
1

Multi-core architectures

Jernej Barbic
15-213, Spring 2006

May 4, 2006

2

Single-core computer

3

Single-core CPU chip
the single core

4

Multi-core architectures

• This lecture is about a new trend in
computer architecture:
Replicate multiple processor cores on a
single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip

5

Multi-core CPU chip

• The cores fit on a single processor socket
• Also called CMP (Chip Multi-Processor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

6

The cores run in parallel

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

thread 1 thread 2 thread 3 thread 4

7

Within each core, threads are time-sliced
(just like on a uniprocessor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

several
threads

several
threads

several
threads

several
threads

8

Interaction with OS

• OS perceives each core as a separate
processor

• OS scheduler maps threads/processes
to different cores

• Most major OS support multi-core today

9

Why multi-core ?
• Difficult to make single-core

clock frequencies even higher
• Deeply pipelined circuits:

– heat problems
– speed of light problems
– difficult design and verification
– large design teams necessary
– server farms need expensive

air-conditioning
• Many new applications are multithreaded
• General trend in computer architecture (shift

towards more parallelism)

10

Instruction-level parallelism

• Parallelism at the machine-instruction level
• The processor can re-order, pipeline

instructions, split them into
microinstructions, do aggressive branch
prediction, etc.

• Instruction-level parallelism enabled rapid
increases in processor speeds over the
last 15 years

11

Thread-level parallelism (TLP)
• This is parallelism on a more coarser scale
• Server can serve each client in a separate

thread (Web server, database server)
• A computer game can do AI, graphics, and

physics in three separate threads
• Single-core superscalar processors cannot

fully exploit TLP
• Multi-core architectures are the next step in

processor evolution: explicitly exploiting TLP

12

General context: Multiprocessors

• Multiprocessor is any
computer with several
processors

• SIMD
– Single instruction, multiple data
– Modern graphics cards

• MIMD
– Multiple instructions, multiple data

Lemieux cluster,
Pittsburgh

supercomputing
center

13

Multiprocessor memory types

• Shared memory:
In this model, there is one (large) common
shared memory for all processors

• Distributed memory:
In this model, each processor has its own
(small) local memory, and its content is not
replicated anywhere else

14

Multi-core processor is a special
kind of a multiprocessor:

All processors are on the same chip

• Multi-core processors are MIMD:
Different cores execute different threads
(Multiple Instructions), operating on different
parts of memory (Multiple Data).

• Multi-core is a shared memory multiprocessor:
All cores share the same memory

15

What applications benefit
from multi-core?

• Database servers
• Web servers (Web commerce)
• Compilers
• Multimedia applications
• Scientific applications,

CAD/CAM
• In general, applications with

Thread-level parallelism
(as opposed to instruction-
level parallelism)

Each can
run on its
own core

16

More examples

• Editing a photo while recording a TV show
through a digital video recorder

• Downloading software while running an
anti-virus program

• “Anything that can be threaded today will
map efficiently to multi-core”

• BUT: some applications difficult to
parallelize

17

A technique complementary to multi-core:
Simultaneous multithreading

• Problem addressed:
The processor pipeline
can get stalled:
– Waiting for the result

of a long floating point
(or integer) operation

– Waiting for data to
arrive from memory

Other execution units
wait unused BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Source: Intel

18

Simultaneous multithreading (SMT)

• Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

• Weaving together multiple “threads”
on the same core

• Example: if one thread is waiting for a floating
point operation to complete, another thread can
use the integer units

19

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1: floating point

Without SMT, only a single thread
can run at any given time

20

Without SMT, only a single thread
can run at any given time

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 2:
integer operation

21

SMT processor: both threads can
run concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1: floating pointThread 2:
integer operation

22

But: Can’t simultaneously use the
same functional unit

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 2

This scenario is
impossible with SMT
on a single core
(assuming a single
integer unit)IMPOSSIBLE

23

SMT not a “true” parallel processor

• Enables better threading (e.g. up to 30%)
• OS and applications perceive each

simultaneous thread as a separate
“virtual processor”

• The chip has only a single copy
of each resource

• Compare to multi-core:
each core has its own copy of resources

24

Multi-core:
threads can run on separate cores

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 3

25

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 2 Thread 4

Multi-core:
threads can run on separate cores

26

Combining Multi-core and SMT

• Cores can be SMT-enabled (or not)
• The different combinations:

– Single-core, non-SMT: standard uniprocessor
– Single-core, with SMT
– Multi-core, non-SMT
– Multi-core, with SMT: our fish machines

• The number of SMT threads:
2, 4, or sometimes 8 simultaneous threads

• Intel calls them “hyper-threads”

27

SMT Dual-core: all four threads can
run concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 2 Thread 3 Thread 4

28

Comparison: multi-core vs SMT

• Advantages/disadvantages?

29

Comparison: multi-core vs SMT

• Multi-core:
– Since there are several cores,

each is smaller and not as powerful
(but also easier to design and manufacture)

– However, great with thread-level parallelism
• SMT

– Can have one large and fast superscalar core
– Great performance on a single thread
– Mostly still only exploits instruction-level

parallelism

30

The memory hierarchy

• If simultaneous multithreading only:
– all caches shared

• Multi-core chips:
– L1 caches private
– L2 caches private in some architectures

and shared in others
• Memory is always shared

31

“Fish” machines

• Dual-core
Intel Xeon processors

• Each core is
hyper-threaded

• Private L1 caches
• Shared L2 caches

memory

L2 cache

L1 cache L1 cacheC
 O

 R
 E

 1

C
 O

 R
 E

 0

hyper-threads

32

Designs with private L2 caches

memory

L2 cache

L1 cache L1 cacheC
 O

 R
 E

 1

C
 O

 R
 E

 0

L2 cache

memory

L2 cache

L1 cache L1 cacheC
 O

 R
 E

 1

C
 O

 R
 E

 0

L2 cache

Both L1 and L2 are private

Examples: AMD Opteron,
AMD Athlon, Intel Pentium D

L3 cache L3 cache

A design with L3 caches

Example: Intel Itanium 2

33

Private vs shared caches?

• Advantages/disadvantages?

34

Private vs shared caches

• Advantages of private:
– They are closer to core, so faster access
– Reduces contention

• Advantages of shared:
– Threads on different cores can share the

same cache data
– More cache space available if a single (or a

few) high-performance thread runs on the
system

35

The cache coherence problem
• Since we have private caches:

How to keep the data consistent across caches?
• Each core should perceive the memory as a

monolithic array, shared by all the cores

36

The cache coherence problem
Suppose variable x initially contains 15213

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

37

The cache coherence problem
Core 1 reads x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

38

The cache coherence problem
Core 2 reads x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

39

The cache coherence problem
Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip
assuming
write-through
caches

40

The cache coherence problem
Core 2 attempts to read x… gets a stale copy

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

41

Solutions for cache coherence

• This is a general problem with
multiprocessors, not limited just to multi-core

• There exist many solution algorithms,
coherence protocols, etc.

• A simple solution:
invalidation-based protocol with snooping

42

Inter-core bus

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory

multi-core chip

inter-core
bus

43

Invalidation protocol with snooping

• Invalidation:
If a core writes to a data item, all other
copies of this data item in other caches
are invalidated

• Snooping:
All cores continuously “snoop” (monitor)
the bus connecting the cores.

44

The cache coherence problem
Revisited: Cores 1 and 2 have both read x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

45

The cache coherence problem
Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip
assuming
write-through
caches

INVALIDATEDsends
invalidation
request

inter-core
bus

46

The cache coherence problem
Core 2 reads x. Cache misses, and loads the new copy.

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of
cache

x=21660

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

47

Alternative to invalidate protocol:
update protocol

Core 1 writes x=21660:

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=21660

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip
assuming
write-through
caches

UPDATED

broadcasts
updated
value inter-core

bus

48

Which do you think is better?
Invalidation or update?

49

Invalidation vs update

• Multiple writes to the same location
– invalidation: only the first time
– update: must broadcast each write

• Writing to adjacent words in the same
cache block:
– invalidation: only invalidate block once
– update: must update block on each write

• Invalidation generally performs better:
it generates less bus traffic

50

Invalidation protocols

• This was just the basic invalidation
protocol

• More sophisticated protocols use extra
cache state bits

• MSI, MESI
(Modified, Exclusive, Shared, Invalid)

51

Programming for multi-core

• Programmers must use threads or
processes

• Spread the workload across multiple cores

• Write parallel algorithms

• OS will map threads/processes to cores

52

Thread safety very important

• Pre-emptive context switching:
context switch can happen AT ANY TIME

• True concurrency, not just uniprocessor
time-slicing

• Concurrency bugs exposed much faster
with multi-core

53

However: Need to use synchronization
even if only time-slicing on a uniprocessor
int counter=0;

void thread1() {
int temp1=counter;
counter = temp1 + 1;

}

void thread2() {
int temp2=counter;
counter = temp2 + 1;

}

54

Need to use synchronization even if only
time-slicing on a uniprocessor

temp1=counter;
counter = temp1 + 1;
temp2=counter;
counter = temp2 + 1

temp1=counter;
temp2=counter;
counter = temp1 + 1;
counter = temp2 + 1

gives counter=2

gives counter=1

55

Assigning threads to the cores

• Each thread has an affinity mask

• Affinity mask specifies what cores the
thread is allowed to run on

• Different threads can have different masks

• Affinities are inherited across fork()

56

Affinity masks are bit vectors

• Example: 4-way multi-core, without SMT

1011

core 3 core 2 core 1 core 0

• Process/thread is allowed to run on
cores 0,2,3, but not on core 1

57

Affinity masks when multi-core and
SMT combined

• Separate bits for each simultaneous thread
• Example: 4-way multi-core, 2 threads per core

1

core 3 core 2 core 1 core 0

1 0 0 1 0 1 1

thread
1

• Core 2 can’t run the process
• Core 1 can only use one simultaneous thread

thread
0

thread
1

thread
0

thread
1

thread
0

thread
1

thread
0

58

Default Affinities

• Default affinity mask is all 1s:
all threads can run on all processors

• Then, the OS scheduler decides what
threads run on what core

• OS scheduler detects skewed workloads,
migrating threads to less busy processors

59

Process migration is costly

• Need to restart the execution pipeline
• Cached data is invalidated
• OS scheduler tries to avoid migration as

much as possible:
it tends to keeps a thread on the same core

• This is called soft affinity

60

Hard affinities

• The programmer can prescribe her own
affinities (hard affinities)

• Rule of thumb: use the default scheduler
unless a good reason not to

61

When to set your own affinities

• Two (or more) threads share data-structures in
memory
– map to same core so that can share cache

• Real-time threads:
Example: a thread running
a robot controller:
- must not be context switched,
or else robot can go unstable

- dedicate an entire core just to this thread
Source: Sensable.com

62

Kernel scheduler API
#include <sched.h>
int sched_getaffinity(pid_t pid,
unsigned int len, unsigned long * mask);

Retrieves the current affinity mask of process ‘pid’ and
stores it into space pointed to by ‘mask’.

‘len’ is the system word size: sizeof(unsigned int long)

63

Kernel scheduler API
#include <sched.h>
int sched_setaffinity(pid_t pid,

unsigned int len, unsigned long * mask);

Sets the current affinity mask of process ‘pid’ to *mask
‘len’ is the system word size: sizeof(unsigned int long)

To query affinity of a running process:
[barbic@bonito ~]$ taskset -p 3935
pid 3935's current affinity mask: f

64

Windows Task Manager

core 2

core 1

65

Legal licensing issues

• Will software vendors charge a separate
license per each core or only a single
license per chip?

• Microsoft, Red Hat Linux, Suse Linux will
license their OS per chip, not per core

66

Conclusion

• Multi-core chips an
important new trend in
computer architecture

• Several new multi-core
chips in design phases

• Parallel programming techniques
likely to gain importance

	Multi-core architectures
	Single-core computer
	Single-core CPU chip
	Multi-core architectures
	Multi-core CPU chip
	The cores run in parallel
	Within each core, threads are time-sliced (just like on a uniprocessor)
	Interaction with OS
	Why multi-core ?
	Instruction-level parallelism
	Thread-level parallelism (TLP)
	General context: Multiprocessors
	Multiprocessor memory types
	Multi-core processor is a special kind of a multiprocessor:All processors are on the same chip
	What applications benefit from multi-core?
	More examples
	A technique complementary to multi-core:Simultaneous multithreading
	Simultaneous multithreading (SMT)
	Without SMT, only a single thread can run at any given time
	Without SMT, only a single thread can run at any given time
	SMT processor: both threads can run concurrently
	But: Can’t simultaneously use the same functional unit
	SMT not a “true” parallel processor
	Multi-core: threads can run on separate cores
	Multi-core: threads can run on separate cores
	Combining Multi-core and SMT
	SMT Dual-core: all four threads can run concurrently
	Comparison: multi-core vs SMT
	Comparison: multi-core vs SMT
	The memory hierarchy
	“Fish” machines
	Designs with private L2 caches
	Private vs shared caches?
	Private vs shared caches
	The cache coherence problem
	The cache coherence problem
	Solutions for cache coherence
	Inter-core bus
	Invalidation protocol with snooping
	Programming for multi-core
	Thread safety very important
	However: Need to use synchronization even if only time-slicing on a uniprocessor
	Need to use synchronization even if only time-slicing on a uniprocessor
	Assigning threads to the cores
	Affinity masks are bit vectors
	Affinity masks when multi-core and SMT combined
	Default Affinities
	Process migration is costly
	Hard affinities
	When to set your own affinities
	Kernel scheduler API
	Kernel scheduler API
	Windows Task Manager
	Legal licensing issues
	Conclusion

