
Distributed Statistical Estimation of Matrix Products
with Applications

David P. Woodruff
Carnegie Mellon University

Pittsburgh, PA 15213
United States

dwoodruf@cs.cmu.edu

Qin Zhang
Indiana University Bloomington

Bloomington, IN 47401
United States

qzhangcs@indiana.edu

ABSTRACT
We consider statistical estimations of a matrix product over the in-
tegers in a distributed setting, where we have two parties Alice and
Bob; Alice holds a matrix A and Bob holds a matrix B, and they
want to estimate statistics of A · B. We focus on the well-studied
`p-norm, distinct elements (p = 0), `0-sampling, and heavy hitter
problems. The goal is to minimize both the communication cost
and the number of rounds of communication.

This problem is closely related to the fundamental set-intersection
join problem in databases: when p = 0 the problem corresponds
to the size of the set-intersection join. When p = ∞ the output is
simply the pair of sets with the maximum intersection size. When
p = 1 the problem corresponds to the size of the corresponding
natural join. We also consider the heavy hitters problem which cor-
responds to finding the pairs of sets with intersection size above a
certain threshold, and the problem of sampling an intersecting pair
of sets uniformly at random.

1. INTRODUCTION
We study the problem of statistical estimations of a matrix

product in the distributed setting. Consider two parties Alice
and Bob; Alice holds a matrixA ∈ {0, 1}n×n and Bob holds
a matrix B ∈ {0, 1}n×n, and they want to jointly compute
a function f defined on A and B by exchanging messages.
The goal is to minimize both the total communication cost
and number of rounds of interaction.

One of the main statistical quantities we consider is the
p-norm ‖C‖p of the product C = A ·B, defined as

‖C‖p =
(∑

i,j∈[n] |Ci,j |
p
)1/p

.

Here the matrix product A ·B is the standard matrix product
over the integers. Interpreting 00 as 0, we see that p = 0
corresponds to the number of non-zero entries of C, which,
interpreting the rows of A and columns of B as sets, corre-
sponds to the set-intersection join size (see Section 1.1 for
the formal definition). This can also be viewed as a ma-
trix form of the well-studied distinct elements problem in
the data stream literature (see, e.g., [8, 14, 21]). Again inter-
preting the rows of A and the columns of B as sets, the case
p = 1 corresponds to the size of the corresponding natural
join (again see Section 1.1 for the formal definition). The
p = 2 case corresponds to the (squared) Frobenius norm of
the matrix product A · B, which is a norm of fundamental
importance in a variety of distributed linear algebra prob-

lems, such as low rank approximation (for a recent survey,
see [34]). The case p =∞ corresponds to the pair of sets of
maximum intersection size. Estimating the largest entry in
a Boolean matrix product has also been studied in the cen-
tralized setting. We refer readers to the recent paper [1] and
references therein.

As a closely related problem, we also consider the `0-
sampling problem for which the goal is to sample each non-
zero entry in C = AB with probability (1± ε) 1

‖C‖0
, which

corresponds to approximately outputting a random pair among
the intersecting pairs of sets. `0-sampling is also extensively
studied in the data stream literature [15, 20, 30], and is used
as a building block for sketching various dynamic graph prob-
lems (see [28] for a survey).

We also study the approximate heavy hitter problem de-
fined as follows. Let

HHp
φ(C) = {(i, j) | Cpi,j ≥ φ ‖C‖

p
p}.

The `p-(φ, ε)-heavy-hitter (0 < ε ≤ φ ≤ 1) problem asks to
output a set S such that

HHp
φ(AB) ⊆ S ⊆ HHp

φ−ε(AB).

As outputting the matrix product C requires outputting n2

numbers, it is natural to output the set S as a sparse approx-
imation of C; indeed this can be viewed as a matrix form of
the well-studied compressed sensing problem.

As mentioned, these basic statistical problems, being in-
teresting for their own sake, have strong relationships to fun-
damental problems in databases. We describe such relation-
ships more formally below.

Despite a large amount of work on computing p-norms
and heavy hitters on frequency vectors in the streaming lit-
erature (see, e.g., [31] for a survey), we are not aware of any
detailed study of these basic statistical functions on matrix
products. The purpose of this paper is to introduce a system-
atic study of statistical estimations on matrix products.

1.1 Motivation and Applications
Estimating the norm of a matrix product is closely re-

lated to two of the most important operations in relational
databases – the composition and the natural join. Suppose
we are given two relationsA and B, whereA is defined over
attributes (X,Y) and B is defined over attributes (Y, Z).
Assume for simplicity that dom(X) = dom(Y) = dom(Z) =
[n]. We thus have A ⊆ [n] × [n] and B ⊆ [n] × [n]. The

composition of A and B is defined to be

A ◦ B = {(i, j) | ∃k : (i, k) ∈ A ∧ (k, j) ∈ B}.

The natural join is defined to be

A ./ B = {(i, k, j) | (i, k) ∈ A ∧ (k, j) ∈ B}.

It is easy to see that the natural join corresponds to the com-
position together with the requirement that all the “witnesses”
k are output.

We further define “projection” sets Ai = {k | (i, k) ∈ A}
for each i ∈ [n], andBj = {k | (k, j) ∈ B} for each j ∈ [n].
Then we can rewrite the composition and natural joins as
follows:

A ◦ B = {(i, j) | Ai ∩Bj 6= ∅},

A ./ B = {(i, k, j) | k ∈ Ai ∩Bj}.

We thus also refer to compositions as set-intersection joins,
and natural joins as set-intersection joins with witnesses.

As an application of set-intersection joins, consider a job
application scenario: we have n applicants, with the i-th ap-
plicant having a set of skillsAi from the universe {1, . . . , n},
and n jobs, with the j-th job requiring a set of skills Bj . Our
goal is to find all the possible applicant-job matches, namely,
those pairs (i, j) such thatAi∩Bj 6= ∅. One may also be in-
terested in the number of such matches (the `0-norm) or the
most qualified applicants (the entry realizing the `∞-norm,
or the heavy hitters).

We can further relate set-intersection joins to Boolean ma-
trix multiplication. Let A and B be two n×n matrices such
that each row Ai,∗ is the indicator vector of Ai, and each
column B∗,j is the indicator vector of Bj . Then the non-
zero entries of AB exactly correspond to the outputs of the
set-intersection joins on {A1, . . . , An} and {B1, . . . , Bn}.
If we are interested in estimates to the sizes of the joins,
which are very useful for guiding query optimization since
they can be computed using much less communication than
computing the actual joins, then we have

• ‖AB‖0 = |A ◦ B|, that is, the `0-norm of AB is the
size of the composition of A and B,

• ‖AB‖1 = |A ./ B|, that is, the `1-norm of AB is the
size of the natural join of A and B.

Finally, ‖AB‖∞ corresponds to the pair (i, j) with the
maximum overlap, and {(i, j) | (AB)i,j ≥ φ ‖AB‖p} for a
threshold φ corresponds to the set of heavy hitters, i.e., those
pairs of sets whose intersection size exceeds the threshold.
These two problems have natural applications in inner prod-
uct similarity joins on a set of vectors; we refer the reader to
recent work [3] on inner product similarity joins and refer-
ences therein.

Remark 1 We note that all of these problems and the re-
sults in this paper can be straightforwardly modified to han-
dle the general case where dom(X) = m1, dom(Z) = m2

and dom(Y) = n, which corresponds to AB where A ∈
{0, 1}m1×n and B ∈ {0, 1}n×m2 . See Section 6 for more
discussions.

1.2 Our Results
For simplicity we use the notation Õ(·) to hide poly(log n

εδ)
factors where ε is the multiplicative approximation ratio and
δ is the error probability of a randomized communication al-
gorithm. We say that X approximates Y within a factor of
α if X ∈ [Yβ , γY] where β, γ ≥ 1 and βγ ≤ α.

Set-Intersection Join Size. We give a 2-round Õ(n/ε)-bit
algorithm that approximates ‖AB‖p, p ∈ [0, 2], within a
(1 + ε) factor. For the important case of p = 0, this pro-
vides a significant improvement over the previous Õ(n/ε2)
result in [16]. Also, due to the Ω(n/ε2) lower bound in [16]
for one-round algorithms (i.e., algorithms for which Alice
sends a single message to Bob, who outputs the answer),
this gives a separation in the complexity of this problem for
one and two-round algorithms. As the algorithm in [16] is a
direct application of an Õ(1/ε2) space streaming algorithm,
our algorithm illustrates the power to go beyond streaming
algorithms in this framework.

Pair of Sets with Maximum Intersection Size. We first
give a constant round Õ(n1.5/ε)-bit algorithm that approxi-
mates ‖AB‖∞ within a (2 + ε) factor. We complement our
algorithm by showing a few different lower bounds that hold
for algorithms with any (not necessarily constant) number of
rounds. First, we show that any algorithm that approximates
‖AB‖∞ within a factor of 2 needs Ω(n2) bits of communi-
cation, thus necessitating our (2 + ε) factor approximation.
Moreover, we show that any algorithm achieving any con-
stant factor approximation must use Ω̃(n1.5) bits of commu-
nication, which shows that our (2 + ε) factor approximation
algorithm has optimal communication, up to polylogarith-
mic factors.

We next look at approximation algorithms that achieve ap-
proximation factors to ‖AB‖∞ that are larger than constant.
We show it is possible to achieve a κ-approximation factor
using Õ(n1.5/κ) bits of communication. We complement
this with an Ω(n1.5/κ) bit lower bound.

Finally we show that the fact that the matricesA andB are
binary is crucial. Namely, we first show that for general ma-
trices A and B with poly(n)-bounded integer entries, there
is an Ω(n2) lower bound for any constant factor approxi-
mation. For general approximation factors κ that may be
larger than constant, we show an upper and lower bound of
Θ̃(n2/κ2) communication. This shows an arguably surpris-
ing difference in approximation factor versus communica-
tion for binary and non-binary matrices.

Heavy Hitters. We give an O(1)-round protocol that com-
putes `p-(φ, ε)-heavy-hitters, 0 < ε ≤ φ ≤ 1, and p ∈
(0, 2], with various tradeoffs depending on whether Alice
and Bob’s matrices are arbitrary integer matrices, or whether
they correspond to binary matrices. For arbitrary integer
matrices, we achieve Õ(

√
φ
ε n) bits of communication for

p = 1, and Õ(φε n) bits of communication for every other
p ∈ (0, 2] \ {1}.

We are able to significantly improve these bounds for bi-
nary matrices, which as mentioned above, have important
applications to database joins. Here we show for every p ∈
(0, 2] an O(1)-round protocol with Õ(n + φ

ε2) bits of com-

munication.

1.3 Related Work
Early work on studying joins in a distributed model can be

found in [29] (Section 5) and [24]. Here the goal is to output
the actual join rather than its size, and such algorithms, in
the worst case, do not achieve communication better than
the trivial algorithm in which Alice sends her entire input to
Bob for a centralized computation.

With the rise of the MapReduce-type models of compu-
tation, a number of works have been devoted to studying
parallel and distributed computations of joins. Such works
have looked at natural joins, multi-way joins, and similar-
ity joins, in a model called the massively parallel computa-
tion model (MPC) [2, 9, 10, 17, 23, 25, 26]. Unlike our two-
party communication model, in MPC there are multiple par-
ties/machines, and the primary goal is to understand the round-
load (maximum message size received by any server in any
round) tradeoffs of the computation.

In a recent paper [16] the authors and collaborators stud-
ied several join problems in the two-party communication
model. The studied problems include set-intersection joins,
set-disjointness joins, set-equality joins, and at-least-T joins.
Our results can be viewed as a significant extension to the re-
sults in [16], as well as a systematic study of classical data
stream problems in the context of matrix products. In par-
ticular, [16] did not study estimating the p-norms of AB,
for any p other than p = 0. For p = 0, they obtain an
algorithm using Õ(n/ε2) communication, which we signifi-
cantly improve to Õ(n/ε) communication, and extend to any
0 ≤ p ≤ 2. Moreover, we obtain the first bounds for approx-
imating ‖AB‖∞, where perhaps surprisingly, we are able to
obtain an O(1)-approximation in Õ(n3/2) communication,
beating the naïve n2 amount of communication. This leads
us to the first algorithms for finding the frequent entries, or
heavy hitters of AB.

While a number of recent works [6, 11, 22, 27, 36] look at
distributed linear algebra problems (for a survey, see [34]),
in all papers that we are aware of, the matrix C is distributed
additively. What this means is that we want to estimate
statistics of a matrix C = A+B, whereA andB are held by
Alice and Bob, respectively, who exchange messages with
each other. In this paper, we instead study the setting for
which we want to estimate statistics of a matrix C = A · B,
where A and B are again held by Alice and Bob, respec-
tively, who exchange messages with each other. Thus, in
our setting the underlying matrix C of interest is distributed
multiplicatively. When C is distributed additively, a com-
mon technique is for the players to agree on a random linear
sketching matrix S, and apply it to their inputs to reduce
their size. For example, if Alice has matrix A and Bob has
matrixB, then Alice can send S ·A to Bob, who can compute
S(A+B). A natural extension of it in the multiplicative case
is for Alice to send S ·A to Bob, who can compute S ·A ·B.
This is precisely how the algorithm for p = 0 of [16] pro-
ceeds. We show by using the product structure of A ·B and
more than one round, it is possible to obtain significantly less
expensive algorithms than this direct sketching approach.

Finally, we would like to mention several papers consider-
ing similar problems but working in the centralized model.

In [12], Cohen uses exponential random variables and ap-
plies a minimum operation to obtain an unbiased estima-
tor of the number of non-zero entries in each column of a
matrix product C = AB. However, a direct adaptation of
this algorithm to the distributed model would result Ω̃(n/ε2)
bits of communication and 1-round, which is the same as
using the 1-round `0-sketching protocol applied to each of
the columns in earlier work [16]. In contrast we show that
surprisingly, at least to the authors, Õ(n/ε) bits of commu-
nication is possible with only 2 rounds. In [5], Amossen,
Campagna, and Pagh improve the time complexity of [12],
provided ε is not too small. However, a direct adaptation of
this algorithm to the distributed model would result an even
higher communication cost of Ω(n2).

In [13], the `1-sampling problem is considered. In this
paper we do not emphasize estimation of ‖C‖1, since this
quantity can be computed exactly using O(n log n) bits of
communication, as stated in Remark 2. Similarly `1-sampling
can also be done in O(n log n) bits of communication, as il-
lustrated in Remark 3.

In [32], it is shown how to apply CountSketch to the en-
tries of a matrix product C = AB where A,B ∈ Rn×n.
The time complexity is O(nnz(A) + nnz(B) + n · k log k),
where nnz(A) denotes the number of non-zero entries of A,
and k is the number of hash buckets in CountSketch which is
at least 1/ε2. This outperforms the naïve time complexity of
first computing C and then hashing the entries of C one-by-
one. While interesting from a time complexity perspective,
it does not provide an advantage over CountSketch in a dis-
tributed setting. Indeed, for each of the hashes on Alice’s
side of the n outer products computed in [32], the size of
the hash is Θ̃(1/ε2), and consequently communicating this
to Bob takes Θ̃(n/ε2) bits in total.

2. PRELIMINARIES
In this section we give background on several sketching

algorithms that we will make use of, as well as some ba-
sic concepts in communication complexity. We will also de-
scribe some mathematical tools and previous results that will
be used in the paper.

For convenience we useA ∈ Zn×n to differentiateA from
a binary matrix, but we will assume that all the input ma-
trices have polynomially bounded integer entries. For all
sketching matrices we will make use of, without explicitly
stated, each of their entries can be stored in Õ(1) bits.

Sketches. A sketch sk(x) of a data object x is a summary
of x of small size (sublinear or even polylogarithmic in the
size of x) such that if we want to perform a query (denoted
by a function f) on the original data object x, we can instead
apply another function g on sk(x) such that g(sk(x)) ≈
f(x). Sketches are very useful tools in the development
of space-efficient streaming algorithms and communication-
efficient distributed algorithms. Many sketching algorithms
have been developed in the data stream literature. In this
paper we will make use of the following.

Lemma 1 ([19, 21], `p-Sketch (0 ≤ p ≤ 2)) For p ∈ [0, 2]
and a data vector x ∈ Rn, there is a sketch sk(x) = Sx

where S ∈ RO(1
ε2

log 1
δ)×n is a random sketching matrix,

and a function g such that with probability 1 − δ, g(sk(x))
approximates ‖x‖p within a factor of (1 + ε).

Communication Complexity. We will use two-party com-
munication complexity to prove lower bounds for the prob-
lems we study. In the two-party communication complexity
model, there are parties Alice and Bob. Alice gets an input
x ∈ X , and Bob gets an input y ∈ Y . They want to jointly
compute a function f : X × Y → Z via a communication
protocol. Let Π be a (randomized) communication protocol,
and let rA, rB be the private randomness used by Alice and
Bob, respectively. Let ΠX,Y,rA,rB denote the transcript (the
concatenation of all messages) when Alice and Bob run Π
on input (X,Y) using private randomness (rA, rB), and let
Π(X,Y, rA, rB) denote the output of the protocol. We say
Π errs with probability δ if for all (x, y) ∈ X × Y ,

PrrA,rB [ΠX,Y,rA,rB 6= f(x, y)] ≤ δ.

We define the randomized communication complexity of f ,
denoted by Rδ(f), to be minΠ maxx,y,rA,rB |ΠX,Y,rA,rB |,
where |z| denotes the length of the transcript z.

We next introduce a concept called the distributional com-
munication complexity. Let µ be a distribution over the in-
puts (X,Y). We say a deterministic protocol Π computes f
with error probability δ on µ if

Pr(X,Y)∼µ[ΠX,Y 6= f(x, y)] ≤ δ.

The δ-error distributional communication complexity under
input distribution µ, denoted by Dµ

δ (f), is the minimum
communication complexity of a deterministic protocol that
computes f with error probability δ on µ. The following
lemma connects distributional communication complexity with
randomized communication complexity.

Lemma 2 (Yao’s Lemma) For any function f and any δ >
0, Rδ(f) ≥ maxµD

µ
δ (f).

A standard method to obtain randomized communication
complexity lower bounds is to first find a hard input distribu-
tion µ for a function f , and then try to obtain a lower bound
on the distributional communication complexity of f under
inputs (X,Y) ∼ µ. By Yao’s Lemma, this is also a lower
bound on the randomized communication complexity of f .

We now introduce two well-studied problems in commu-
nication complexity.

Set-Disjointness (DISJ). In this problem Alice holds x =
(x1, . . . , xt) ∈ {0, 1}t, and Bob holds y = (y1, . . . , yt) ∈
{0, 1}t. They want to compute

DISJ(x, y) = ∨ti=1(xi ∧ yi).

Lemma 3 ([7]) R0.49(DISJ) ≥ Ω(n).

Gap-l∞. In this problem Alice holds x = (x1, . . . , xt) ∈
[0, κ]t, and Bob holds y = (y1, . . . , yt) ∈ [0, κ]t, with the
following promise: either |xi − yi| ≤ 1 for all i; or for some
i, |xi − yi| ≥ κ. Define Gap-l∞(x, y) = 1 if ‖x− y‖∞ ≥
κ, and Gap-l∞(x, y) = 0 otherwise.

Lemma 4 ([7]) R0.49(Gap-l∞) ≥ Ω(n/κ2).

Tools and Previous Results. We will make use of the fol-
lowing results on distributed matrix multiplication and `0-
sampling on vectors.

Lemma 5 ([16], Distributed Matrix Multiplication) Suppose
Alice holds a matrix A ∈ Rn×n, and Bob holds a matrix
B ∈ Rn×n. There is an algorithm for Alice and Bob to
compute CA and CB such that with probability 1 − 1/n10,
CA+CB = AB. The algorithm uses Õ(n

√
‖AB‖0) bits of

communication and 2 rounds.

Lemma 6 ([20], `0-Sampling) For a data vector x ∈ Rn,
there is a sketch sk(x) = Sx where S ∈ RÕ(1)×n is a ran-
dom sketching matrix, and a function g such that g(sk(x))
returns i ∈ [n] for each coordinate xi > 0 with probability
1/‖x‖0. The process fails with probability at most 1/n10.

We will also need the standard Chernoff bound.

Lemma 7 (Chernoff Bound) Let X1, . . . , Xn be indepen-
dent Bernoulli random variables such that Pr[Xi = 1] =
pi. Let X =

∑
i∈[n]Xi. Let µ = E[X]. It holds that

Pr[X ≥ (1 + δ)µ] ≤ e−δ
2µ/3 and Pr[X ≤ (1 − δ)µ] ≤

e−δ
2µ/2 for any δ ∈ (0, 1).

3. (1 + ε)-APPROXIMATION OF `p (p ∈ [0, 2])

For notational convenience (in order to unify `0 and `p
for constant p ∈ (0, 2]), we define ‖x‖00 = ‖x‖0 to be the
number of non-zero entries of x.

Note that for a constant p, approximating ‖C‖p within a
(1 + ε) factor and approximating ‖C‖pp within a (1 + ε) fac-
tor are asymptotically equivalent – we can always scale the
multiplicative error ε by a factor of p (a constant), which will
not change the asymptotic communication complexity. We
will thus use these interchangeably for convenience.

The Idea. The high level idea of the algorithm is as follows.
We first perform a rough estimation – we try to estimate the
`p-norm of each row of C within a (1 +

√
ε) factor. We then

sample rows of C with respect to their estimated (p-th power
of their) `p-norm, obtaining a matrix C ′. We finally use C ′
to obtain a finer estimation (i.e., a (1 + ε)-approximation) of
‖C‖pp.

Algorithm. Set parameters β = ε1/2, ρ = 104β2/ε2 =
104/ε. The algorithm for approximating `p-norms for p ∈
[0, 2] is presented in Algorithm 1. We describe it in words
below.

Alice and Bob first try to estimate the `p-norm of each
row in C within a factor of (1 + β). This can be done by
letting Bob send an `p-sketch of BT of size Õ(1/β2) to
Alice using the sketch in Lemma 1; Alice then computes
C̃ = (SBTAT)T . With probability 0.99, we have that for
all i ∈ [n],∥∥∥C̃i,∗∥∥∥p

p
∈
[
‖Ci,∗‖pp , (1 + β) · ‖Ci,∗‖pp

]
. (1)

We note that we can set β = ε (instead of β =
√
ε) and

directly get a (1 + ε) approximation of ‖Ci,∗‖pp for each row

Algorithm 1: (1 + ε)-Approximation for `p (p ∈
[0, 2])

Input : Alice has a matrix A ∈ Zn×n, and Bob has a
matrix B ∈ Zn×n. Let C ← AB

Output: A (1 + ε)-approximation of ‖C‖pp
1 Let S be the sketching matrix in Lemma 1;
2 Bob computes SBT ∈ RÕ(1/β2)×n of BT and sends

it to Alice;
3 Alice computes C̃ ← (SBTAT)T ;
4 Alice partitions the n rows of C̃ to (up to)

L = log1+β(2np+1) = O(1
β log n) groups

G1, . . . , GL, such that G` contains all i ∈ [n] for

which (1 + β)` ≤
∥∥∥C̃i,∗∥∥∥p

p
< (1 + β)`+1;

5 foreach group G` (` ∈ [L]) do
6 Alice randomly samples each i ∈ G` with

probability p`, where p` = ρ
|G`| ·

‖G̃`‖p
p

‖C̃‖p
p

where∥∥∥G̃`∥∥∥p
p

=
∑
i∈G`

∥∥∥C̃i,∗∥∥∥p
p
; Alice sends p` to

Bob;
7 Alice then replaces all non-sampled rows in A

with the all-0 vector, obtaining A′, and sends A′
to Bob;

8 Bob computes C ′ ← A′B, and outputs∑
`∈[L]

∑
i∈G`

1
p`

∥∥C ′i,∗∥∥pp.

i (and thus ‖C‖pp). This is exactly what was done in [16].
However, the communication cost in this case is Õ(n/ε2),
which is higher than our goal by a factor of 1/ε.

Alice then sends Bob
∥∥∥C̃i,∗∥∥∥p

p
for all i ∈ [n]. Both parties

partition all the rows of C̃ into up to L = O(1/β · log n)
groups G1, . . . , GL, such that the `-th group G` contains all
i ∈ [n] for which

(1 + β)` ≤
∥∥∥C̃i,∗∥∥∥p

p
< (1 + β)`+1. (2)

By (1) and (2), we have that for each i ∈ G`,

(1 + β)` ≤ ‖Ci,∗‖pp < (1 + 3β) · (1 + β)`. (3)

For a fixed group G`, let ‖G`‖pp =
∑
i∈G` ‖Ci,∗‖

p
p and∥∥∥G̃`∥∥∥p

p
=
∑
i∈G`

∥∥∥C̃i,∗∥∥∥p
p
. For each ` ∈ [L], set

p` =
ρ

|G`|
·
∥∥∥G̃`∥∥∥p

p

/∥∥∥C̃∥∥∥p
p
.

By (1) we have

p` ∈

[
1

2
· ρ

|G`|
·
‖G`‖pp
‖C‖pp

, 2 · ρ

|G`|
·
‖G`‖pp
‖C‖pp

]
(4)

For each ` ∈ [L], Alice randomly samples each i ∈ G`
with probability p`. Alice then sends Bob A′ which consists

of all the sampled rows of A with other rows being replaced
by all-0 vectors. Bob then computes C ′ = A′B, and outputs∑
`∈[L]

∑
i∈G`

1
p`

∥∥C ′i,∗∥∥pp as the approximation to ‖C‖pp.

We can show the following regarding Algorithm 1.

Theorem 1 For any p ∈ [0, 2], there is an algorithm that
approximates ‖AB‖p for A,B ∈ Zn×n within a (1 + ε)

factor with probability 1−1/n10, using Õ(n/ε) bits of com-
munication and 2 rounds.

Correctness. For each ` ∈ [L], and each i ∈ G`, let X`
i

be a 0/1 random variable such that X`
i = 1 if i ∈ G` is

sampled by Alice, and X`
i = 0 otherwise. Define

Z` =
1

p`

∑
i∈G`

(
‖Ci,∗‖pp −

‖G`‖pp
|G`|

)
X`
i .

It is clear that E[Z`] = 0. We now compute its variance.

Var[Z`] =
1

p2
`

∑
i∈G`

(‖Ci,∗‖pp − ‖G`‖pp|G`|

)2

Var[X`
i]


≤ 1

p`

∑
i∈G`

(
‖Ci,∗‖pp −

‖G`‖pp
|G`|

)2

≤ 1

p`

∑
i∈G`

(
3β ·
‖G`‖pp
|G`|

)2

(by (3))

=
9β2 · (‖G`‖pp)2

p` |G`|

≤ 18β2

ρ
· ‖G`‖pp · ‖C‖

p
p . (by (4))

Define Z =
∑
`∈[L] Z

`. We then have E[Z] = 0, and

Var[Z] =
∑
`∈[L]

Var[Z`]

≤ 18β2

ρ
· ‖C‖pp ·

∑
`∈[L]

‖G`‖pp

≤ 18β2

ρ
(‖C‖pp)

2.

By Chebyshev’s inequality, we have

Pr[|Z| ≥ ε · ‖C‖pp] ≤
Var[Z]

(ε · ‖C‖pp)2
=

18β2

ρε2
≤ 0.01.

We thus have
∣∣∣∑`∈[L]

∑
i∈G`

1
p`

∥∥C ′i,∗∥∥pp − ‖C‖pp∣∣∣ ≤ ε ‖C‖pp
with probability 0.99 (conditioned on (1) holding, which
happens with probability 0.99 as well).

Finally note that we can always boost the success prob-
ability of the algorithm from 0.9 to (1 − 1/n10) using the
standard median trick and paying another O(log n) factor in
the communication cost (which will be absorbed by the Õ(·)
notation).

Complexity. The communication cost of sending the `p-
sketch in the first round isO(n/β2·log n) words. The cost of
sending the sampled rows is bounded by

∑
`∈[L](p` |G`|·n).

Thus the total communication cost is bounded by∑
`∈[L]

(p` |G`| · n) +

(
n

β2
· log n

)

= Õ(n) ·
(
ρ+

1

β2

)
= Õ (n/ε) (by our choices of ρ and β).

It is clear that the whole algorithm finishes in 2 rounds of
communication.

Remark 2 We comment that for p = 1, ‖AB‖1 can actu-
ally be computed exactly using O(n log n) bits of communi-
cation and 1 round: Alice simply sends ‖A∗,j‖1 for each j ∈
[n] to Bob, and then Bob computes

∑
j∈[n]

(
‖A∗,j‖1 · ‖Bj,∗‖1

)
,

which is exactly ‖AB‖1.

Remark 3 We can also perform `1-sampling on C = AB
using O(n log n) bits of communication and 1 round. Alice
sends for each j ∈ [n] the value ‖A∗,j‖1 and a random sam-
ple from column A∗,j . Bob computes for each j ∈ [n] the
value ‖A∗,j‖1·‖Bj,∗‖1 as well as

∑
j∈[n]

(
‖A∗,j‖1 · ‖Bj,∗‖1

)
,

from which he samples a j ∈ [n] proportional to ‖A∗,j‖1 ·
‖Bj,∗‖1. Finally, Bob samples a random entry b ∈ Bj,∗, and
if a ∈ A∗,j is the uniform sample in A∗,j that Alice sent to
Bob, Bob outputs the pair (a, b) as the `1-sample.

3.1 `0-Sampling
We now present a simple algorithm for `0-sampling. Re-

call that the goal of `0-sampling on matrix C = AB is
to sample each non-zero entry in C with probability (1 ±
ε) 1
‖C‖0

.
The idea is fairly simple: we employ an `0-sketch and `0-

samplers in parallel. We first use the `0-sketch to sample a
column of C proportional to its `0-norm, and then apply the
`0-sampler to that column. For the first step, we use the one-
way `0-sketching algorithm in Lemma 1 to approximate the
`0-norm of each column of C within a factor of 1 + ε. For
the second step, we use the one-way `0-sampling algorithm
for vectors in Lemma 6 for each column of C.

Theorem 2 There is an algorithm that performs `0-sampling
onC with success probability 0.9 using Õ(n/ε2) bits of com-
munication and 1 round.

PROOF. The size of the `0-sampler (i.e., the sketching
matrix S) in Lemma 6 is bounded by Õ(n), and the size
of the `0-sketch in Lemma 1 is bounded by Õ(n/ε2). Thus
the total number of bits of communication is bounded by
Õ(n/ε2) + Õ(n) = Õ(n/ε2). The algorithm finishes in 1
round since both the `0-sketch and `0-sampler can be com-
puted in one round.

The success probability follows from a union bound on
the success probabilities of the `0-sketch and `0-sampler for
each of the n columns of C.

Algorithm 2: (2 + ε)-Approximation for `∞
Input : Alice has a matrix A ∈ {0, 1}n×n, and Bob

has a matrix B ∈ {0, 1}n×n. Let C ← AB
Output: A (2 + ε)-approximation of ‖C‖∞

1 foreach `← 0, 1, . . . , L do
2 Alice samples each ‘1’ in A with probability

p` = 1/(1 + ε)` (and replaces those
non-sampled 1’s by 0’s), obtaining matrix A`;

3 Let C` ← A`B;
4 foreach `← 0, 1, . . . , L do
5 Alice and Bob compute

∥∥C`∥∥
1

using Remark 2;
6 Let `∗ be the smallest index ` ∈ {0, 1, . . . , L} for

which
∥∥C`∥∥

1
≤ γn2;

7 foreach j ∈ [n] do
8 Let uj ←

∣∣{i ∈ [n] | j ∈ A`∗i }
∣∣, and

vj ← |{i ∈ [n] | j ∈ Bi}|;
9 if uj ≤ vj then

10 Alice sends Ij ← {i | j ∈ A`
∗

i } to Bob;
11 else
12 Bob sends Ij ← {i | j ∈ Bi} to Alice;

13 Alice and Bob use the Ij’s to compute matrices CA
and CB respectively such that C`

∗
= CA + CB ;

14 Alice and Bob compute ‖CA‖∞ and ‖CB‖∞, and
output max{‖CA‖∞ /p`∗ , ‖CB‖∞ /p`∗}.

4. (2 + ε)-APPROXIMATION OF `∞

In this section we give almost tight upper and lower bounds
for approximating ‖C‖∞, that is, the maximum entry in the
matrix product C. We first consider the product of binary
matrices, and then consider the product of general matrices.

4.1 Upper Bounds for Binary Matrices

4.1.1 An Upper Bound for 2 + ε Approximation

The Idea. The high level idea is to scale down each en-
try of C so that ‖C‖1 is as small as possible subject to the
constraint that the largest entry of C is still approximately
preserved (after scaling back). This down-scaling can be
done by sampling each 1-entry of A with a certain proba-
bility (we replace the non-sampled 1’s by 0’s). Let A′ be
the matrix of A after applying sampling. Alice and Bob then
communicate for each item j ∈ [n] the number of rows and
columns in A′ and B respectively that contain item j (i.e.,
those rows and columns with j-th coordinate equal to 1),
and the one with the smaller number sends all the indices of
those rows/columns to the other party. After this, Alice and
Bob can compute matrices C1 and C2 independently such
that C ≈ C1 + C2, and then output max{‖C1‖∞ , ‖C2‖∞}
as an approximation to ‖C‖∞.

Algorithm. Let L = log1+ε ‖A‖1 = O(logn
ε). Set γ =

104 logn
ε2 . We present the algorithm in Algorithm 2, and de-

scribe it in words below.
For ` = 0, 1, . . . , L, Alice samples each 1-entry in A with

probability p` = 1/(1 + ε)` (i.e., with probability (1 − p`)
the 1-entry is replaced by a 0-entry). Let A` be the matrix
after sampling A with probability p`, and let C` = A`B.

For each ` = 0, 1, . . . , L, Alice and Bob compute
∥∥C`∥∥

1
using Remark 2. Let `∗ be the smallest index ` ∈ {0, 1, . . . , L}
such that

∥∥C`∥∥
1
≤ γn2.

Let us focus onA`
∗

andB, and consider each item j ∈ [n].
For convenience we identify the rows ofA`

∗
and columns of

B as sets {A`∗1 , . . . , A`
∗

n } and {B1, . . . , Bn} respectively.
Suppose j appears uj times in Alice’s sets, and vj times in
Bob’s sets. Alice and Bob exchange the information of uj
and vj for all j ∈ [n]. Then for each j ∈ [n], if uj ≤ vj then
Alice sends all the indices of sets A`

∗

i containing j to Bob,
otherwise Bob sends all the indices of sets Bi containing j
to Alice.

At this point, Alice and Bob can form matricesCA andCB
respectively so thatCA+CB = C`

∗
, whereCA corresponds

to the portion of each entry of C`
∗

restricted to the items j
for which Alice knows the intersections (in other words, Al-
ice knows the inner product defining the entry C`

∗
restricted

to a certain subset of items), and similarly defineCB . Finally
Alice and Bob output max{‖CA‖∞ /p`∗ , ‖CB‖∞ /p`∗} as
the approximation of ‖C‖∞.

We have the following theorem.

Theorem 3 Algorithm 2 approximates ‖AB‖∞ for two Boolean
matrices A,B ∈ {0, 1}n×n within a (2 + ε) factor with
probability 0.9 using Õ(n1.5/ε) bits of communication and
3 rounds.

Correctness. We first show that the claimed approximation
holds. The following lemma is a key ingredient.

Lemma 8 With probability 1−1/n2,
∥∥C`∗∥∥∞ /p`∗ approx-

imates ‖C‖∞ within a factor of 1 + ε.

PROOF. We assume that ‖C‖1 > γn2 since otherwise
there is nothing to prove (in this case we have p`∗ = 1 and
C`
∗

= C).
We first define a few events.

E1:
∥∥C`∗∥∥∞ ≥ 1

2γ.

E2: For all pairs (i, j), if C`
∗

i,j ≥ 1
8γ, then C`

∗

i,j/p`∗ approx-
imates Ci,j within a factor of 1 + ε.

E3: For all pairs (i, j), if C`
∗

i,j <
1
8γ, then Ci,j < 1

4γ/p`∗ .

In words, E1 states that the maximum entry of C`
∗

will be
large. E2 states that for all large entries (i, j) in C`

∗
, the

values C`
∗

i,j , after rescaling by a factor of 1/p`∗ , can be used
to approximate Ci,j within a factor of 1 + ε. E3 states that
for all small entries (i, j) in C`

∗
, the corresponding values

Ci,j cannot be the maximum in the matrix C.
It is not difficult to see that if all three events hold then

Lemma 8 holds. Indeed, by E2 we can approximate eachCi,j
by C`

∗

i,j/p`∗ within a factor of 1 + ε as long as C`
∗

i,j ≥ 1
8γ,

and by E1 we have
∥∥C`∗∥∥∞ ≥ 1

2γ. Therefore

‖C‖∞ ≥
1

2
γ/(p`∗(1 + ε)) >

1

4
γ/p`∗ . (5)

By E3, for all (i, j) withC`
∗

i,j <
1
8γ, we haveCi,j < 1

4γ/p`∗ ;
by (5) we know that these entries (i, j) cannot be the max-
imum in C. We can thus conclude that

∥∥C`∗∥∥∞ approxi-
mates ‖C‖∞ /p`∗ within a factor of 1 + ε.

In the rest of this section we show that each of E1, E2, E3
holds with probability 1− 1/n4. The success probability in
Lemma 8 follows by a union bound.

For E1, we only need to show that
∥∥C`∗∥∥

1
≥ 1

2γn
2. Re-

call that `∗ is the smallest index ` ∈ {0, 1, . . . , L} such
that

∥∥C`∥∥
1
≤ γn2. We thus have

∥∥C`∗−1
∥∥

1
> γn2. We

can view C`
∗

as sampling each entry of C`
∗−1 with prob-

ability 1/(1 + ε). By a Chernoff bound, with probability
1 − 1/n10 we have

∥∥C`∗∥∥
1
≥ 1

2γn
2. Consequently, we

have
∥∥C`∗∥∥∞ ≥ ∥∥C`∗∥∥1

/n2 ≥ 1
2γ.

For E2, let us first focus on a particular pair (i, j). Let
z = Ci,j , and let k1, . . . , kz ∈ [n] be the indices for which
A`
∗

i,kt
= Bkt,j = 1 for all t = 1, . . . , z. For each t ∈ [z],

define the random variable Xt such that Xt = 1 if A`
∗

i,kt
is

sampled inA`
∗
, andXt = 0 otherwise. LetX =

∑
t∈[z]Xt.

We thus have X = C`
∗

i,j , and

E[X] =
∑
t∈[z] E[Xt] = p`∗ · z. (6)

The claim is E[X] ≥ 1
16γ with probability 1 − 1/n10.

Suppose to the contrary that E[X] < 1
16γ. We can just

consider the case that E[X] ∈ [1
32γ,

1
16γ) and argue that

with probability 1 − 1/n10 we have X < 1
8γ, which con-

tradicts the assumption of E2 that X = C`
∗

i,j ≥ 1
8γ. Note

that this is sufficient since if E[X] < 1
32γ then the proba-

bility that X < 1
8γ will be even higher. In the case when

E[X] ∈ [1
32γ,

1
16γ), by a Chernoff bound we have

X ∈ [(1− ε)E[X], (1 + ε)E[X]] ⊆
[

1

64
γ,

1

8
γ

)
with probability 1− 1/n10.

Now in the case that E[X] ≥ 1
16γ, by another Chernoff

bound we have X ∈ [(1− ε)E[X], (1 + ε)E[X]] with prob-
ability 1 − 1/n10; in other words, X/p`∗(= C`

∗

i,j/p`∗) ap-
proximates E[X]/p`∗(= z = Ci,j) within a factor of 1 + ε.
Finally, by a union bound on at most n2 pairs (i, j), the prob-
ability that E2 holds is at least 1− 1/n4.

For E3, we again focus on a particular pair (i, j), and will
reuse the notation in the analysis of E2. The observation is
that if E[X] ≥ 1

4γ, then X ≥ (1− ε)E[X] ≥ 1
8γ with prob-

ability 1 − 1/n10, contradicting the assumption of E3. We
thus have Ci,j = z = E[X]/p`∗ <

1
4γ/p`∗ with probability

1 − 1/n10. Finally by a union bound on at most n2 pairs of
(i, j), the probability that E3 holds is at least 1− 1/n4.

We now wrap up the correctness proof of the theorem.
At the end of Algorithm 2 Alice and Bob obtain two ma-
trices CA and CB such that CA + CB = C`

∗
. We thus

have max{‖CA‖∞ , ‖CB‖∞} ≥
∥∥C`∗∥∥∞ /2. Combining

this with Lemma 8 we obtain
‖C‖∞

2(1 + ε)
≤ max

{
‖CA‖∞
p`∗

,
‖CB‖∞
p`∗

}
≤ (1 + ε) ‖C‖∞ .

Complexity. By Remark 2, the step of computing
∥∥C`∥∥

1

for all ` = 0, 1, . . . , L costs Õ(L · n) = Õ(n) bits. The
exchanging of {uj , vj | j ∈ [n]} costs Õ(n) bits. The last
step of computing max{‖CA‖∞ , ‖CB‖∞} costs Õ(1) bits.

Now we consider the step of exchanging the indices of sets
containing j for each j ∈ [n]. We analyze two cases. In the
case that uj , vj >

√
n/ε, there will be at most∥∥∥C`∗∥∥∥

1
≤ 2γn2

uj · vj
such items j. The total communication for such j’s is bounded
by ∑
j:uj ,vj>

√
n/ε

min{uj , vj} ≤
∑
`≥0

γn2

n/ε2 · 22`
·
√
n/ε · 2`

= Õ(γεn1.5) = Õ(n1.5/ε).

In the case that min{uj , vj} ≤
√
n/ε, we directly have∑

j:min{uj ,vj}≤
√
n/ε

min{uj , vj} ≤
∑
j∈[n]

√
n/ε ≤ n1.5/ε.

Summing up, the total communication cost is bounded by
Õ(n1.5/ε).

Finally we show that Algorithm 2 can be implemented in
3 rounds. In Round 1, for each level ` Alice sends Bob
{‖A∗,j‖1 | j ∈ [n]} so that Bob can compute ‖AB‖1 ac-
cording to Remark 2, and consequently finds `∗. In Round
2, Bob sends `∗ to Alice, together with all Ij corresponding
to those j with uj > vj . In Round 3, Alice sends Bob all Ij
corresponding to those j with uj ≤ vj . Alice also formsCA,
computes and sends ‖CA‖∞ to Bob. Finally Bob forms CB ,
and computes max{‖CA‖∞ , ‖CB‖∞} as the final output.

4.1.2 An Upper Bound for General κ-Approximation

The Idea and Algorithm. We next consider protocols ob-
taining a κ-approximation to ‖C‖∞ for a general approxi-
mation factor κ > 1. One way to do this is to exactly fol-
low Algorithm 2. That is, we first scale down the entries
of C by sampling the 1-entries in A to a level for which∥∥C`∥∥

1
≤ αn2/κ where κ is the approximation ratio, and

α = Θ(log n). If we continue to follow Algorithm 2, then
we will get an Õ(n1.5/

√
κ) bound. We now show how to

improve the bound to Õ(n1.5/κ).
The main change we make to Algorithm 2 is that we add a

universe sampling step at the beginning. More precisely, we
sample each column ofAwith probability q = min{α/κ, 1}
whereα = 104 log n, and then replace all non-sampled columns
in A with all-0 vectors, obtaining a new matrix A′. Let
D = A′B. Recall that C = AB. We compute ‖C‖1 and
‖D‖1.

With this new universe sampling step it is possible to have
‖D‖1 = 0. If this happens then we also check ‖C‖1. If
‖C‖1 = 0 then we simply output 0; otherwise we output

Algorithm 3: κ-Approximation for `∞
Input : Alice has a matrix A ∈ {0, 1}n×n, and Bob

has a matrix B ∈ {0, 1}n×n. Let C ← AB
Output: A κ-approximation of ‖C‖∞

1 Set q = min{α/κ, 1} where α = 104 log n;
2 Alice samples each column of A with probability q

(and replaces those non-sampled columns by the
all-0 vector), obtaining A′. Let D ← A′B;

3 Alice and Bob compute ‖D‖1 and ‖C‖1;
4 if ‖D‖1 = 0 then
5 if ‖C‖1 = 0 then Output 0;
6 else Output 1;
7 else
8 Follow Algorithm 2 and further sample A′ with

probability p` = 1/2` (instead of
p` = 1/(1 + ε)`) for ` = 0, 1, . . . , log2 ‖A′‖1,
and with the threshold γn2 at Line 6 being
replaced by α/κ · n2. Finally output
max{‖CA‖∞ /(q · p`∗), ‖CB‖∞ /(q · p`∗)}.

1. If ‖D‖1 > 0, then we follow Algorithm 2 to do further
sampling on A′, obtaining A1, A2, Let C` = A`B for
` = 1, 2, We again stop at the first level `∗ for which∥∥C`∗∥∥

1
≤ αn2/κ, and then exchange for each (surviving)

universe item j the indices of sets that contain j, in exactly
the same way as that in Algorithm 2.

The algorithm in presented in Algorithm 3. We have the
following theorem.

Theorem 4 Algorithm 3 approximates ‖AB‖∞ for two Boolean
matrices A,B ∈ {0, 1}n×n within a factor of κ for any
κ ∈ [4, n] with probability 0.9 using Õ(n1.5/κ) bits of com-
munication and O(1) rounds.

Correctness. For simplicity we assume that α/κ ≤ 1 (and
thus q = α/κ), since otherwise D = C and the arguments
will follow those in Algorithm 2.

We define two events, and will show that each holds with
probability 1− 1/n4.

E4: For all pairs (i, j), if Di,j ≥ 1
8α, then Di,j/q approxi-

mates Ci,j within a factor of 2.

E5: For all pairs (i, j), if Di,j <
1
8α, then Ci,j < 1

4α/q.

We first assume that ‖D‖∞ > 0. Consider a pair (i, j), if
Di,j <

1
8α, then we know by E5 that Ci,j < 1

4α/q = 1
4κ.

Otherwise if Di,j ≥ 1
8α then by E4 we know that Di,j/q

approximates Ci,j within a factor of 2. We thus conclude
that ‖D‖∞ approximates ‖C‖∞ within a factor of κ/4 if
‖D‖∞ > 0.

In the case that ‖D‖∞ = 0, by E5 we know that all entries
in C are less than κ/4. Then we can test whether ‖C‖1 > 0.
If the answer is yes then we can output 1, which already ap-
proximates ‖C‖∞ within a factor of κ; otherwise we know
that C is the zero matrix, and we can output 0.

The proofs that each of E4 and E5 hold with probability
1 − 1/n4 are analogous to those for E2 and E3 in the proof
of Lemma 8.

Complexity. The analysis of the communication cost is
again similar to that of Algorithm 2, and the bottleneck is
still the exchange of the indices of sets containing j for each
j ∈ [n]. We again analyze two cases. Note that after sam-
pling we have

∥∥C`∗∥∥
1

= Õ(n2/κ), and the universe size is
Õ(n/κ).

• If min{uj , vj} ≤
√
n, then since the universe size is

Õ(n/κ), the total communication is upper bounded by
Õ(n/κ) ·

√
n = Õ(n1.5/κ).

• If min{uj , vj} >
√
n, then since

∥∥C`∗∥∥
1

= Õ(n2/κ),
the total communication is upper bounded by∥∥C`∗∥∥

1
/
√
n = Õ(n1.5/κ).

Therefore the total communication is bounded by Õ(n2/κ).
The number of rounds is clearly bounded by O(1).

4.2 Lower Bounds for Binary Matrices
In this section we show that our algorithms for `∞-norm

estimation in Section 4.1 are almost tight in the sense that
(1) Ω(n2) bits of communication is needed if we want to go
beyond a 2+ε approximation, and (2) for any approximation
κ we need to use Ω(n

3
2 /κ) bits of communication.

4.2.1 A Lower Bound for 2-Approximation

Theorem 5 Any algorithm that approximates ‖AB‖∞ for
two Boolean matrices A,B ∈ {0, 1}n×n within a factor of
2 with probability 0.51 needs Ω(n2) bits of communication,
even if we allow an unbounded number of communication
rounds.

PROOF. We perform a reduction from the two-player set-
disjointness (see Section 2) on strings of length (n/2)2 =
n2/4, where Alice has x and Bob has y. Alice creates an
n/2 × n/2 matrix A′ indexed by the coordinates in x, that
is, the i-th (i = 1, . . . , n/2) row of A′ consists of the ((i −
1)n2 + 1)-th, . . . , in2 -th coordinates of x. Similarly, Bob cre-
ates an n/2 × n/2 matrix B′ indexed by the coordinates in
y. Next, Alice creates an n× n input matrix

A =

[
A′ I
0 0

]
,

where I is an n/2× n/2 identity matrix, and 0 is an n/2×
n/2 all-0 matrix. Bob creates an n× n input matrix

B =

[
I 0
B′ 0

]
.

Note that A and B are both binary matrices, as needed for
the reduction to the ‖AB‖∞ problem.

The key is to observe that

A ·B =

[
A′ +B′ 0

0 0

]
. (7)

We thus have ‖A ·B‖∞ = ‖A′ +B′‖∞, which is 2 if x ∩
y 6= ∅, and 1 otherwise. The claimed lower bound for ap-
proximating ‖C‖∞ within a factor of 2 follows from the
Ω(n2) lower bounds for two-player set-disjointness on strings
of length Θ(n2) for success probability 0.51 (Lemma 3).

4.2.2 A Lower Bound for General κ-Approximation

Theorem 6 For any κ ∈ [1, n], any randomized algorithm
that approximates ‖AB‖∞ for two Boolean matricesA,B ∈
{0, 1}n×n within a factor of κ with probability 0.52 needs

Ω̃
(
n

3
2 /κ

)
bits of communication, even if we allow an un-

bounded number of communication rounds.

The proof is again by a reduction from a communication
problem which is highly structured. We first introduce a
few simple communication problems which will be used as
building blocks to construct the final communication prob-
lem that we will use for the reduction.

Set β =
√

50 log n/n, and set k = 1/(4κβ2) where κ is
the approximation ratio.

The AND Problem. In this problem Alice holds a bit x and
Bob holds a bit y. They want to compute AND(x, y) = x∧y.

Let X be Alice’s input and Y be Bob’s input. We define
two input distributions for (X,Y). Let W be a random bit
such that Pr[W = 0] = Pr[W = 1] = 1/2; let λ be the
distribution of W .

ν1: We first choose W ∼ λ. If W = 0, we set (X,Y) =
(0, 0) with probability 1−β, and (X,Y) = (0, 1) with
probability β. If W = 1, we set (X,Y) = (0, 0) with
probability 1−β, and (X,Y) = (1, 0) with probability
β.

µ1: Set (X,Y) = (0, 0) with probability 1/2, and (X,Y) =
(1, 1) with probability 1/2.

The DISJ Problem. Recall the set-disjointness problem in-
troduced in Section 2, where Alice holds x = (x1, . . . , xk) ∈
{0, 1}k, and Bob holds y = (y1, . . . , yk) ∈ {0, 1}k, and they
want to compute DISJ(x, y) = ∨ki=1AND(xi, yi).

LetX = (X1, . . . , Xk) be Alice’s input, and Y = (Y1, . . . , Yk)
be Bob’s input. We again define two input distributions for
(X,Y).

νk: Set (Xi, Yi) ∼ ν1 for each i ∈ [k].

µk: We first set (Xi, Yi) ∼ νk, and then pick M uniformly
at random from {1, . . . , k}, and reset (XM , YM) ∼
µ1.

The SUM Problem. In this problem Alice holds u = (u1, . . . , un)
where ui ∈ {0, 1}k for each i ∈ [n], and Bob holds v =
(v1, . . . , vn) where vi ∈ {0, 1}k for each i ∈ [n]. They want
to compute SUM(u, v) =

∑n
i=1 DISJ(ui, vi).

LetU = (U1, . . . , Un) be Alice’s input, and V = (V1, . . . , Vn)
be Bob’s input. We define the following input distribution
for (U, V).

φ: We first set (Ui, Vi) ∼ νk, and then pick aD uniformly
at random from {1, . . . , n}, and reset (UD, VD) ∼ µk.

Note that under (U, V) ∼ φ, Pr[SUM(U, V) = 0] =
Pr[SUM(U, V) = 1] = 1/2. Using the standard informa-
tion complexity machinery (which we omit here; and can be
found in for example [18, 35]) we can show the following.

Theorem 7 Any deterministic algorithm solving SUM(U, V)
correctly with probability 0.51 under (U, V) ∼ φ needs
Ω(βkn) bits of communication.

Input Reduction. We now perform a reduction from SUM
to the `∞-norm estimation problem. Given (U, V) ∼ φ,
we construct matrices A and B as follows. We set A =
[A1, . . . , An/k] where A1 = . . . = An/k, and for each
Az (z ∈ [n/k]) we have Azi,∗ = Ui for all i ∈ [n]. Similarly,
we set B = [B1, . . . , Bn/k]T where B1 = . . . = Bn/k, and
for each Bz (z ∈ [n/k]) we have Bz∗,i = Vi for all i ∈ [n].
Let ψ denote the resulting distribution of (A,B). We have
the following lemma.

Lemma 9 For any κ, any deterministic algorithm that ap-
proximates ‖AB‖∞ within a factor of κ with probability δ
under (A,B) ∼ ψ can be used to compute SUM(U, V) with
probability (δ + 0.01) under (U, V) ∼ φ.

PROOF. Let (U, V) ∼ φ, and let (A,B) be constructed
using (U, V) as described in the input reduction above. Let
C = AB. We first compute the value of ‖C‖∞.

We analyze two cases. When SUM(U, V) = 0, we have
DISJ(Ui, Vi) = 0 for all i ∈ [n]. Consider a pair (i, j) (i, j ∈
[n], i 6= j). We analyze the inner product 〈Ai,∗, B∗,j〉. For
each t ∈ [k], the probability that Ai,t = Bt,j = 1 is at most
β2. We thus have

E[〈Ai,∗, B∗,j〉] ≤ β2n.

By a Chernoff bound we have 〈Ai,∗, B∗,j〉 ≤ 2β2n with
probability 1 − e−β2n/3 ≥ 1 − 1/n10. By a union bound
on all pairs (i, j) (i 6= j), we have that with probability
1− 1/n8, Ci,j = 〈Ai,∗, B∗,j〉 ≤ 2β2n for all (i, j) (i 6= j).
Consequently,

‖C‖∞ ≤ 2β2n. (8)

When SUM(U, V) = 1, we have DISJ(Ui, Vi) = 0 for all
i ∈ [n]\D, and DISJ(UD, VD) = 1. We thus have

‖C‖∞ ≥ n/k. (9)

By our choices of parameters β and k, we have

(n/k)/(2β2n) = 2κ > κ.

The lemma thus follows from (8) and (9).

Theorem 6 follows from Lemma 9, Theorem 7, our choices
of β and k, and Yao’s minimax lemma.

4.3 General Matrices
Finally we observe that the communication complexity for

approximating ‖AB‖∞ for non-binary matrices A,B is sig-
nificantly different than that for binary matrices.

Theorem 8 LetA ∈ Zn×n andB ∈ Zn×n. In the two-party
communication model we have:

1. There is an algorithm that computes ‖AB‖∞ within a
factor κ using Õ(n2/κ2) bits of communication and
one round.

2. Any algorithm that approximates ‖AB‖∞ within a fac-
tor κ needs Ω̃(n2/κ2) bits of communication, even if
we allow an arbitrary number of communication rounds.

For the upper bound, we first recall a simple algorithm for
sketching ‖x‖∞ (x ∈ Zn).1 We first partition the vector
x into n/κ2 blocks each of size κ2, and then use the AMS
sketching algorithm [4] for `2-norm estimation for each block;
the sketch size is Õ(1) if we target an O(1)-approximation
and 1 − 1/n10 success probability. Since for each vector
y ∈ Zκ2

we have ‖y‖∞ ∈
[
‖y‖2
κ , ‖y‖2

]
, we obtain a sketch

of size Õ(n/κ2) for estimating ‖x‖∞ within a factor of κ.
Denote this sketching matrix by S ∈ RÕ(n/κ2)×n.

In the matrix product setting Alice simply applies S to A
and sends SA ∈ RÕ(n/κ2)×n to Bob. Bob then estimates the
`∞-norm of each column ofC(= AB) using SA andB (and
computing SA ·B), and then outputs maxj∈[n] ‖C∗,j‖∞.

For the lower bound, we again use the technique in Sec-
tion 4.2.1 to convert a matrix product to a matrix sum, and
then perform a reduction from the `∞-norm estimation prob-
lem (see Section 2). Given two vectors x, y ∈ [0, κ]n

2/4,
we construct A′, B′ and A,B exactly the same way as that
in Section 4.2.1. We then have ‖A ·B‖∞ = ‖A′ +B′‖∞,
which evaluates to κ if Gap-l∞(x, y) = 1, and evaluates to
at most 1 if Gap-l∞(x, y) = 0. The lower bound follows
from Lemma 4.

5. APPROXIMATE HEAVY HITTERS
In this section we consider the `p-(φ, ε)-heavy-hitter prob-

lem described in the introduction. We first propose an algo-
rithm for products of general matrices, and then consider the
problem for binary matrices.

5.1 General Matrices
We first consider p = 1. General p ∈ (0, 2] can be handled

in a similar way.

The Idea. The idea for computing approximate heavy hit-
ters is similar to our ideas for the `∞-norm, that is, we sam-
ple 1-entries in A to scale down the values of entries in C
to a level such that the heavy-hitter entries are still non-zero,
while there are not many non-zero entries corresponding to
non-heavy-hitter entries. Let C ′ denote the matrix C after
we scale down. Since there cannot be many heavy hitters,
the number of non-zero entries in C ′ is small. We can thus
perform a sparse recovery algorithm on C ′ to find all the
heavy hitters.

Algorithm. We present the algorithm in Algorithm 4, and
describe it in words below.

Alice and Bob first compute ‖C‖1 using Remark 2. Next,
similar to Algorithm 2 for approximating ‖C‖∞, we sample
the 1-entries in matrix A. The sampling is simpler in this
1This algorithm was described in [33].

Algorithm 4: Computing `1-(φ, ε)-Heavy-Hitters

Input : Alice has a matrix A ∈ Õ(n/κ2)n×n, and
Bob has a matrix B ∈ Õ(n/κ2)n×n. Let
C ← AB

Output: `1-(φ, ε)-Heavy-Hitters of C

1 Alice and Bob compute ‖C‖1;

2 Set the sampling rate β ← min

{
104 logn

(εφ)
2·φ8 ‖C‖1

, 1

}
;

3 Alice samples each 1-entry in A with probability β
(and replaces all the non-sampled 1’s by 0’s),
obtaining matrix Aβ ; let Cβ ← AβB;

4 Alice and Bob then use Lemma 5 to recover all the
non-zero entries of Cβ ; the recovered matrix Cβ is
distributed at Alice’s side and Bob’s side, denoted
by CA and CB where Cβ = CA + CB ;

5 Alice creates C ′A consisting of all entries in CA that
are larger than εβ

8 ‖C‖1, and sends C ′A to Bob. Bob
outputs all entries in C ′ = C ′A + CB that are at least
β · (φ− ε

2) ‖C‖1.

case since we only need to sample the entries at the fixed
ratio β. Let Cβ be the resulting matrix after sampling.

Alice and Bob then use Lemma 5 to recover all the non-
zero entries in Cβ ; the entries of the recovered Cβ are dis-
tributed across the two parties, denoted byCA andCB where
Cβ = CA+CB . Alice then sends all “heavy” entries in CA,
that is, those whose values are larger than εβ

8 ‖C‖1, to Bob.
Bob then outputs all the heavy hitters in C ′ which is con-
structed by adding the heavy entries of CA (received from
Alice) to CB .

Theorem 9 Algorithm 4 computes the `1-(φ, ε)-heavy-hitters
(0 < ε ≤ φ ≤ 1) of AB, where A,B ∈ Zn×n, with prob-
ability 0.9 and using Õ(

√
φ
ε n) bits of communication and

O(1) rounds.

We will assume that ‖C‖1 ≥
104 logn

(εφ)
2·φ8

= 8·104φ logn
ε2 , since

otherwise β = 1, and then Cβ = C, in which case the proof
is only simpler.

Correctness. We define two events.

E6: For all pairs (i, j), if Ci,j ≥ φ
8 ‖C‖1, then Cβi,j/β ap-

proximates Ci,j within a factor of 1 + ε
4φ .

E7: For all pairs (i, j), if Ci,j < φ
8 ‖C‖1, then Cβi,j/β <

φ
4 ‖C‖1.

The correctness of Theorem 9 holds if both E6 and E7 hold.
To see this, first consider those pairs (i, j) for which Ci,j <
φ
8 ‖C‖1. By E7 we have

C ′i,j ≤ C
β
i,j ≤ β ·

φ

4
‖C‖1 < β · (φ− ε

2
) ‖C‖1 .

Thus pair (i, j) will not be output in Step 5 of Algorithm 4.

We next consider those pairs (i, j) with Ci,j ≥ φ
8 ‖C‖1.

By E6 we have that Cβi,j ∈
[
βCi,j
1+ ε

4φ
, β(1 + ε

4φ)Ci,j

]
. Now we

consider two cases.
1. If Ci,j ≥ φ ‖C‖1, then

C ′i,j ≥ Cβi,j −
εβ

8
‖C‖1

≥ βCi,j
1 + ε

4φ

− εβ

8
‖C‖1

≥
βφ ‖C‖1
1 + ε

4φ

− εβ

8
‖C‖1

≥ β
(
φ− ε

2

)
‖C‖1 .

Thus pair (i, j) will be output.

2. If Ci,j ≤ (φ− ε) ‖C‖1, then

C ′i,j ≤ βC
β
i,j ≤ β

(
1 +

ε

4φ

)
Ci,j

≤ β

(
1 +

ε

4φ

)
(φ− ε) ‖C‖1

≤ β
(
φ− ε

2

)
‖C‖1 .

Thus pair (i, j) will not be output.
In the following we show that both E6 and E7 hold with

probability 1− 1/n4.
For E6, for a fixed pair (i, j), by sampling we have

E[Cβi,j] = β · Ci,j ≥ β ·
φ

8
‖C‖1 .

By a Chernoff bound we have

Pr
[∣∣∣Cβi,j −E[Cβi,j]

∣∣∣] ≥ ε

4φ
·E[Cβi,j]

≤ 2 · e−(ε
4φ)2β φ8 ‖C‖1/3

≤ 1/n10.

By a union bound over the at most n2 (i, j) pairs, we have
that with probability 1 − 1/n4, Cβi,j/β approximates Ci,j
within a factor of (1 + ε

4φ) for all pairs (i, j).

For E7, consider a fixed pair (i, j). If Ci,j < φ
8 ‖C‖1,

then E[Cβi,j] < β · φ8 ‖C‖1. By a Chernoff bound we have
that Cβi,j ≤ 2β · φ8 ‖C‖1 with probability 1 − 1/n10. Thus
the probability that E7 holds is at least 1 − 1/n4 by a union
bound over all (i, j) pairs.

Complexities. Step 1 can be done using Õ(n) bits (Re-
mark 2). By a Chernoff bound, it holds with probability
1 − 1/n10 that

∥∥Cβ∥∥
1
≤ 2β ‖C‖1 = O

(
φ
ε2 log n

)
. Con-

sequently we have
∥∥Cβ∥∥

0
≤
∥∥Cβ∥∥

1
= O(φε2 log n). By

Lemma 5 we have that with probability 1− 1/n10 Alice and
Bob can recover all non-zero entries of Cβ in Step 4 using
Õ(
√
φ
ε n) bits of communication and 2 rounds. The commu-

nication in Step 5 is bounded by Õ(1/ε). We thus can bound
the total communication by Õ(

√
φ
ε n).

Finally, it is easy to see that the algorithm terminates in
O(1) rounds.

The above analysis can be straightforwardly extended to
`p-norms for all constants p ∈ (0, 2] simply by replacing the
sampling probability β by βp at Line 2, and replacing ‖C‖1
and matrix entries Mi,j by ‖C‖pp and |Mi,j |p respectively
at Lines 1, 2 and 5. At Line 1 one can use Algorithm 1 to
estimate ‖C‖pp up to a factor of (1+ ε

4φ), which costs Õ(φε n)

bits of communication by Theorem 1, and is the bottleneck
here.

Corollary 1 For two matrices A,B ∈ Zn×n, there is an al-
gorithm that computes the `p-(φ, ε)-heavy-hitters (0 < ε ≤
φ ≤ 1, p ∈ (0, 2]) of AB with probability 0.9 using Õ(φε n)
bits of communication and O(1) rounds.

5.2 Binary Matrices
In this section we show that we can do better for binary

matrices by employing the idea we use for `∞-norm esti-
mation. Again Alice holds A ∈ {0, 1}n×n and Bob holds
B ∈ {0, 1}n×n, and let C = AB. Due to the similarity of
the approach compared with the `∞-norm case (Section 4.1),
we do not repeat some of the details.

We first assume that ‖AB‖pp ≥ 100φ log n/ε2, and will
consider the other case later. The algorithm is as follows.

Step 1: Alice and Bob first estimate Lp = ‖C‖p within a
factor of 2, denoted by L′p.

Step 2: Alice samples each column of A with probability
β = min

{
α

φ1/pL′p
, 1
}

for α = (104 log n)1/p, obtaining A′.

Let C ′ = A′B. Alice and Bob then exchange the indices of
sets containing j for each surviving item j ∈ [n] as Step 7-
12 in Algorithm 2, obtaining CA and CB for which C ′ =
CA + CB .

Step 3: Alice and Bob try to verify for each non-zero en-
try in CA or CB whether it is indeed a heavy hitter. Let
SA, SB consist of all the entries (i, j) in CA, CB for which
(CA)pi,j ≥ βpφ(L′p)

p/20 or (CB)pi,j ≥ βpφ(L′p)
p/20, re-

spectively. Then for each entry (i, j) ∈ SA ∪ SB , Alice
and Bob try to estimate Ci,j within a (1 + ε/(2φ)) factor
by sampling Õ(1/(ε/φ)2) coordinates of their correponding
row and column in A and B.

By Chernoff bounds, one has that after sampling we have
with probability (1− 1/n10) that (1) the number of sampled
columns of A (or, the number of surviving universe items) is
bounded by Õ(βn), and (2) ‖C ′‖1 = Õ(βL1).

The correctness proof is identical to that for the `∞-norm
estimation algorithms in Section 4.1. We next turn to ana-
lyzing the communication cost.

The first step costs Õ(n) bits of communication by The-
orem 1. For the second step, reusing the notation uj , vj for
each universe item j in Algorithm 2, we analyze two cases:

• If min{uj , vj} ≤
√
L1/n, then since there are at most

Õ(βn) surviving universe items, the total communica-
tion is upper bounded by

Õ(βn) ·
√
L1

n
= Õ

(√
n

φ1/p
·
√
L1

Lp

)
.

• If min{uj , vj} >
√
L1/n, then since ‖C ′‖1 = Õ(βL1),

the total communication is upper bounded by

Õ

(
βL1√
L1/n

)
= Õ

(√
n

φ1/p
·
√
L1

Lp

)
.

It is easy to see that the third step costs Õ((φ/ε)2 · 1/φ) =

Õ(φ/ε2) bits of communication since there can be at most
Õ(1/φ) entries whose p-th powers are at least βpφL′pp/20.
Summing up, the total communication is bounded by Õ(Z)
where

Z = n+

√
n

φ1/p
·
√
L1

Lp
+
φ

ε2

≤ n+
φ

ε2
+

n
1
2

φ1/p
·

√
L1

L2/(n
1
2−

1
p)

≤ n+
φ

ε2
+
n1− 1

p

φ1/p
(
√
L1 ≤ L2)

≤ 2

(
n+

φ

ε2

)
.

(
φ

ε2
≥ 1

φ

)
In the case that ‖AB‖pp < 100φ log n/ε2, we can just omit

the subsampling in Step 2 of the algorithm. A similar anal-
ysis gives a communication cost of Õ(n +

√
φn
ε + 1

ε) =

Õ(n+ φ
ε2).

Theorem 10 There is an algorithm that computes the `p-
(φ, ε)-heavy-hitters (0 < ε ≤ φ ≤ 1, p ∈ (0, 2]) of AB,
where A,B ∈ {0, 1}n×n, with probability 0.9 and using
Õ(n+ φ

ε2) bits of communication and O(1) rounds.

6. CONCLUDING REMARKS
In this paper we studied a set of basic statistical estima-

tion problems of matrix products in the distributed model,
including the `p-norms, distinct elements, `0-sampling and
heavy hitters. These problems have a number of applications
in database joins.

We would like to mention again that our algorithms for
square matrices can be straightforwardly modified to handle
rectangular matrices where A ∈ Σm×n (m ≥ n) and B ∈
Σn×m. We briefly list here how our main upper bounds look
like on rectangular matrices. All the algorithms remain the
same (we of course have to change some occurrences of n to
m in several places).

• The communication cost for (1 + ε)-approximating `p
(p ∈ [0, 2]) with Σ = Z remains Õ(n/ε).

• The communication cost for (2+ε)-approximating `∞
with Σ = {0, 1} becomes Õ(m1.5), and that for κ-
approximating `∞ with Σ = {0, 1} becomes Õ(m1.5/κ)

• The communication cost for `p-(φ, ε)-heavy-hitters with
Σ = Z remains Õ(φε n), and that for `p-(φ, ε)-heavy-
hitters with Σ = {0, 1} remains Õ(n+ φ

ε2).

7. REFERENCES
[1] A. Abboud and A. Rubinstein. Distributed PCP

theorems for hardness of approximation in P. CoRR,
abs/1706.06407, 2017.

[2] F. N. Afrati and J. D. Ullman. Optimizing multiway
joins in a map-reduce environment. IEEE Trans.
Knowl. Data Eng., 23(9):1282–1298, 2011.

[3] T. D. Ahle, R. Pagh, I. P. Razenshteyn, and F. Silvestri.
On the complexity of inner product similarity join. In
PODS, pages 151–164, 2016.

[4] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137–147, 1999.

[5] R. R. Amossen, A. Campagna, and R. Pagh. Better
size estimation for sparse matrix products.
Algorithmica, 69(3):741–757, 2014.

[6] M. Balcan, Y. Liang, L. Song, D. P. Woodruff, and
B. Xie. Communication efficient distributed kernel
principal component analysis. In KDD, pages
725–734, 2016.

[7] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach to
data stream and communication complexity. J.
Comput. Syst. Sci., 68(4):702–732, 2004.

[8] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar,
and L. Trevisan. Counting distinct elements in a data
stream. In RANDOM, pages 1–10, 2002.

[9] P. Beame, P. Koutris, and D. Suciu. Communication
steps for parallel query processing. In PODS, pages
273–284, 2013.

[10] P. Beame, P. Koutris, and D. Suciu. Skew in parallel
query processing. In PODS, pages 212–223, 2014.

[11] C. Boutsidis, D. P. Woodruff, and P. Zhong. Optimal
principal component analysis in distributed and
streaming models. In STOC, pages 236–249, 2016.

[12] E. Cohen. Structure prediction and computation of
sparse matrix products. J. Comb. Optim.,
2(4):307–332, 1998.

[13] E. Cohen and D. D. Lewis. Approximating matrix
multiplication for pattern recognition tasks. J.
Algorithms, 30(2):211–252, 1999.

[14] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst.
Sci., 31(2):182–209, 1985.

[15] G. Frahling, P. Indyk, and C. Sohler. Sampling in
dynamic data streams and applications. Int. J. Comput.
Geometry Appl., 18(1/2):3–28, 2008.

[16] D. V. Gucht, R. Williams, D. P. Woodruff, and
Q. Zhang. The communication complexity of
distributed set-joins with applications to matrix
multiplication. In PODS, pages 199–212, 2015.

[17] X. Hu, Y. Tao, and K. Yi. Output-optimal parallel
algorithms for similarity joins. In PODS, pages 79–90,
2017.

[18] Z. Huang, B. Radunovic, M. Vojnovic, and Q. Zhang.
Communication complexity of approximate matching
in distributed graphs. In STACS, pages 460–473, 2015.

[19] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.

In FOCS, pages 189–197, 2000.
[20] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds

for lp samplers, finding duplicates in streams, and
related problems. In PODS, pages 49–58, 2011.

[21] D. M. Kane, J. Nelson, and D. P. Woodruff. An
optimal algorithm for the distinct elements problem.
In PODS, pages 41–52, 2010.

[22] R. Kannan, S. Vempala, and D. P. Woodruff. Principal
component analysis and higher correlations for
distributed data. In COLT, pages 1040–1057, 2014.

[23] B. Ketsman and D. Suciu. A worst-case optimal
multi-round algorithm for parallel computation of
conjunctive queries. In PODS, pages 417–428, 2017.

[24] D. Kossmann. The state of the art in distributed query
processing. ACM Comput. Surv., 32(4):422–469, 2000.

[25] P. Koutris, P. Beame, and D. Suciu. Worst-case
optimal algorithms for parallel query processing. In
ICDT, pages 8:1–8:18, 2016.

[26] P. Koutris and D. Suciu. Parallel evaluation of
conjunctive queries. In PODS, pages 223–234, 2011.

[27] Y. Liang, M. Balcan, V. Kanchanapally, and D. P.
Woodruff. Improved distributed principal component
analysis. In NIPS, pages 3113–3121, 2014.

[28] A. McGregor. Graph stream algorithms: a survey.
SIGMOD Record, 43(1):9–20, 2014.

[29] P. Mishra and M. H. Eich. Join processing in relational
databases. ACM Comput. Surv., 24(1):63–113, 1992.

[30] M. Monemizadeh and D. P. Woodruff. 1-pass
relative-error lp-sampling with applications. In SODA,
pages 1143–1160, 2010.

[31] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[32] R. Pagh. Compressed matrix multiplication. TOCT,
5(3), 2013.

[33] M. E. Saks and X. Sun. Space lower bounds for
distance approximation in the data stream model. In
STOC, pages 360–369, 2002.

[34] D. P. Woodruff. Sketching as a tool for numerical
linear algebra. Foundations and Trends in Theoretical
Computer Science, 10(1-2):1–157, 2014.

[35] D. P. Woodruff and Q. Zhang. An optimal lower
bound for distinct elements in the message passing
model. In SODA, pages 718–733, 2014.

[36] D. P. Woodruff and P. Zhong. Distributed low rank
approximation of implicit functions of a matrix. In
ICDE, pages 847–858, 2016.

