next up previous
Up: Quasi-Bayesian Strategies for Efficient Previous: Acknowledgements


J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, 1985.

Breese and Fertig1991
J. S. Breese and K. W. Fertig. Decision making with interval influence diagrams. In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 6, pages 467-478. Elsevier Science, North-Holland, 1991.

L. Chrisman. Incremental conditioning of lower and upper probabilities. International Journal of Approximate Reasoning, 13(1):1-25, 1995.

M. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

Fertig and Breese1990
K. W. Fertig and J. S. Breese. Interval influence diagrams. In M. Henrion, R. D. Shachter, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 5, pages 149-161. Elsevier Science Publishers, North-Holland, 1990.

T. L. Fine. Lower probability models for uncertainty and nondeterministic processes. Journal of Statistical Planning and Inference, 20:389-411, 1988.

Giron and Rios1980
F. J. Giron and S. Rios. Quasi-Bayesian behaviour: A more realistic approach to decision making? In J. M. Bernardo, J. H. DeGroot, D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics, pages 17-38. University Press, Valencia, Spain, 1980.

I. J. Good. Good Thinking: The Foundations of Probability and its Applications. University of Minnesota Press, Minneapolis, 1983.

H. E. Kyburg Jr.1987
H. E. Kyburg Jr. Bayesian and non-Bayesian evidential updating. Artificial Intelligence, 31:271-293, 1987.

Halpern and Fagin1992
J. Y. Halpern and R. Fagin. Two views of belief: Belief as generalized probability and belief as evidence. Artificial Intelligence, 54:275-317, 1992.

Heckerman and Jimison1989
D. Heckerman and H. Jimison. A Bayesian perspective on confidence. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 3, pages 149-160. Elsevier Science Publishers, North-Holland, 1989.

E. J. Horvitz. Reasoning about beliefs and actions under computational resource contraints. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 3, pages 301-324. Elsevier Science Publishers, North-Holland, 1989.

Krotkov and Klatzky1995
E. Krotkov and R. Klatzky. Robotic perception of material: Experiments with shape-invariant acoustic measures of material type. Fourth International Symposium on Experimental Robotics (ISER95), 1995.

I. Levi. The Enterprise of Knowledge. The MIT Press, Cambridge, Massachusetts, 1980.

Lindley and Barnett1965
D. Lindley and B. N. Barnett. Sequential sampling: Two decision problems with linear losses for binomial and normal random variables. Biometrika, 52:507-532, 1965.

J. E. Matheson. The economic value of analysis and computation. IEEE Trans. on Systems Science and Cybernetics, SSC-4(3):325-332, September 1968.

E. H. Ruspini. The logical foundations of evidential reasoning. Technical Report SRIN408, SRI Int., 1987.

Russell and Wefald1991
S. Russell and E. Wefald. Do the Right Thing. The MIT Press, Cambridge, MA, 1991.

Seidenfeld and Wasserman1993
T. Seidenfeld and L. Wasserman. Dilation for sets of probabilities. The Annals of Statistics, 21(9):1139-1154, 1993.

T. Seidenfeld. Outline of a theory of partially ordered preferences. Philosophical Topics, 21(1):173-188, Spring 1993.

G. Shafer. Probability judgment in artificial intelligence and expert systems. Statistical Science, 2(1):3-44, 1987.

C. A. B. Smith. Consistency in statistical inference and decision. Journal Royal Statistical Society B, 23:1-25, 1961.

P. Suppes. The measurement of belief. Journal Royal Statistical Society B, 2:160-191, 1974.

P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, New York, 1991.

© Fabio Cozman[Send Mail?]

Sun Jul 14 18:32:36 EDT 1996