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Single-core computer
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Single-core CPU chip
the single core
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Multi-core architectures

• This lecture is about a new trend in 
computer architecture:
Replicate multiple processor cores on a 
single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip
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Multi-core CPU chip

• The cores fit on a single processor socket
• Also called CMP (Chip Multi-Processor)
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The cores run in parallel
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Within each core, threads are time-sliced 
(just like on a uniprocessor)
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Interaction with OS

• OS perceives each core as a separate 
processor

• OS scheduler maps threads/processes 
to different cores

• Most major OS support multi-core today
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Why multi-core ?
• Difficult to make single-core

clock frequencies even higher 
• Deeply pipelined circuits:

– heat problems
– speed of light problems
– difficult design and verification
– large design teams necessary
– server farms need expensive

air-conditioning
• Many new applications are multithreaded 
• General trend in computer architecture (shift 

towards more parallelism)
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Instruction-level parallelism

• Parallelism at the machine-instruction level
• The processor can re-order, pipeline 

instructions, split them into 
microinstructions, do aggressive branch 
prediction, etc.

• Instruction-level parallelism enabled rapid 
increases in processor speeds over the 
last 15 years
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Thread-level parallelism (TLP)
• This is parallelism on a more coarser scale
• Server can serve each client in a separate 

thread (Web server, database server)
• A computer game can do AI, graphics, and 

physics in three separate threads
• Single-core superscalar processors cannot 

fully exploit TLP
• Multi-core architectures are the next step in 

processor evolution: explicitly exploiting TLP
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General context: Multiprocessors

• Multiprocessor is any 
computer with several 
processors

• SIMD
– Single instruction, multiple data
– Modern graphics cards

• MIMD
– Multiple instructions, multiple data

Lemieux cluster,
Pittsburgh 

supercomputing 
center
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Multiprocessor memory types

• Shared memory:
In this model, there is one (large) common 
shared memory for all processors

• Distributed memory:
In this model, each processor has its own 
(small) local memory, and its content is not 
replicated anywhere else
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Multi-core processor is a special 
kind of a multiprocessor:

All processors are on the same chip

• Multi-core processors are MIMD:
Different cores execute different threads 
(Multiple Instructions), operating on different 
parts of memory (Multiple Data).

• Multi-core is a shared memory multiprocessor:
All cores share the same memory
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What applications benefit 
from multi-core?

• Database servers
• Web servers (Web commerce)
• Compilers
• Multimedia applications
• Scientific applications, 

CAD/CAM
• In general, applications with 

Thread-level parallelism
(as opposed to instruction-
level parallelism)

Each can 
run on its
own core 
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More examples

• Editing a photo while recording a TV show 
through a digital video recorder

• Downloading software while running an 
anti-virus program 

• “Anything that can be threaded today will 
map efficiently to multi-core”

• BUT: some applications difficult to
parallelize
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A technique complementary to multi-core:
Simultaneous multithreading

• Problem addressed:
The processor pipeline 
can get stalled:
– Waiting for the result 

of a long floating point 
(or integer) operation

– Waiting for data to 
arrive from memory 
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Simultaneous multithreading (SMT)

• Permits multiple independent threads to execute 
SIMULTANEOUSLY on the SAME core

• Weaving together multiple “threads” 
on the same core

• Example: if one thread is waiting for a floating 
point operation to complete, another thread can 
use the integer units
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Without SMT, only a single thread 
can run at any given time
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SMT processor: both threads can 
run concurrently
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But: Can’t simultaneously use  the 
same functional unit
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SMT not a “true” parallel processor

• Enables better threading (e.g. up to 30%)
• OS and applications perceive each 

simultaneous thread as a separate 
“virtual processor”

• The chip has only a single copy 
of each resource

• Compare to multi-core:
each core has its own copy of resources
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Multi-core: 
threads can run on separate cores
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Combining Multi-core and SMT

• Cores can be SMT-enabled (or not)
• The different combinations:

– Single-core, non-SMT: standard uniprocessor
– Single-core, with SMT 
– Multi-core, non-SMT
– Multi-core, with SMT: our fish machines

• The number of SMT threads:
2, 4, or sometimes 8 simultaneous threads

• Intel calls them “hyper-threads” 
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SMT Dual-core: all four threads can 
run concurrently
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Comparison: multi-core vs SMT

• Advantages/disadvantages?
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Comparison: multi-core vs SMT

• Multi-core:
– Since there are several cores,

each is smaller and not as powerful
(but also easier to design and manufacture)

– However, great with thread-level parallelism
• SMT

– Can have one large and fast superscalar core
– Great performance on a single thread
– Mostly still only exploits instruction-level 

parallelism
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The memory hierarchy

• If simultaneous multithreading only: 
– all caches shared

• Multi-core chips:
– L1 caches private
– L2 caches private in some architectures

and shared in others
• Memory is always shared
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“Fish” machines

• Dual-core
Intel Xeon processors

• Each core is 
hyper-threaded

• Private L1 caches
• Shared L2 caches
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Designs with private L2 caches
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Both L1 and L2 are private

Examples: AMD Opteron, 
AMD Athlon, Intel Pentium D

L3 cache L3 cache

A design with L3 caches

Example: Intel Itanium 2
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Private vs shared caches?

• Advantages/disadvantages?
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Private vs shared caches

• Advantages of private:
– They are closer to core, so faster access
– Reduces contention

• Advantages of shared:
– Threads on different cores can share the 

same cache data
– More cache space available if a single (or a 

few) high-performance thread runs on the 
system
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The cache coherence problem
• Since we have private caches:

How to keep the data consistent across caches?
• Each core should perceive the memory as a 

monolithic array, shared by all the cores



36

The cache coherence problem
Suppose variable x initially contains 15213

Core 1 Core 2 Core 3 Core 4

One or more 
levels of 

cache

One or more 
levels of 

cache

One or more 
levels of 

cache

One or more 
levels of 

cache

Main memory
x=15213
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The cache coherence problem
Core 1 reads x
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The cache coherence problem
Core 2 reads x
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The cache coherence problem
Core 1 writes to x, setting it to 21660
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The cache coherence problem
Core 2 attempts to read x… gets a stale copy
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Solutions for cache coherence

• This is a general problem with 
multiprocessors, not limited just to multi-core

• There exist many solution algorithms, 
coherence protocols, etc.

• A simple solution:
invalidation-based protocol with snooping
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Inter-core bus
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Invalidation protocol with snooping

• Invalidation:
If a core writes to a data item, all other 
copies of this data item in other caches 
are invalidated

• Snooping: 
All cores continuously “snoop” (monitor) 
the bus connecting the cores.
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The cache coherence problem
Revisited: Cores 1 and 2 have both read x
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The cache coherence problem
Core 1 writes to x, setting it to 21660
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The cache coherence problem
Core 2 reads x. Cache misses, and loads the new copy.
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Alternative to invalidate protocol: 
update protocol

Core 1 writes x=21660:
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Which do you think is better? 
Invalidation or update?
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Invalidation vs update

• Multiple writes to the same location
– invalidation: only the first time
– update: must broadcast each write

• Writing to adjacent words in the same 
cache block:
– invalidation: only invalidate block once
– update: must update block on each write

• Invalidation generally performs better:
it generates less bus traffic
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Invalidation protocols

• This was just the basic invalidation 
protocol

• More sophisticated protocols use extra 
cache state bits

• MSI, MESI
(Modified, Exclusive, Shared, Invalid)
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Programming for multi-core

• Programmers must use threads or 
processes

• Spread the workload across multiple cores

• Write parallel algorithms

• OS will map threads/processes to cores
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Thread safety very important

• Pre-emptive context switching:
context switch can happen AT ANY TIME

• True concurrency, not just uniprocessor
time-slicing

• Concurrency bugs exposed much faster 
with multi-core
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However: Need to use synchronization 
even if only time-slicing on a uniprocessor
int counter=0;

void thread1() {
int temp1=counter;
counter = temp1 + 1;

}

void thread2() {
int temp2=counter;
counter = temp2 + 1;

}
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Need to use synchronization even if only 
time-slicing on a uniprocessor

temp1=counter;
counter = temp1 + 1;
temp2=counter;
counter = temp2 + 1

temp1=counter;
temp2=counter;
counter = temp1 + 1;
counter = temp2 + 1

gives counter=2

gives counter=1
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Assigning threads to the cores

• Each thread has an affinity mask

• Affinity mask specifies what cores the 
thread is allowed to run on

• Different threads can have different masks

• Affinities are inherited across fork()
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Affinity masks are bit vectors

• Example: 4-way multi-core, without SMT

1011

core 3 core 2 core 1 core 0

• Process/thread is allowed to run on
cores 0,2,3, but not on core 1
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Affinity masks when multi-core and 
SMT combined

• Separate bits for each simultaneous thread
• Example: 4-way multi-core,  2 threads per core

1

core 3 core 2 core 1 core 0

1 0 0 1 0 1 1

thread
1

• Core 2 can’t run the process
• Core 1 can only use one simultaneous thread

thread
0

thread
1

thread
0

thread
1

thread
0

thread
1

thread
0
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Default Affinities

• Default affinity mask is all 1s:
all threads can run on all processors

• Then, the OS scheduler decides what 
threads run on what core

• OS scheduler detects skewed workloads, 
migrating threads to less busy processors 
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Process migration is costly

• Need to restart the execution pipeline
• Cached data is invalidated
• OS scheduler tries to avoid migration as 

much as possible: 
it tends to keeps a thread on the same core 

• This is called soft affinity
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Hard affinities

• The programmer can prescribe her own 
affinities (hard affinities)

• Rule of thumb: use the default scheduler 
unless a good reason not to
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When to set your own affinities

• Two (or more) threads share data-structures in 
memory
– map to same core so that can share cache

• Real-time threads:
Example: a thread running 
a robot controller:
- must not be context switched, 
or else robot can go unstable

- dedicate an entire core just to this thread
Source: Sensable.com
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Kernel scheduler API
#include <sched.h>
int sched_getaffinity(pid_t pid,  
unsigned int len, unsigned long * mask);

Retrieves the current affinity mask of process ‘pid’ and 
stores it into space pointed to by ‘mask’.

‘len’ is the system word size: sizeof(unsigned int long)
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Kernel scheduler API
#include <sched.h>
int sched_setaffinity(pid_t pid,  

unsigned int len, unsigned long * mask);

Sets  the current affinity mask of process ‘pid’ to *mask 
‘len’ is the system word size: sizeof(unsigned int long)

To query affinity of a running process:
[barbic@bonito ~]$ taskset -p 3935
pid 3935's current affinity mask: f
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Windows Task Manager

core 2

core 1
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Legal licensing issues

• Will software vendors charge a separate 
license per each core or only a single 
license per chip?

• Microsoft, Red Hat Linux, Suse Linux will 
license their OS per chip, not per core
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Conclusion

• Multi-core chips an 
important new trend in 
computer architecture 

• Several new multi-core 
chips in design phases

• Parallel programming techniques 
likely to gain importance
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