
many possible kinds and degrees of conservatism with
di�erent performance tradeo�s�

� Incremental Tracing Collec�

tors

For truly real�time applications� �ne�grained incre�
mental garbage collection appears to be necessary�
Garbage collection cannot be carried out as one atomic
action while the program is halted� so small units
of garbage collection must be interleaved with small
units of program execution� As we said earlier� it is
relatively easy to make reference counting collectors
incremental� Reference counting�s problems with ef�
�ciency and e�ectiveness discourage its use� however�
and it is therefore desirable to make tracing �copying
or marking� collectors incremental�

In much of the following discussion� the di�erence
between copying and mark�sweep collectors is not par�
ticularly important� The incremental tracing for gar�
bage detection is more interesting than the reclama�
tion of detected garbage�

The di�culty with incremental tracing is that while
the collector is tracing out the graph of reachable data
structures� the graph may change�the running pro�
gram may mutate the graph while the collector �isn�t
looking�� For this reason� discussions of incremen�
tal collectors typically refer to the running program
as the mutator �DLM�
��� �From the garbage collec�
tor�s point of view� the actual application is merely a
coroutine or concurrent process with an unfortunate
tendency to modify data structures that the collec�
tor is attempting to traverse�� An incremental scheme
must have some way of keeping track of the changes to
the graph of reachable objects� perhaps re�computing
parts of its traversal in the face of those changes�

An important characteristic of incremental tech�
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