Multi-core architectures

Jernej Barbic
15-213, Spring 2006
May 4, 2006

Single-core computer

CPU chip

register file

10

bus interface

=

ALU

TN
<:W

v

e

sygtem bus

memory bus

l

/o
bridge

main
memory

ﬁ

S

usB graphics
controller adapter
mouse keyboard monitor

/O bus

disk

controller

HHE>

Expansion slots for
other devices such
as network adapters.

156-213, S'06

Single-core CPU chip

the single core

CPU chip
register file /
— N
/ALY
ﬁ\'i system bus
—

bus interface

1
>

Multi-core architectures

This lecture is about a new trend in
computer architecture:
Replicate multiple processor cores on a

single die.
Core 1 Core 2 Core 3 Core 4
register file register file register file register file
aALU <1§>mu aALU aALU
10 1r 17 17
bus interface <— J>

Multi-core CPU chip

Multi-core CPU chip

* The cores fit on a single processor socket
 Also called CMP (Chip Multi-Processor)

® - O O
® - O O
® - O O
® - O O

The cores run in parallel

thread 1 thread 2 thread 3 thread 4
C C C C
o) o) o) o)
r r r r
e e e e
1 2 3 4

Within each core, threads are time-sliced
(just like on a uniprocessor)

several several several several
threads threads threads threads
C C C C
o) o) o) o)
r r r r
e e e e
1 2 3 4

Vvy \AA A Vvy Vvy

Interaction with OS

* OS perceives each core as a separate
processor

* OS scheduler maps threads/processes
to different cores

* Most major OS support multi-core today

Why multi-core ?

Difficult to make single-core
clock frequencies even higher

Deeply pipelined circuits:

— heat problems

— speed of light problems

— difficult design and verification

— large design teams necessary

— server farms need expensive
air-conditioning

Many new applications are multithreaded

General trend in computer architecture (shift
towards more parallelism)

Instruction-level parallelism

 Parallelism at the machine-instruction level

* The processor can re-order, pipeline
Instructions, split them into
microinstructions, do aggressive branch
prediction, etc.

* Instruction-level parallelism enabled rapid
Increases Iin processor speeds over the
last 15 years

10

Thread-level parallelism (TLP)

This is parallelism on a more coarser scale

Server can serve each client in a separate
thread (Web server, database server)

A computer game can do Al, graphics, and
physics in three separate threads

Single-core superscalar processors cannot
fully exploit TLP

Multi-core architectures are the next step In

processor evolution: explicitly exploiting TLP
11

General context: Multiprocessors

* Multiprocessor is any
computer with several

Processors
 SIMD |
. : . . Lemieux cluster,
— Single mstruct.lon, multiple data Pittsburgh
— Modern graphics cards supercomputir:g
center
« MIMD

— Multiple instructions, multiple data

12

Multiprocessor memory types

* Shared memory:

In this model, there is one (large) common
shared memory for all processors

* Distributed memory:
In this model, each processor has its own

(small) local memory, and its content is not
replicated anywhere else

13

Multi-core processor is a special

Kind of a multiprocessor:
All processors are on the same chip

* Multi-core processors are MIMD:
Different cores execute different threads
(Multiple Instructions), operating on different
parts of memory (Multiple Data).

* Multi-core is a shared memory multiprocessor:
All cores share the same memory

14

What applications benefit
from multi-core?

Database servers

Web servers (Web Commerce)

Compilers
Multimedia applications

Scientific applications,
CAD/CAM

In general, applications with
Thread-level parallelism

(as opposed to instruction-
level parallelism)

r_jH-UH r krrTTFﬁ?
e

FI..I uroaa 3@«-!-@

sl < o]

[75 v [t woS

“—

Each can
run on its
own core

15

More examples

Editing a photo while recording a TV show
through a digital video recorder

Downloading software while running an
anti-virus program

“Anything that can be threaded today will
map efficiently to multi-core”

BUT: some applications difficult to
parallelize

16

A technique complementary to multi-core:
Simultaneous multithreading

* Problem addressed:
The processor pipeline
can get stalled:

— Waiting for the result
of a long floating point
(or integer) operation

— Waiting for data to
arrive from memory

Other execution units
wait unused

L1 D-Cache D-TLB

L2 Cache and Control

Integer

Floating Point

Schedulers

Uop queues

Rename/Alloc

Bus

BTB - Trace Cache }—| uCode
] ROM
Decoder
|
BTB and |I-TLB

Source: Intel

17

Simultaneous multithreading (SMT)

* Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

» Weaving together multiple “threads”
on the same core

« Example: if one thread is waiting for a floating
point operation to complete, another thread can
use the integer units

18

Without SMT, only a single thread
can run at any given time

Flozng Point

/]

1/

!

|
Thread 1: floating point

Without SMT, only a single thread
can run at any given time

N
Integeg

|_‘t\

AN

l
Thread 2:
integer operation

SMT processor: both threads can
run concurrently

f

A\ I |

!

.
Thread 2: Thread 1: floating point
integer operation

But: Can’t simultaneously use the
same functional unit

A

Integer \
VA

Y

\

.‘

Thread 1 Thread 2
IMPOSSIBLE

1

1

This scenario is
impossible with SMT
on a single core
(assuming a single
integer unit) 22

SMT not a “true” parallel processor

Enables better threading (e.g. up to 30%)

OS and applications perceive each
simultaneous thread as a separate
“virtual processor”

The chip has only a single copy
of each resource

Compare to multi-core:
each core has its own copy of resources

23

Multi-core:

threads can run on separate cores

Ji

Intéger
\

\

Al

|

|

|

Thread 1

Thread 3

24

Multi-core:

threads can run on separate cores

Floay/gioint

Floatiiélfoint

I | / I I//

| l/ | | |

[V
| |
[[
| |
| |

Thread 2 Thread 4 25

Combining Multi-core and SMT

Cores can be SMT-enabled (or not)

The different combinations:

— Single-core, non-SMT: standard uniprocessor
— Single-core, with SMT

— Multi-core, non-SMT

— Multi-core, with SMT: our fish machines

The number of SMT threads:
2, 4, or sometimes 8 simultaneous threads

Intel calls them “hyper-threads” .

SMT Dual-core: all four threads can

run concurrer

tly

%

In}eger

Floay/gioint

N

Al

| /

\

/

\\=

Irhqger Floati}g/lfoint

N1/

Newed
\

l

Thread 1 Thread 2

Thread 3 Thread 4 27

Comparison: multi-core vs SMT

* Advantages/disadvantages?

28

Comparison: multi-core vs SMT

 Multi-core:

— Since there are several cores,
each is smaller and not as powerful
(but also easier to design and manufacture)

— However, great with thread-level parallelism

« SMT

— Can have one large and fast superscalar core
— Great performance on a single thread

— Mostly still only exploits instruction-level
parallelism

29

The memory hierarchy

* |f simultaneous multithreading only:
— all caches shared

e Multi-core chips:
— L1 caches private

— L2 caches private in some architectures
and shared in others

 Memory is always shared

30

“Fish” machines

hyper-threads

Dual-core
Intel Xeon processors

Each core is
hyper-threaded

L2 cache
Private L1 caches

memory
Shared L2 caches

31

Designs with private L2 caches

memory

memory

Both L1 and L2 are private

A design with L3 caches
Examples: AMD Opteron,

AMD Athlon, Intel Pentium D Example: Intel Itanium 2 32

Private vs shared caches?

* Advantages/disadvantages?

33

Private vs shared caches

« Advantages of private:
— They are closer to core, so faster access
— Reduces contention

* Advantages of shared:

— Threads on different cores can share the
same cache data

— More cache space available if a single (or a
few) high-performance thread runs on the
system

34

The cache coherence problem

« Since we have private caches:
How to keep the data consistent across caches?

« Each core should perceive the memory as a
monolithic array, shared by all the cores

@@@@

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

multi-core chip
Main memory

35

The cache coherence problem

Suppose variable x initially contains 15213

Core 1 @ @ Core 4

One or more
levels of
cache

levels of
cache

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=15213

multi-core chip

36

The cache coherence problem

Core 1 reads x

Core 1 @ @ Core 4

One or more
levels of
cache
x=15213

levels of
cache

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=15213

multi-core chip

37

The cache coherence problem

Core 2 reads x

Core 1

Core 2

Core 3

Core 4

One or more
levels of
cache
x=15213

levels of
cache
x=15213

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=15213

multi-core chip

38

The cache coherence problem

Core 1 writes to x, setting it to 21660

Core 1 @ @ Core 4

x=21660

}

write-through
caches

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
x=21660 x=15213
multi-core chip
Main memory assuming

39

The cache coherence problem

Core 2 attempts to read x... gets a stale copy

Core 1 @ @ Core 4

One or more
levels of
cache
x=21660

levels of
cache
x=15213

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=21660

multi-core chip

40

Solutions for cache coherence

* This is a general problem with
multiprocessors, not limited just to multi-core

* There exist many solution algorithms,
coherence protocols, efc.

* A simple solution:
Invalidation-based protocol with snooping

41

Inter-core bus

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

multi-core chip

Main memory inter-core

bus

42

Invalidation protocol with snooping

* |nvalidation:
If a core writes to a data item, all other

copies of this data item in other caches
are invalidated

* Snooping:
All cores continuously “snoop” (monitor)
the bus connecting the cores.

43

The cache coherence problem

Revisited: Cores 1 and 2 have both read x

Core 1 @ @ Core 4

One or more
levels of
cache
x=15213

levels of
cache
x=15213

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=15213

multi-core chip

44

The cache coherence problem

Core 1 writes to x, setting it to 21660

Core 1

Core 2

Core 3

Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=21660 X= 3
e N

sends ™ INVALIDATED

nvalidation multi-core chip
request

Main memory assuming :
t -
x=21660 } write-through |bnu§r core 45

caches

The cache coherence problem

Core 1 @ @ Core 4

One or more
levels of
cache
x=21660

levels of
cache
x=21660

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=21660

multi-core chip

Core 2 reads x. Cache misses, and loads the new copy.

46

Alternative to invalidate protocol:

update protocol

Core 1 writes x=21660:

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=21660 x=21660
PDATED
broadcasts - :
updated multi-core chip
value Main memory assuming Ntor-
x=21660 } write-through |bnu§r core

caches

47

Which do you think is better?
Invalidation or update”?

48

Invalidation vs update

* Multiple writes to the same location
— invalidation: only the first time
— update: must broadcast each write
* Writing to adjacent words in the same
cache block:
— invalidation: only invalidate block once
— update: must update block on each write

* Invalidation generally performs better:
it generates less bus traffic

49

Invalidation protocols

* This was just the basic invalidation
protocol

* More sophisticated protocols use extra
cache state bits

 MSI, MESI
(Modified, Exclusive, Shared, Invalid)

50

Programming for multi-core

Programmers must use threads or
processes

Spread the workload across multiple cores
Write parallel algorithms

OS will map threads/processes to cores

51

Thread safety very important

* Pre-emptive context switching:
context switch can happen AT ANY TIME

* True concurrency, not just uniprocessor
time-slicing

« Concurrency bugs exposed much faster
with multi-core

52

However: Need to use synchronization
even If only time-slicing on a uniprocessor

int counter=0;

vold threadl () {
int templ=counter;
counter = templ + 1;

J

vold thread2 () {
int tempZ=counter;
counter = tempZ2 + 1;

J

53

Need to use synchronization even if only
time-slicing on a uniprocessor

templ=counter;
counter = templ + 1;
tempZ=counter;
counter = tempZ2 + 1
templ=counter;
tempZ=counter;
templ + 1;

temp2 + 1

counter =

counter =

\

. gives counter=2

S

> gives counter=1

S

54

Assigning threads to the cores

Each thread has an affinity mask

Affinity mask specifies what cores the
thread is allowed to run on

Different threads can have different masks

Affinities are inherited across fork()

95

Affinity masks are bit vectors

« Example: 4-way multi-core, without SMT

1 1 0 1

I

core 3 core 2 core 1 core 0

* Process/thread is allowed to run on
cores 0,2,3, but not on core 1

Affinity masks when multi-core and
SMT combined

« Separate bits for each simultaneous thread
 Example: 4-way multi-core, 2 threads per core

1

A

1
4

0
A

0
A

1
4

0
A

1
4

1
4

.

J

L

J

L

J

L

J

>
core 3

>
core 2

>
core 1

>
core O

thread thread thread thread thread thread thread thread

1

0

1

0

1

* Core 2 can’t run the process
« Core 1 can only use one simultaneous thread

0

1

0

S7

Default Affinities

» Default affinity mask is all 1s:
all threads can run on all processors

 Then, the OS scheduler decides what
threads run on what core

 OS scheduler detects skewed workloads,
migrating threads to less busy processors

58

Process migration is costly

Need to restart the execution pipeline
Cached data is invalidated

OS scheduler tries to avoid migration as

much as possible:
It tends to keeps a thread on the same core

This is called soft affinity

99

Hard affinities

* The programmer can prescribe her own
affinities (hard affinities)

 Rule of thumb: use the default scheduler
unless a good reason not to

60

When to set your own affinities

« Two (or more) threads share data-structures in
memory

— map to same core so that can share cache

« Real-time threads:
Example: a thread running
a robot controller:
- must not be context switched,
or else robot can go unstable
- dedicate an entire core just to this thread

Source: Sensable.com

61

Kernel scheduler API

#include <sched.h>
int sched getaffinity(pid t pid,
unsigned int len, unsigned long * mask) ;

Retrieves the current affinity mask of process ‘pid’ and
stores it into space pointed to by ‘'mask’.

len’ is the system word size: sizeof(unsigned int long)

62

Kernel scheduler API

#include <sched.h>

int sched setaffinity(pid t pid,
unsigned int len, unsigned long * mask);

Sets the current affinity mask of process ‘pid’ to *mask
len’ is the system word size: sizeof(unsigned int long)

To query affinity of a running process:
[barbic@bonito ~]$ taskset -p 3935
pid 3935's current affinity mask: £

63

Windows Task Manager

File Opkions “iew Help

=10 x|

applications I Processes Performance |

— P Usage ——

—CPU Usage Hiskory

core 2

IHOHEHH

—Memory Usage Histary

—Tokals —Phsical Memary: (k)
Handles 223TE Total 2096140
Threads 631 Bevailable Qg2za0
Processes 76 Syskem Cache 729455
—Commit Charge (K) —Kernel Memary (k)
Tokal 1404644 Tokal 180232
Lirnik 403534754 Paged 125456
Feak 1406360 Monpaged 54776

Processzes: ¥&

CPU Usage: 4%

Merm Usage: 1404644k | 4034754k

64

Legal licensing issues

* Will software vendors charge a separate

license per each core or only a single
license per chip?

 Microsoft, Red Hat Linux, Suse Linux will
license their OS per chip, not per core

65

Conclusion

* Multi-core chips an
Important new trend In
computer architecture

« Several new multi-core
chips in design phases

» Parallel programming technique
likely to gain importance

66

	Multi-core architectures
	Single-core computer
	Single-core CPU chip
	Multi-core architectures
	Multi-core CPU chip
	The cores run in parallel
	Within each core, threads are time-sliced (just like on a uniprocessor)
	Interaction with OS
	Why multi-core ?
	Instruction-level parallelism
	Thread-level parallelism (TLP)
	General context: Multiprocessors
	Multiprocessor memory types
	Multi-core processor is a special kind of a multiprocessor:All processors are on the same chip
	What applications benefit from multi-core?
	More examples
	A technique complementary to multi-core:Simultaneous multithreading
	Simultaneous multithreading (SMT)
	Without SMT, only a single thread can run at any given time
	Without SMT, only a single thread can run at any given time
	SMT processor: both threads can run concurrently
	But: Can’t simultaneously use the same functional unit
	SMT not a “true” parallel processor
	Multi-core: threads can run on separate cores
	Multi-core: threads can run on separate cores
	Combining Multi-core and SMT
	SMT Dual-core: all four threads can run concurrently
	Comparison: multi-core vs SMT
	Comparison: multi-core vs SMT
	The memory hierarchy
	“Fish” machines
	Designs with private L2 caches
	Private vs shared caches?
	Private vs shared caches
	The cache coherence problem
	The cache coherence problem
	Solutions for cache coherence
	Inter-core bus
	Invalidation protocol with snooping
	Programming for multi-core
	Thread safety very important
	However: Need to use synchronization even if only time-slicing on a uniprocessor
	Need to use synchronization even if only time-slicing on a uniprocessor
	Assigning threads to the cores
	Affinity masks are bit vectors
	Affinity masks when multi-core and SMT combined
	Default Affinities
	Process migration is costly
	Hard affinities
	When to set your own affinities
	Kernel scheduler API
	Kernel scheduler API
	Windows Task Manager
	Legal licensing issues
	Conclusion

