
Distributed Low Rank Approximation of Implicit
Functions of a Matrix

David P. Woodruff
IBM Almaden Research Center

San Jose, CA 95120, USA
Email: dpwoodru@us.ibm.com

Peilin Zhong
Institute for Interdisciplinary Information Sciences

Tsinghua University, Beijing 100084, China
Email: zpl12@mails.tsinghua.edu.cn

Abstract—We study distributed low rank approximation in
which the matrix to be approximated is only implicitly rep-
resented across the different servers. For example, each of s
servers may have an n× d matrix At, and we may be interested
in computing a low rank approximation to A = f(

∑s
t=1 A

t),
where f is a function which is applied entrywise to the matrix∑s

t=1 A
t. We show for a wide class of functions f it is possible

to efficiently compute a d × d rank-k projection matrix P
for which ∥A − AP∥2F ≤ ∥A − [A]k∥2F + ε∥A∥2F , where AP
denotes the projection of A onto the row span of P , and
[A]k denotes the best rank-k approximation to A given by the
singular value decomposition. The communication cost of our
protocols is d·(sk/ε)O(1), and they succeed with high probability.
Our framework allows us to efficiently compute a low rank
approximation to an entry-wise softmax, to a Gaussian kernel
expansion, and to M -Estimators applied entrywise (i.e., forms of
robust low rank approximation). We also show that our additive
error approximation is best possible, in the sense that any protocol
achieving relative error for these problems requires significantly
more communication. Finally, we experimentally validate our
algorithms on real datasets.

I. INTRODUCTION

In many situations the input data to large-scale data min-
ing, pattern recognition, and information retrieval tasks is
partitioned across multiple servers. This has motivated the
distributed model as a popular research model for computing
on such data. Communication is often a major bottleneck, and
minimizing communication cost is crucial to the success of
some protocols. Principal Component Analysis (PCA) is a
useful tool for analyzing large amounts of distributed data.
The goal of PCA is to find a low dimensional subspace which
captures the variance of a set of data as much as possible.
Furthermore, it can be used in various feature extraction tasks
such as [1], [2], and serve as a preprocessing step in other
dimensionality reduction methods such as Linear Discriminant
Analysis (LDA) [3], [4].

PCA in the distributed model has been studied in a
number of previous works, including [5], [6], [7], [8], [9].
Several communication-efficient algorithms for approximate
PCA were provided by these works. In the setting of [8], [9],
the information of each data point is completely held by a
unique server. In [7] a stronger model called the “arbitrary
partition model” is studied: each point is retrieved by applying
a linear operation across the data on each server. Despite
this stronger model, which can be used in several different
scenarios, it is still not powerful enough to deal with certain
cases. For instance, if each data point is partitioned across

several servers, and one wants to apply a non-linear operation
to the points, it does not apply. For example, the target may be
to analyze important components of Gaussian random Fourier
features [10] of data. Another example could be that each
person is characterized by a set of health indicators. The
value of an indicator of a person may be different across
records distributed in each hospital for that person. Because the
probability that a person has a problem associated with a health
issue increases when a hospital detects the problem, the real
value of an indicator should be almost the maximum among all
records. This motivates taking the maximum value of an entry
shared across the servers, rather than a sum. These examples
cannot be captured by any previous model. Therefore, we focus
on a stronger model and present several results in it.

The model (generalized partition model). In the general-
ized partition model, there are s servers labeled 1 to s. Server
t has a local matrix At ∈ Rn×d, (n ≫ d), of which each
row is called a data point. Each of s servers can communicate
with server 1, which we call the Central Processor (CP). Such
a model simulates arbitrary point-to-point communication up
to a multiplicative factor of 2 in the number of messages and
an additive factor of log2 s per message. Indeed, if server i
would like to send a message to server j, it can send the
message to server 1 instead, together with the identity j, and
server 1 can forward this message to server j. The global data
matrix A ∈ Rn×d can be computed given {At}st=1. That is,
to compute the (i, j)th entry, Ai,j = f(

∑s
t=1A

t
i,j), where

f : R → R is a specific function known to all servers. Local
computation in polynomial time and linear space is allowed.

Approximate PCA and Low-rank matrix approxima-
tion. Given A ∈ Rn×d, k ∈ N+, ε ∈ R+, a low-rank
approximation to A is AP , where P is a d × d projection
matrix with rank at most k satisfying

||A−AP ||2F ≤ (1 + ε) min
X:rank(X)≤k

||A−X||2F

or

||A−AP ||2F ≤ min
X:rank(X)≤k

||A−X||2F + ε||A||2F

where the Frobenius norm ||A||2F is defined as
∑

i,j A
2
i,j .

If P has the former property, we say AP is a low-rank
approximation to A with relative error. Otherwise, AP is an
approximation with additive error. Here, P projects rows of
A onto a low-dimensional space. Thus, it satisfies the form of
approximate PCA. The target is to compute such a P .

In section VI, we will see that the previous Gaussian
random Fourier features and hospital examples can be easily
captured by our model.

Our contributions. Our results can be roughly divided
into two parts: 1. An algorithmic framework for additive error
approximate PCA for general f(·) and several applications. 2.
Lower bounds for relative error approximate PCA for some
classes of f(·). Our lower bounds thus motivate the error
guarantee of our upper bounds, as they show that achieving
relative error cannot be done with low communication.

Algorithmic framework: For a specific function f(·), sup-
pose there is a distributed sampler which can sample rows
from the global data matrix A with probability proportional
to the square of their ℓ2 norm. Let Qj be the probability that
row j is chosen. If the sampler can precisely report Qj for a
sampled row j, a sampling based algorithm is implicit in the
work of Frieze, Kannan, and Vempala [11]: the servers together
run the sampler to sample a sufficient number of rows. Each
server sends its own data corresponding to the sampled rows
to server 1. Server 1 computes the sampled rows of A, scales
them using the set {Qj | row j is sampled} and does PCA
on the scaled rows. This provides a low-rank approximation
to A with additive error. Unfortuately, in some cases, it is
not easy to design an efficient sampler which can report the
sampling probabilities without some error. Nevertheless, we
prove that if the sampler can report the sampling probabilities
approximately, then the protocol still works. Suppose the total
communication of running the sampler requires C words. Then
the communication of our protocol is O(sk2d/ε2 + C) words.

Applications: One only needs to give a proper sampler to
apply the framework for a specific function f . The softmax
(generalized mean) function is important in multiple instance
learning (MIL) [12] and some feature extraction tasks such
as [13]. Combining this with the sampling method in [14],
[15], a sampler for the softmax (GM) function is provided.
Here the idea is for each server to locally raise (the absolute
value of) each entry of its matrix to the p-th power for a large
value of p > 1, and then to apply the ℓ2/p-sampling technique
of [14], [15] on the sum (across the servers) of the resulting
matrices. This approximates sampling from the matrix which
is the entry-wise maximum of the matrices across the servers,
and seems to be a new application of ℓ2/p-sampling algorithms.

Several works [10], [16] provide approximate Gaussian
RBF kernel expansions. Because Gaussian kernel expansions
have the same length, simple uniform sampling works in these
scenarios.

For some ψ-functions of M-estimators [17] such as L1−L2,
“fair”, and Huber functions, we develop a new sampler which
may also be of independent interest. This is related to the fact
that such functions have at most quadratic growth, and we can
generalize the samplers in [14], [15] from p-th powers to more
general functions of at most quadratic growth, similar to the
generalization of Braverman and Ostrovsky [18] to the work
of Indyk and Woodruff [19] in the context of norm estimation.

Lower bounds: We also obtain several communication
lower bounds for computing relative error approximate PCA.
These results show hardness in designing relative error algo-
rithms. When f(x) ≡ Ω(xp) (p > 1), the lower bound is

Ω̃((1 + ε)−
2
pn1−

1
p d1−

4
p) bits. Since n could be very large,

this result implies hardness when f(x) grows quickly. When
f(x) = xp(or |x|p) (p ̸= 0), Ω(1/ε2) bits of communication
are needed. The result also improves an Ω̃(skd) lower bound
shown in [7] to Ω̃(max(skd, 1/ε2)). When f(·) is max(·),
we show an Ω̃(nd) bit lower bound which motivates us using
additive error algorithms as well as a softmax (GM) function.

Related work. Sampling-based additive error low-rank
approximation algorithms were developed by [11]. Those
algorithms cannot be implemented in a distributed setting
directly as they assume that the sampler can report probabilities
perfectly, which is sometimes hard in a distributed model. In
the row partition model, relative error distributed algorithms
are provided by [8], [9], and can also be achieved by [20].
Recently, [7] provides a relative error algorithm in the linear,
aforementioned arbitrary partition model. We stress that none
of the algorithms above can be applied to our generalized
partition model.

II. PRELIMINARIES

We define [n] to be the set {1, ..., n}. Similarly, [n] − 1
defines the set {0, ..., n−1}. Ai, A:,j and Ai,j denotes the ith
row, the jth column and the (i, j)th entry of A respectively. At

is the data matrix held by server t. |·|p, ||·||F and ||·|| means p-
norm, Frobenius norm and Spectral norm. [A]k represents the
best rank-k approximation to A. Unless otherwise specified,
all the vectors are column vectors.

If the row space of A is orthogonal to the row space of B,
||A||2F + ||B||2F = ||A+B||2F . This is the matrix Pythagorean
theorem. Thus ||A−AP ||2F = ||A||2F−||AP ||2F will be held for
any projection matrix P . The goal of rank-k approximation to
A can be also interpreted as finding a rank-k projection matrix
P which maximizes ||AP ||2F .

For a vector v ∈ Rm and a set of coordinates S, we define
v(S) as a vector in Rm satisfying:{

v(S)j = vj j ∈ S
v(S)j = 0 j ̸∈ S

III. SAMPLING BASED ALGORITHM

We start by reviewing several results shown in [11]. Sup-
pose A ∈ Rn×d and there is a sampler s which samples row
i of A with probability Qi satisfying Qi ≥ c|Ai|22/||A||2F for
a constant c ∈ (0, 1]. Let s independently sample r times and
the set of samples be {Ai1 , ..., Air}. We construct a matrix
B ∈ Rr×d such that ∀i′ ∈ [r], Bi′ = Aii′/

√
rQii′ . In the

following, we will show that we only need to compute the best
low rank approximation to B to acquire a good approximation
to A.

As shown in [11], ∀θ > 0, the condition ||ATA −
BTB||F ≤ θ||A||2F will be violated with probability at most
O(1/(θ2r)). Thus, if the number of samples r is sufficiently
large, ||ATA−BTB||F is small with high probability.

Lemma 1. If ||ATA − BTB||F ≤ θ||A||2F , then for all
projection matrices P ′ satisfying rank(P ′) ≤ k,

|||AP ′||2F − ||BP ′||2F | ≤ θk||A||2F .

Proof: Without loss of generality, we suppose rank(P ′) =
k. Let {U:,1, ..., U:,k} be an orthogonal basis of the row space
of P ′. We have∣∣||AP ′||2F − ||BP ′||2F

∣∣
=
∣∣||AUUT ||2F − ||BUUT ||2F

∣∣ = ∣∣||AU ||2F − ||BU ||2F
∣∣

=

∣∣∣∣∣∣
k∑

j=1

(U:,j)
TATAU:,j −

k∑
j=1

(U:,j)
TBTBU:,j

∣∣∣∣∣∣
≤

k∑
j=1

∣∣(U:,j)
T (ATA−BTB)U:,j

∣∣
≤

k∑
j=1

∣∣(U:,j)
T
∣∣
2
||ATA−BTB|| |U:,j |2 ≤ kθ||A||2F

||ATA − BTB|| ≤ ||ATA − BTB||F ≤ θ||A||2F implies the
last inequality.

Lemma 2. If for all P ′ satisfying rank(P ′) = k, |||AP ′||2F −
||BP ′||2F | ≤ ε||A||2F , then the rank-k projection matrix P
which satisfies BP = [B]k also provides a good rank-k
approximation to A:

||A−AP ||2F ≤ ||A− [A]k||2F + 2ε||A||2F

Proof: Suppose P ∗ provides the best rank-k approxima-
tion to A. We have,

||AP ||2F ≥ ||BP ||2F − ε||A||2F ≥ ||BP ∗||2F − ε||A||2F
≥ ||AP ∗||2F − 2ε||A||2F = ||[A]k||2F − 2ε||A||2F

Thus, combining with Lemma 1 and Lemma 2, if matrix
B has r = Θ(k2/ε2) rows, the projection matrix P which
provides [B]k also provides an O(ε) additive error rank-k
approximation to A with constant probability. So, we can just
compute the projection matrix which provides the best rank-k
approximation to B.

IV. FRAMEWORK FOR DISTRIBUTED PCA

Our protocol implements the previous sampling based
algorithm in a distributed setting. Server t ∈ [s] holds a local
matrix At ∈ Rn×d and the (i, j)th entry of the global data
matrix A is computed by Ai,j = f(

∑s
t=1A

t
i,j). A framework

for computing a projection matrix P such that AP is a low-
rank approximation to A is presented in Algorithm 1. Here, s
is the same as that defined in the previous section but in the
distributed model. Notice that s may be different when f(.) is
different.

In Algorithm 1, each row i′ of B is scaled via Q̂ii′ but not
Qii′ . However this is not an issue.

Lemma 3. For A, B in Algorithm 1, ||ATA − BTB||F ≤
O(ε/k)||A||2F holds with constant probability.

Proof: We set r = ⌈ 1440k2

ε2c ⌉ where c is a constant
satisfying the condition: ∀i ∈ [n], Qi ≥ c|Ai|22/||A||2F . Assume

Algorithm 1 Compute P
1: Input: {At ∈ Rn×d}st=1; k ∈ [d]; ε > 0;
2: Output: rank-k projection matrix P .
3: Set parameters r = Θ(k

2

ε2), γ = O(
√

1
r).

4: for i′ := 1 → r do
5: s samples row ii′ from A and reports Q̂ii′ satisfying

(1− γ)Qii′ ≤ Q̂ii′ ≤ (1 + γ)Qii′

6: end for
7: ∀i′ ∈ [r], server t sends At

ii′
to server 1 and server 1

computes B ∈ Rr×d satisfying Bi′ =
Ai

i′√
rQ̂i

i′

8: Server 1 computes the top k singular vectors V:,1, ..., V:,k
in the row space of B and outputs P = V V T

γ ≤ 0.5. Then we have ∀i ∈ [r], 1− 2γ ≤ Qji/Q̂ji ≤ 1+ 2γ.∣∣E((BTB)i,j)− (ATA)i,j
∣∣

=

∣∣∣∣∣
r∑

t=1

n∑
m=1

Qm
Am,iAm,j

rQ̂m

− (ATA)i,j

∣∣∣∣∣
=

∣∣∣∣∣
n∑

m=1

Am,iAm,j(
Qm

Q̂m

− 1)

∣∣∣∣∣
≤ 2γ

n∑
m=1

|Am,iAm,j |

≤ 2γ|A:,i|2|A:,j |2

Due to x2 ≤ 2(x− y)2 + 2y2 for any x, y ∈ R,

E(((BTB)i,j − (ATA)i,j)
2)

≤ 2E(((BTB)i,j − E(BTB)i,j)
2) + 8γ2|A:,i|22|A:,j |22

≤ 2

r∑
t=1

E((Bt,iBt,j)
2) + 8γ2|A:,i|22|A:,j |22

≤ 2(1 + 2γ)2
||A||2F
cr

n∑
t=1

A2
t,iA

2
t,j

|At|22
+ 8γ2|A:,i|22|A:,j |22

E(||(BTB)− (ATA)||2F)

=
d∑

i,j=1

E(((BTB)i,j − (ATA)i,j)
2)

≤ 2(1 + 2γ)2
||A||2F
cr

n∑
t=1

1

|At|22

d∑
i,j=1

A2
t,iA

2
t,j +

8

cr
||A||4F

≤ 16

cr
||A||4F ≤ ε2

90k2
||A||4F

Due to Markov’s inequality,

Pr(||ATA−BTB||F ≥ ε

3k
||A||2F) ≤

1

10

Without the sampling stage, the only communication in-
volved is to collect Θ(k2/ε2) rows from s servers.

Theorem 1. With constant probability, Algorithm 1 outputs P
for which AP is an O(ε) additive error rank-k approximation

to A. Moreover, if the communication of sampling and report-
ing Q̂{i1,...,ir} uses C words, the communication of the overall
protocol needs O(sk2d/ε2 + C) words.

In addition, to boost the success probability to 1 − δ, we
can just run Algorithm 1 O(log(1/δ)) times and output the
matrix P with maximum ||BP ||2F . The communication is the
same as before up to an O(log(1/δ)) factor.

V. GENERALIZED SAMPLER

To apply Algorithm 1 for a specific f(·), we should
implement the distributed sampler s which can sample rows
of a global data A, and row i is sampled with probability
approximately proportional to |Ai|22. An observation is that
|Ai|22 =

∑d
j=1A

2
i,j . Thus, the row sampling task can be

converted into an entry sampling task. If an entry is sampled,
then we choose the entire row as the sample. In the entry-
sampling task, we want to find a sampler which can sample
entries of A such that Ai,j is chosen with probability propor-
tional to A2

i,j = f(
∑s

t=1A
t
i,j)

2. Another observation is that
in Algorithm 1, we only need to guarantee the probability that
row i is chosen is not less than c|Ai|22/||A||2F for a constant
c. Thus, if there exists a function z(x) and a constant c ≥ 1
such that z(x)/c ≤ f(x)2 ≤ cz(x), then the sampler which
samples Ai,j with probability proportional to z(Ai,j) can be
used in Algorithm 1 when computing f .

We consider an abstract continuous function z(x) : R → R
which satisfies the property P: ∀x1, x2 ∈ R, if |x1| ≥
|x2|, x21/z(x1) ≥ x22/z(x2), z(x1) ≥ z(x2), and z(0) = 0.
Suppose at ∈ Rl is located on server t. Let a =

∑s
t=1 a

t and
Z(a) =

∑l
i=1 z(ai).

Theorem 2. There is a protocol which outputs i ∈ [l] with
probability (1± ε)z(ai)/Z(a)+O(l−C) and reports a (1± ε)
approximation to Z(a) with probability at least 1 − O(l−C),
where C is a non-negative constant. The communication is
s · poly(log(l)/ε) bits.

Notice that the additive error of O(l−C) can effectively
be treated as relative error, since if O(l−C) is an ε-fraction
of z(aj)/Z(a), then the probability that j is sampled at least
once is negligible. Therefore, this sampler can be applied in
Algorithm 1. In the following, we will show how to sample
coordinates of a with the desired distribution.

A. Overview

We give an overview of our sampler. We define Si to be
the interval [(1 + ε)i, (1 + ε)i+1). Similar to [15], coordinates
of a are conceptually divided into several classes

Si(a) = {j | z(aj) ∈ Si}

Here, i ∈ Z. Although the number of classes is infinite, there
are at most l non-empty classes which we care about. To
sample a coordinate, our procedure can be roughly divided
into two steps:

1) Sample a class Si(a) with probability approximately
proportional to

∑
j∈Si(a)

z(aj)/Z(a).
2) Uniformly output a coordinate in Si(a).

For convenience, we call
∑

j∈Si(a)
z(aj) the contribution

of Si(a). To do the first step, we want to estimate Z(a)
and the contribution of each class. We can achieve this by
estimating the size of each class. Intuitively, if the contribution
of Si(a) is “non-negligible”, there are two possible situations:
1. ∀j ∈ Si(a), j is “heavy”, z(aj)/Z(a) is large; 2. the size
of Si(a) is large. For the first case, we just find out all the
“heavy” coordinates to get the size of Si(a). For the second
case, if we randomly drop some coordinates, there will be some
coordinates in Si(a) survived, and all of those coordinates will
be “heavy” among survivors. Thus we can find out all the
“heavy” survivors to estimate the size of Si(a). The second
step is easier, we will show it in V-D.

In V-B, we propose a protocol which can pick out all the
“heavy” coordinates. In V-C, we demonstrate the estimation
of the size of each class and Z(a). In V-D, we complete our
sampler.

B. Z-HeavyHitters

A streaming algorithm which can find frequent elements
whose squared frequency is large compared to the second
moment (the “F2-value” of a stream) is described in [21].
Because it provides a linear sketch, it can be easily converted
into a distributed protocol in our setting. We call the protocol
HeavyHitters. The usage of HeavyHitters is as follows.
vt ∈ Rm is located in server t. Let v =

∑s
t=1 v

t. With success
probability at least 1−δ, HeavyHitters(v,B, δ) reports all the
coordinates j such that v2j ≥ |v|22/B. Server 1 can get reports
from HeavyHitters. The communication of this protocol needs
O(sB · poly(log(m)) log(1/δ)) words.

By using HeavyHitters, we develop a protocol called Z-
HeavyHitters(v ∈ Rm, B, δ) shown in Algorithm 2.

Algorithm 2 Z-HeavyHitters
1: Input: v ∈ Rm; B > 0; δ > 0.
2: Output: D
3: ∀t ∈ [⌈20 log(1/δ)⌉], Server 1 samples hasht : [m] →

[⌈4B2⌉] from a pairwise independent family of hash
functions. Server 1 broadcasts random seeds. Thus ∀t, all
servers know hasht.

4: Server 1 sets D = ∅.
5: for t := 1 → ⌈20 log(1/δ)⌉ do
6: for e := 1 → ⌈4B2⌉ do
7: Ht,e := {j | hasht(j) = e}
8: D := D∪HeavyHitters(v(Ht,e), B, 1/(16B

2))
9: end for

10: end for
11: report D

Lemma 4. With probability at least 1−δ, ∀j ∈ [m] satisfying
z(vj) ≥ Z(v)/B, j is reported by Z-HeavyHitters(v,B, δ).
The communication cost is O(s · poly(B log(m)) log(1/δ)).

The intuition is that any two coordinates which are both
heavy in Z(v) do not collide in the same bucket with constant
probability. Due to property P of z(·), the “heavy” coordinate
will be reported by HeavyHitters.

Proof: Because hasht is from a pairwise independent
family, for fixed t ∈ [⌈20 log(1/δ)⌉], j, j′ ∈ [m], j ̸= j′, the

probability that hasht(j) = hasht(j
′) is (4B2)−1. According

to the union bound, for a fixed t, the probability that any two
different coordinates j, j′ ∈ [m] with z(vj), z(vj′) ≥ Z(v)/B
do not collide is at least 3/4.

Claim: For fixed t, e, suppose Ht,e has at most one
coordinate j such that z(vj) ≥ Z(v)/B. j is reported by
HeavyHitters(v(Ht,e), B, 1/(16B

2)) with probability at least
1− 1/(16B2).

If j is the unique coordinate in the set Ht,e such
that z(vj) ≥ Z(v)/B, then we have (vj)

2/z(vj) ≥
|v(Ht,e)|22/Z(v(Ht,e)) due to the property P of func-
tion z(·). Because Z(v) ≥ Z(v(Ht,e)), we have
(vj)

2/|v|22 ≥ z(vj)/Z(v) ≥ 1/B. When HeavyHitter-
s(v(Ht,e), B, 1/(16B

2)) succeeds, j is reported. Thus the
claim is true. Due to the union bound, for a fixed t, the
probability that all invocations of HeavyHitters succeed is at
least 3/4. Therefore, for a fixed round t, the probability that
all the coordinates j such that z(vj) ≥ Z(v)/B are added in
to D is at least 1/2. Due to a Chernoff bound, the probability
that there is a round t ∈ [⌈20 log(1/δ)⌉] such that all the
coordinates j with z(vj) ≥ Z(v)/B are added into D, is at
least 1− δ.

C. Estimation of |Si(a)| and Z(a)

Set T = ⌈C log(l)/ε+1⌉. Here, C is a constant defined in
Theorem 2. If |Si(a)|(1 + ε)i ≥ εZ(a)/(40T), we say Si(a)
contributes. Define Si(a) to be considering when (1+ε)i+1 ∈
[Z(a)/lC , (1 + ε)Z(a)]. Due to T/ε = o(l), for a sufficiently
large constant C, a contributing Si(a) must be considering.
Define ZNC(a) to be the sum of all z(aj) satisfying that j
belongs to a non-contributed Si(a). ZNC(a) is bounded as:

ZNC(a) < l · Z(a)/lC +
∑

consid.,noncontr. Si(a)

|Si(a)|(1 + ε)i+1

Because l1−C < ε/2 and the number of considering classes is
at most T , ZNC(a) < εZ(a). This implies that if |Si(a)| can
be estimated for all contributing Si(a), we can get a (1+Θ(ε))
approximation to Z(a).

In Algorithm 3, we present a protocol Z-estimator which
outputs Ẑ as an estimation of Z(a) and ŝi as an estimation of
|Si(a)|. The output List and g(·) will be used in Algorithm 4
to output the final coordinate. For convenience to analyze the
algorithm, we define U(a) =

∪
nonconsidering Si(a).

Lemma 5 (Proposition 3.1 in [15]). With probability at least
1− l−Θ(C), the following event E happens:

1) ∀R ∈ {Si(a) | Si(a) is considering}∪ {U(a)}, ∀j ∈
[⌈log(Cε−1l)⌉], |R∩Sj | ≤ 2 ·2−j |Si(a)|+C2 log(l).

2) If E(R∩Sj) ≥ C2ε−2 log(l), 2j |R∩Sj | = (1±ε)|R|.
3) All the invocations of Z-HeavyHitters succeed.

Lemma 6. When E happens, if Si(a) contributes, with prob-
ability 1− l−Θ(C) the following happens:

1) ŝi ≥ (1− ε)|Si(a)|.
2) Si(a) ⊆ D or ∃j ∈ [⌈log(Cε−1l)⌉], Si(a) ∩ Sj =

Si(a) ∩Dj ̸= ∅.

The intuition of Lemma 6 is that if Si(a) contributes, there
are two cases: if (1+ε)i is very large, it will be reported in D.

Algorithm 3 Z-estimator
1: Input: {at ∈ Rl}st=1; ε > 0.
2: Output: Ẑ, ŝ−∞, ..., ŝ+∞,List,g(·)
3: B = 40ε−4T 3 log(l), W = (5120C2T 2ε−3 log(l))2

4: Initialize: Ẑ = 0, ŝ−∞ = 0, ..., ŝ+∞ = 0
5: D :=Z-HeavyHitters(a,B, l−20C)
6: ∀j ∈ D, server 1 asks atj for t ∈ [s] to compute aj and

makes ŝi = |Si(a) ∩D|.
7: Server 1 samples g : [⌈Cε−1l⌉] → [⌈Cε−1l⌉] from a

(20C log(ε−1l))-wise independent family of hash func-
tions. ∀j ∈ [⌈log(Cε−1l)]⌉, e ∈ [⌈C log(l)⌉], hj,e : [l] →
[W] is independently sampled from a set of pairwise
independent hash functions. Server 1 broadcasts random
seeds.

8: for j ∈ [⌈log(Cε−1l)⌉], e ∈ [⌈C log(l)⌉], w ∈ [W] do
9: Sj := {i | i ∈ [l], g(i) ≤ 2−j⌈Cε−1l⌉}

10: Sj,e,w := {i | i ∈ Sj , hj,e(i) = w}, Dj,e,w :=
Z-HeavyHitters(a(Sj,e,w), B, l

−20C)
11: Dj :=

∪
e,wDj,e,w. Server 1 communicates with other

servers to compute ap for all p ∈ Dj .
12: ∀i ∈ Z, 16C2ε−2 log(l) > |Si(a) ∩ Dj | ≥

4C2ε−2 log(l), ŝi := max(ŝi, 2
j |Si(a) ∩Dj |)

13: end for
14: Report Ẑ :=

∑
i ŝi(1 + ε)i, ŝ−∞, ..., ŝ+∞, List := D ∪∪

j Dj and g(·).

Otherwise, there will be a j∗ such that
∑

i′≥i |Sj∗ ∩Si′(a)| is
bounded. Therefore, for fixed e, all the elements which belong
to Si′≥i(a) can be hashed into different buckets. Meanwhile,
(1+ ε)i is heavy in

∑
i′<i |Sj∗ ∩Si′(a)|(1 + ε)i

′+1. Thus, all
elements in Sj∗ ∩ Si(a) will be reported by Dj∗ . |Si(a)| can
thus be estimated.

Proof: Assume E happens. Suppose |Si(a)| contributes.
If |Si(a)| < 16C2ε−2 log(l), due to |Si(a)|(1 + ε)i ≥
εZ(a)/(40T),

(1 + ε)i ≥ Z(a)/(640C2ε−3T log(l))

Because B = 40ε−4T 3 log(l) > 640C2ε−3T log(l), all the
elements in Si(a) will be in D when line 5 is executed.

ŝi = |Si(a) ∩D| = |Si(a)|

If |Si(a)| ≥ 16C2ε−2 log(l), there exists a unique j∗ such that
8C2ε−2 log(l) ≤ 2−j∗ |Si(a)| < 16C2ε−2 log(l). For i′ ≥ i,

|Si(a)|(1 + ε)i ≥ εZ(a)/(40T) ≥ ε|Si′(a)|(1 + ε)i
′
/(40T)

So,

2−j∗ |Si′(a)|
≤ 40Tε−12−j∗ |Si(a)|
≤ 40Tε−1 · 16C2ε−2 log(l)

= 640C2ε−3T log(l)

Due to E , |Si′(a)∩ Sj∗ | ≤ 1280C2ε−3T log(l) +C2 log(l) ≤
2560C2ε−3T log(l). Because the number of considering class-
es is bounded by T ,∑

i′≥i

|Si′(a) ∩ Sj∗ | ≤ 2560C2ε−3T 2 log(l).

For a fixed e, define the event F : ∀p, q ∈
∪

i′≥i Si(a), p ̸= q,
hj∗,e(p) ̸= hj∗,e(q). Because hj∗,e is pairwise independent,
Pr(¬F) is bounded by (2560C2ε−3T 2 log(l))2/W = 1/4 by
a union bound.

For i′ < i, because Si(a) contributes, we have:

(1 + ε)i|Si(a)| ≥ ε(1 + ε)i
′
|Si′(a)|/(40T)

Then,
|Si′(a)| ≤ 40Tε−1|Si(a)|(1 + ε)i−i′

Thus,

|Si′(a) ∩ Sj∗ |(1 + ε)i
′

≤ 2 · 40Tε−12−j∗ |Si(a)|(1 + ε)i + C2 log(l)(1 + ε)i
′

≤ 4 · 40Tε−1 · 16C2ε−2 log(l)(1 + ε)i

= 2560C2ε−3T log(l)(1 + ε)i

Therefore, conditioned on E ,F , for fixed e, ∀p ∈ Si(a) ∩
Sj∗,e,w we have

Z(a(Sj∗,e,w))

≤
∑
i′<i

2560C2ε−3T log(l)(1 + ε)i + z(ap)

≤ 5120C2ε−3T 2 log(l)(1 + ε)i

Because z(ap) ≥ Z(a(Sj∗,e,w))/B, Si(a) ∩ Sj∗ = Si(a) ∩∪
wDj∗,e,w.

Since e is iterated from 1 to ⌈C log(l)⌉ and Dj∗ =∪
e,wDj∗,e,w, with probability 1 − lΘ(−C), Si(a) ∩ Sj∗ =

Si(a) ∩ Dj∗ . Notice that (1 − ε)8C2ε−2 log(l) ≥
4C2ε−2 log(l). Thus, when j = j∗, ŝi will be set to be
(1± ε)|Si(a)| with probability 1− lΘ(−C).

Theorem 3. With probability at least 1− l−Θ(C), Algorithm 3
outputs Ẑ = (1±Θ(ε))Z(a) and ∀i ∈ Z, ŝi ≤ (1+ ε)|Si(a)|.

Proof: Suppose E happens. If ŝi is assigned by line 6,
ŝi = |D ∩ Si(a)| ≤ |Si(a)|. Otherwise, ŝi is assigned by line
17. Due to Lemma 5, 2j |Dj ∩ Si(a)| ≤ 2j |Sj ∩ Si(a)| =
(1± ε)|Si(a)|. Thus, ∀i ∈ Z, ŝi ≤ (1 + ε)|Si(a)|. Because of
Lemma 6 and the bound of ZNC(a), Ẑ = (1±Θ(ε))Z(a).

Actually, Algorithm 3 can be implemented with two rounds
of communication. In the first round, all the servers together
compute List. In the second round, server 1 checks each
element in List and estimates ŝi.

D. The sampler

Since Ẑ(a) is a (1 ± ε) approximation to Z(a), the
coordinate injection technique of [15] can be applied. De-
fine considering Si(a) to be growing when (1 + ε)i ≤
Ẑ(a)/(5ε−4T 3 log(l)). If Si(a) is growing, then server 1 ap-
pends ⌈εẐ(a)/(5T (1+ ε)i)⌉ coordinates with value z−1((1+
ε)i) to vector a1 and other servers append a consistent number
of 0s to their own vectors. Since z(·) is an increasing function,
if z−1((1 + ε)i) does not exist, Si(a) must be empty, we can
ignore this class. Thus server t can obtain a vector a′t and
global a′ =

∑s
t=1 a

′t. Similar to Lemma 3.2,3.3,3.4 of [15],
Z(a) ≤ Z(a′) ≤ (1 + ε)Z(a) and ∀growing Si(a), Si(a

′) is

Algorithm 4 Z-sampler
1: Input: {a′t ∈ Rl′}st=1; ε > 0
2: Output: coordinate p of a′

3: Ẑ, ŝ−∞, ..., ŝ+∞, List, g :=Z-estimator(a′, ε)
4: Choose i∗ ∈ Z with probability ŝi∗(1 + ε)i

∗
/Ẑ

5: Choose p satisfying g(p) = minq∈List∩Si∗ (a′) g(q)
6: if p is not an injected coordinate, output p. Otherwise,

output FAIL.

contributed. Furthermore, the dimension of a′ is l′ = poly(l).
We get the final sampler in Algorithm 4.

Lemma 7. With probability 1− l−Θ(C), the following happens
for all considering Si(a

′), ŝi = (1± ε)|Si(a
′)|. If pi satisfies

g(pi) = minq∈Si(a′) g(q), then pi belongs to List.

Proof: Suppose Z-estimator succeeds. If Si(a) is grow-
ing, then Si(a

′) contributes. Thus, due to Lemma 6 and
Theorem 3, ŝi = (1 ± ε)|Si(a

′)|. Point 2 of Lemma 6 also
implies that pi ∈ List. If Si(a) is not growing, (1 + ε)i >
Ẑ(a)/(5ε−4T 3 log(l)) > Z(a′)/B. D ∩ Si(a

′) = Si(a
′).

Therefore, pi ∈ List and ŝi = |Si(a
′)|

Due to Lemma 7, in line 5 of Algorithm 4, p satisfies that
g(p) = minq∈Si∗ (a′) g(q).

Lemma 8 (Theorem 3.3 in [15]).

Pr(g(p) = min
q∈Si(a′)

g(q)) = (1±Θ(ε))/|Si(a
′)|

Since ŝi∗ = (1 ± ε)|Si∗(a
′)|, according to Theorem 3,

Lemma 7 and Lemma 8, Z-sampler samples coordinate p with
probability (1 ± Θ(ε))z(a′p)/Z(a

′) ± l−Θ(C). Since injected
coordinates contributed at most Θ(ε) to Z(a′), the probability
that Z-sampler outputs FAIL is at most Θ(ε). Thus, we can
repeat Z-sampler O(C log(l)) times and choose the first non-
injected coordinate. The probability that Z-sampler outputs a
non-injected coordinate at least once is 1 − lΘ(−C). Because
Z(a′) = (1 ± ε)Z(a), each coordinate i is sampled with
probability (1 ± Θ(ε))z(ai)/Z(a) ± l−Θ(C). By adjusting C
and ε by a constant factor, Theorem 2 is shown.

VI. APPLICATIONS

A. Gaussian random fourier features

Gaussian RBF kernel [22] on two d-dimensional vectors
x, y is defined as

K(x, y) = ϕ(x)Tϕ(y) = e−
|x−y|22

2

According to the Fourier transformation of K(x, y),

K(x, y) =

∫
Rd

p(z)eiz
T (x−y)dz

where p(z) = (2π)−
d
2 e−

|z|22
2 . Suppose z is a d-dimensional

random vector with each entry drawn from N(0, 1), As shown
in [10],[16], estimating Ez(e

izTxe−izT y) by sampling such a
vector z provides a good approximation to K(x, y). According

to [10], if the samples are z1, ..., zl, then ϕ(x) can be approx-
imated by

√
2(cos(zT1 x+ b1), ..., cos(z

T
l x+ bl))

T

where b1, ..., bl ∈ R are i.i.d.samples drawn from a uniform
distribution on [0, 2π].

In the distributed setting, matrix M i ∈ Rn×m is s-
tored in server i ∈ [s]. The global matrix is computed by
M =

∑s
t=1M

t. Let each entry of Z ∈ Rm×d be an i.i.d.
sample drawn from N(0, 1) and each entry of b ∈ Rd be an
i.i.d. sample drawn from uniform distribution on [0, 2π]. An
approximated Gaussian RBF kernel expansion of Mi is Ai of
which

Ai,j =
√
2 cos((MiZ)j + bj)

For fixed i, j, one observation is

E(A2
i,j) = E(2 cos2((MiZ)j + bj)) = 1.

Due to Hoeffding’s inequality, when d = Θ(log(n)), the
probability that ∀i ∈ [n], |Ai|22 = Θ(d) is high. Thus server
1 can obtain O(k2/ε2) rows of M via uniform sampling and
generate Z, b with d = O(log(n)) to compute approximate
PCA on these random Fourier features of M .

B. Softmax (GM)

The generalized mean function GM(·) with a parameter p
of n positive reals x1, ..., xn is defined as:

GM(x1, ..., xn) =

(
1

n

n∑
i=1

xpi

) 1
p

When p is very large, GM(·) behaves like max(·). If p = 1,
GM(·) is just mean(·). We discuss the following situation:
each server i ∈ [s] holds a local matrix M i ∈ Rn×d. The
global data A is formed by

Ai,j = GM(|M1
i,j |, ..., |Ms

i,j |)

for p ≥ 1. Since server t can locally compute At such that

At
i,j =

1

s
(M t

i,j)
p

the setting meets the generalized partition model with f(x) ≡
x

1
p . So, we can apply the sampling algorithm in [14], [15].

Because f2(x) holds the property P , our generalized sampler
also works in this scenario. Furthermore, the communication
costs of our algorithm does not depend on p. Therefore, if we
set p = log(nd), the word size of At

i,j is the same of the
word size of M t

i,j up to a factor log(nd). But for an arbitrary
constant c′ ∈ (0, 1), when n, d are sufficient large,

GM(|M1
i,j |, ..., |Ms

i,j |) > c′ max(|M1
i,j |, ..., |Ms

i,j |)

can be held. As shown in the results of lower bounds, comput-
ing relative error approximate PCA for max(·) is very hard.

C. M-estimators

In applications, it is possible that some parts of the raw
data are contaminated by large amount of noises. Because
traditional PCA is sensitive to outliers, certain forms of robust
PCA have been developed. By applying a proper function f(·),
we can find a low rank approximation to a matrix that has had
a threshold applied to each of its entries, that is, the matrix
A has its (i, j)th entry bounded by a threshold T . It is useful
if one wants to preserve the magnitude of entries except for
those that have been damaged by noise, which one wants to cap
off. ψ-functions of some M-estimators can be used to achieve
this purpose, and parts of them are listed in table I. Suppose
ψ(x) is one of those functions and the global data A satisfies
Ai,j = ψ(

∑s
t=1A

t
i,j). Because ψ(x)2 satisfies the property

P , combining with our framework and generalized sampler, it
works for computing approximate PCA for such A. However,
computing relative error approximate PCA to A may be very
hard. Our result shows that at least Ω̃(nd) bits are needed to
get relative error when f(·) is ψ-function of Huber.

TABLE I. ψ-FUNCTIONS OF SEVERAL M-ESTIMATORS

Huber L1 − L2 “Fair”{
k · sgn(x) if |x| > k
x if |x| ≤ k

x

(1+ x2

2
)
1
2

x

1+
|x|
c

VII. LOWER BOUNDS FOR RELATIVE ERROR ALGORITHMS

In this section, several lower bounds for relative error
approximate PCA are obtained. Our results indicate that it is
hard to compute relative error approximate PCA in many cases.

A. Notations

eni denotes a 1 × n binary vector whose unique non-zero
entry coordinate is on coordinate i. ēin is a 1×n binary vector
with unique zero entry coordinated on i. 1n denotes a 1 × n
vector with n “1”. In is an identity matrix of size n.

B. Lower bounds

Theorem 4. Alice has A1 ∈ Rn×d, Bob has A2 ∈ Rn×d.
Let Ai,j = f(A1

i,j + A2
i,j). if f(x) = Ω(|x|p) and p > 1, the

communication of computing rank-k projection matrix P with
constant probability greater than 1/2 such that

||A−AP ||2F ≤ (1 + ε)||A− [A]k||2F

is at least Ω̃((1 + ε)−
2
pn1−

1
p d1−

4
p) bits.

We prove it by reduction from the L∞ problem [23].

Theorem 5 (Theorem 8.1 of [23]). There are two players.
Alice gets x, Bob gets y, where x, y are length-m vectors.
We have xi, yi ∈ {0, 1, . . . B} for all i. There is a promise
on the input (x, y) that either ∀i ∈ [m], |xi − yi| ≤ 1 or
∃!i, |xi − yi| = B and ∀j ̸= i, |xj − yj | ≤ 1. The goal is to
determine which case the input is in. If the players want to get
the right answer with constant probability greater than 3/4,
then the communication required is Ω(m

B2) bits.

Proof of Theorem 4: Without loss of generality, we
assume f(x) ≡ |x|p. We prove by contradiction. If Alice or
Bob can compute the projection matrix P with communication
õ((1 + ε)−

2
pn1−

1
p d1−

4
p) bits, and the success probability is

2/3, then they can compute L∞ in o(m
B2) bits for m = n× d

and B = ⌈(2(1 + ε)2nd4)
1
2p ⌉.

Assume Alice and Bob have two m-dimensional vectors
x, y respectively, where m = n×d. (x, y) satisfies the promise
mentioned in Theorem 5. The goal of the players is to find
whether there is a coordinate i with |xi − yi| >= ⌈(2(1 +

ε)2nd4)
1
2p ⌉ = B. They agree on the following protocol:

1) Initially, round r := 0, n0 := n
2) Alice arranges x into an n× d matrix A′1

(0) and Bob
arranges −y into A′2

(0) in the same way.

3) Alice makes A1
(r) =

(
A′1

(r) 0

0 B × Ik−1

)
, Bob

makes A2
(r) =

(
A′2

(r) 0

0 0

)
.

4) Alice computes the projection matrix P which sat-
isfies that when the protocol succeeds, A(r)P is
the rank-k approximation matrix to A(r), where
(A(r))i,j = |(A1

(r))i,j + (A2
(r))i,j |

p.
5) Alice sorts ed+k−1

1 , . . . , ed+k−1
d+k−1 into

ed+k−1
i1

, ..., ed+k−1
id+k−1

such that |ed+k−1
i1

P |2 ≥
. . . ≥ |ed+k−1

id+k−1
P |2. She finds il ∈ [d + k − 1] which

satisfies il ≤ d ∧ l ≤ k.
6) Alice repeats steps 4-5 100⌈ln(logd n)+1⌉ times and

sets c to be the most frequent il.
7) Alice rearranges the entries of column c of A′1

(r) into
d columns(If nr < d, she fills d − nr columns with
zeros). Thus, Alice gets A′1

(r+1) with ⌈nr/d⌉ rows.
She sends c to Bob.

8) Bob gets c. He also rearranges the entries of column
c into d columns in the same way. So, he gets A′2

(r+1)

with ⌈nr/d⌉ rows. If A′2
(r+1) has a unique non-zero

entry (A′2
(r+1))1,j , he sends j to Alice and Alice

checks whether |(A′1
(r+1))1,j + (A′2

(r+1))1,j | = B.
Otherwise, let r := r+1, nr+1 := ⌈nr/d⌉, and repeat
steps 3-8.

Claim: If ∃i, j s.t. |(A1
(r))i,j + (A2

(r))i,j | ≥ B, j ≤ d, and
Alice successfully computes P in step 4, then il will be equal
to j in step 5.

Assume Alice successfully computes P . Notice that∑d+k−1
t=1 |ed+k−1

t P |22 = ||P ||2F = k. ∀j ≤ d. If il ̸= j, we have
that |ed+k−1

j P |22 ≤ k
k+1 . So, if |(A1

(r))i,j +(A2
(r))i,j | ≥ B, we

have:

||A(r) −A(r)P ||2F

≥ ((A(r))i,j − (A(r)P)i,j)
2 ≥ (Bp − (

k

k + 1
Bp + d))2

> (2(1 + ε)
√
nrd− d)2 ≥ (1 + ε)2nrd

2

> (1 + ε)2nrd ≥ (1 + ε)2 min
X:rank(X)≤k

||A(r) −X||2F

> ||A(r) −A(r)P ||2F

Therefore, we have a contradiction. Because the probability
that Alice successfully computes P in step 4 is at least 2/3,
according to Chernoff bounds, the probability that more than
half of the repetitions in step 6 successfully compute a rank-
k approximation is at least 1 − 1

8 logd n . Due to the claim, if
there exists j, then |(A1

(r))i,j + (A2
(r))i,j | ≥ B, and c will

be equal to j in step 6 with probability at least 1 − 1
8 logd n .

Then, applying a union bound, if there is a coordinate i that
|xi − yi| ≥ B, then the probability that the entry will survive
until the final check is at least 7/8. Therefore, the players can
output the right answer for the L∞ problem with probability
at least 7/8.

Analysis of the communication cost of the above protocol:
there are at most ⌈logd n⌉ rounds. In each round, there are
100⌈ln(logd n) + 1⌉ repetitions in step 6. Combining with
the costs of sending column index c in each round and the
final check, the total cost is õ((1 + ε)−

2
pn1−

1
p d1−

4
p) bits, but

according to Theorem 5, it must be Ω̃((1 + ε)−
2
pn1−

1
p d1−

4
p).

Therefore, it leads to a contradiction.

In the above reduction, a main observation is that Bp

is large enough that Alice and Bob can distinguish a large
column. Now, consider the function f(x) = Ω(|x|p). Let
B = O((2(1 + ε)2nd4)

1
2p). Then, the above reduction still

works.

Theorem 4 implies that it is hard to design an efficient
relative error approximate PCA protocol for f(·) which grows
very fast.

Theorem 6. Alice and Bob have matrices A1, A2 ∈ Rn×d

respectively. Let Ai,j = max(A1
i,j , A

2
i,j)(or ψ(A1

i,j + A2
i,j)),

where ψ(x) is ψ-function of Huber. For k > 1, the communica-
tion of computing rank-k projection matrix P with probability
2/3 such that

||A−AP ||2F ≤ (1 + ε)||A− [A]k||2F

needs Ω̃(nd) bits.

This reduction is from 2-DISJ problem [24]. This result
gives the motivation that we focus on additive error algorithms
for f(·) is GM or ψ-function of M-estimators.

Theorem 7. [24] Alice and Bob are given two n-bit binary
vectors respectively. Either there exists a unique entry in both
vectors which is 1, or for all entries in at least one of the
vectors it is 0. If they want to distinguish these two cases with
probability 2/3, the communication cost is Ω(n) bits.

Proof of Theorem 6: Specifically, for the Huber ψ-
function, we assume ψ(0) = 0, ψ(1) = 1, ψ(2) = 1.
Alice and Bob are given (n × d)-bit binary vectors x and y
respectively. x and y satisfy the promise in Theorem 7. If they
can successfully compute a projection matrix P mentioned in
Theorem 6 with probability 2/3, then they can agree on the
following protocol to solve 2-DISJ:

1) Initialize round r := 0, n0 := n
2) The players flip all the bits in x, y and arrange flipped

x, y in n× d matrices A′1
(0), A

′2
(0) respectively.

3) Alice makes A1
(r) =

 A′1
(r) 0

1d 0
0 Ik−2

, Bob makes

A2
(r) =

 A′2
(r) 0

0 0
0 0

.

4) Let (A(r))i,j = max((A1
(r))i,j , (A

2
(r))i,j) (or

(A(r))i,j = ψ((A1
(r))i,j+(A2

(r))i,j)). Alice computes
P as mentioned in the statement of Theorem 5. If the
protocol succeeds, A(r)P is the rank-k approximation
matrix to A(r).

5) Alice finds l ∈ [d] such that (ēld 0)P = (ēl
d 0)

6) Alice repeats steps 4-5 100⌈ln(logd n)+1⌉ times and
sets c to be the most frequent l.

7) Alice rearranges the entries of column c of A′1
(r) into

A′1
(r+1) whose size is ⌈nr/d⌉×d. She sends c to Bob.

8) Bob also rearranges the entries of column c into d
columns in the same way. Thus, he gets A′2

(r+1). If
A′2

(r+1) has a unique zero entry (A′2
(r+1))1,j , he sends

j to Alice and Alice checks whether (A′1
(r+1))1,j = 0.

Otherwise, Let r := r + 1, n(r+1) := ⌈nr/d⌉, repeat
steps 3-8.

An observation is that ∀r, there is at most one pair
of i, j such that max((A1

(r))i,j , (A
2
(r))i,j)(or ψ((A1

(r))i,j +

(A2
(r))i,j)) = 0. Therefore, the rank of A(r) is at most k.

If Alice successfully computes P ,

||A(r) −A(r)P ||2F ≤ (1 + ε)||A(r) − [A(r)]k||2F = 0

The row space of P is equal to the row space of A(r). Notice
that if (ēi

d 0) is in the row space of A(r), for j ̸= i, (ējd 0)
cannot be in the row space of A(r). If Alice succeeds in step
4, she will find at most one l in step 5. Furthermore, if ∃i, j
s.t. (A(r))i,j = 0, j ≤ d, (ējd 0) must be in the row space of
A(r). Then l will be equal to j in step 5. Similar to the proof
of Theorem 4, according to a Chernoff bound and a union
bound, if there is a joint coordinate, Alice and Bob will find
the coordinate with probability at least 7/8.

The total communication includes the communication of at
most 100⌈ln(logd n) + 1⌉ × logd n times of the computation
of a rank-k approximation and the communication of sending
several indices in step 7-8. Due to Theorem 7, the total
communication is Ω(nd) bits. Thus, computing P needs Ω̃(nd)
bits.

Finally, the following reveals the relation between lower
bounds of relative error algorithms and ε.

Theorem 8. Alice and Bob have A1, A2 ∈ Rn×d respectively.
Let Ai,j = f(A1

i,j + A2
i,j), where f(x) = xp(or |x|p), p ̸= 0.

Suppose 1/ε2 ≤ 2n, the communication of computing a rank-k
P with probability 2/3 such that

||A−AP ||2F ≤ (1 + ε)||A− [A]k||2F

needs Ω(1/ε2) bits.

To prove this, we show that if relative error approximate
PCA can be done in o(1/ε2) bits communication, then the
GHD problem in [25] can be solved efficiently.

Theorem 9. [25] Each of Alice and Bob has an n-bit vector.
There is a promise: either the inputs are at Hamming distance
less than n/2− c

√
n or greater than n/2+ c

√
n. If they want

to distinguish the above two cases with probability 2/3, the
communication required is Ω(n) bits.

Proof of Theorem 8: Without loss of generality, suppose
f(x) ≡ x. Assume Alice and Bob have x, y ∈ {−1, 1}1/ε2

respectively. ⟨x, y⟩ denotes the inner product between x and
y. There is a promise that either ⟨x, y⟩ < −2/ε or ⟨x, y⟩ >
2/ε holds. Alice and Bob agree on the following protocol to
distinguish the above two cases:

1) Alice constructs (1/ε2 + k)× (k+1) matrix A1 and
Bob constructs A2:

A1 =

x1ε 0 0 ... 0
x2ε 0 0 ... 0
...
x 1

ε2
ε 0 0 ... 0

0
√
2 0 ... 0

0 0

√
2(1+ε)

ε ... 0
...

0 0 0 ...

√
2(1+ε)

ε

A2 =

y1ε 0 0 ... 0
y2ε 0 0 ... 0
...
y 1

ε2
ε 0 0 ... 0

0 0 0 ... 0
0 0 0 ... 0
...
0 0 0 ... 0

2) Let A = A1 + A2. Alice computes the rank-k

projection matrix P such that

||A−AP ||2F ≤ (1 + ε)||A− [A]k||2F

3) Let u be the first row of (Ik+1−P). Let v be u/|u|2.
4) Alice checks whether v21 <

1
2 (1+ε), if yes, return the

case ⟨x, y⟩ > 2/ε, otherwise, return the case ⟨x, y⟩ <
−2/ε

Assume that Alice successfully computes P . Because the
rank of A is at most k + 1,

||A−AP ||2F = ||A(Ik+1 − P)||2F = |Av|22 = vTATAv

Notice that

ATA =

|x+ y|22ε2 0 0 ... 0

0 2 0 ... 0

0 0 2(1+ε)
ε2 ... 0

...

0 0 0 ... 2(1+ε)
ε2

We have ||A− [A]k||2F ≤ 2. Then,

2(1 + ε)

ε2

k+1∑
i=3

v2i =
2(1 + ε)

ε2
(1− v21 − v22) < 2(1 + ε)

We have v21 + v22 > 1− ε2. When ⟨x, y⟩ > 2/ε, |x+ y|22ε2 ≥
2 + 4ε

(1 + ε)||A− [A]k||2F = 2(1 + ε)

> v21(2 + 4ε) + 2v22 > 2− 2ε2 + 4εv21

So, v21 <
1
2 (1 + ε).

When ⟨x, y⟩ < −2/ε, |x+ y|22ε2 ≤ 2− 4ε

(1 + ε)||A− [A]k||2F = |x+ y|22ε2(1 + ε)

> v21 |x+ y|22ε2 + 2v22 = 2(v21 + v22)− (2− |x+ y|22ε2)v21
> 2(1− ε2)− (2− |x+ y|22ε2)v21

So, v21 >
2(1−ε2)−|x+y|22ε

2(1+ε)

2−|x+y|22ε2
≥ 1

2 (1 + ε). Therefore, Alice
can distinguish these two cases. The only communication cost
is for computing the projection matrix P . This cost is o(1/ε2)
bits, which contradicts to the Ω(1/ε2) bits of the gap Hamming
distance problem.

Notice in step 1 of the protocol, if we replace xiε, yiε,√
2,

√
2(1+ε)

ε with 1
2xi(2ε)

1
p , 1

2yi(2ε)
1
p , 2

1
2p , (

√
2(1+ε)

ε)
1
p

respectively, the above reduction also holds more generally.

VIII. EXPERIMENTS AND EVALUATIONS

We ran several experiments to test the performance of our
algorithm in different applications, including Gaussian random
Fourier features [10], P-norm pooling [13] (square-root pooling
[26]) and robust PCA. We measured actual error given a bound
on the total communication.

Setup: We implement our algorithms in C++. We use
multiple processes to simulate multiple servers. For each
experiment, we give a bound of the total communication. That
means we will adjust some parameters including

1) The number r of sampled rows in Algorithm 1.
2) The number t of repetitions in Algorithm 2 and

number of hash buckets.
3) Parameters B, W , and number e of repetitions in

Algorithm 3.

to guarantee the ratio of the amount of total communication
to the sum of local data sizes is limited. We measure both
actual additive error

∣∣||A−AP ||2F − ||A− [A]k||2F
∣∣ /||A||2F

and actual relative error
∣∣||A−AP ||2F /||A− [A]k||2F

∣∣ for var-
ious limitations of the ratios, where P is the output rank-k
projection matrix of our algorithm.

Datasets: We ran experiments on datasets in [27], [10],
[13]. We chose Forest Cover (522000×5000 Fourier features)
and KDDCUP99 (4898431 × 50 Fourier features) which are
mentioned in [10] to examine low rank approximation for
Fourier features. Caltech-101 (9145×256 features) and Scenes
(4485×256 features) mentioned in [13] are chosen to evaluate
approximate PCA on features of images after generalized mean
pooling. Finally, we chose isolet (1559 × 617), which is also
chosen by [28], to evaluate robust PCA with the ψ-function of
the Huber M-estimator.

Methodologies: For Gaussian random Fourier features,
we randomly distributed the original data to different servers.

For datasets Caltech-101 and Scenes, we generated matrices
similar to [13]: densely extract SIFT descriptors of 64×64 pix-
els patch every 32 pixels; use k-means to generate a codebook
with size 256; and generate a 1-of-256 code for each patch. We
distributed the 1-of-256 binary codes to different servers. Each
server locally pooled the binary codes of the same image. Thus,
the global matrix can be obtained by pooling across servers.
When doing pooling, we focused on average pooling (P=1),
square-root pooling (P=2), and P-norm pooling for P=5 and
P=20 for simulating max pooling. Finally, we evaluated robust
PCA. To simulate the noise, we randomly changed values of
50 entries of the feature matrix of isolet to be extremely large
and then we arbitrarily partitioned the matrix into different
servers. Since we can arbitrarily partition the matrix, a server
may not know whether an entry is abnormally large. We used
the Huber ψ-function to filter out the large entries. We ran
each experiment 5 times and measured the average error. The
number of servers is 10 for Forest Cover, Scenes and isolet,
and 50 for KDDCUP99 and Caltech-101. We compared our
experimental results with our theoretical predictions. If we
sample r rows, we predict the additive error will be k2/r. We
also compared the accuracy when we gave different bounds
on the ratio of amounts of total communication to the sum of
local data sizes. The results are shown in Figure 1 and Figure
2. As shown, in practice, our algorithm performed better than
its theoretical prediction.

IX. CONCLUSIONS

To the best of our knowledge, we proposed here the first
non-trivial distributed protocol for the problem of computing
a low rank approximation of a general function of a matrix.
Our empirical results on real datasets imply that the algorithm

3 6 9 12 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

ForestCover

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

KDDCUP99

ratio 0.1, prediction
ratio 0.05, prediction
ratio 0.01, prediction
ratio 0.1, actual result
ratio 0.05, actual result
ratio 0.01, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

Caltech−101(P=1)

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

Caltech−101(P=2)

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

Caltech−101(P=5)

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

Caltech−101(P=20)

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

Scenes(P=1)

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

Scenes(P=2)

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

Scenes(P=5)

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

Scenes(P=20)

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

10
1

isolet

ratio 0.5, prediction
ratio 0.25, prediction
ratio 0.1, prediction
ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

Fig. 1. Additive error v.s. projection dimension. For Forest Cover and
KDDCUP99, we evaluate PCA for Gaussian Fourier features. For Caltech-
101 and Scenes, we evaluate on P-norm pooling features for different P. We
evaluate robust PCA on isolet.

3 6 9 12 15
1

1.0005

1.001

1.0015

1.002

1.0025

1.003

1.0035

1.004

1.0045

1.005

ForestCover

 ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

1.0005

1.001

1.0015

1.002

1.0025

1.003

1.0035

1.004

1.0045

1.005

KDDCUP99

 ratio 0.1, actual result
ratio 0.05, actual result
ratio 0.01, actual result

3 6 9 12 15
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Caltech−101(P=1)

 ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Caltech−101(P=2)

 ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Caltech−101(P=5)

 ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Caltech−101(P=20)

 ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Scenes(P=1)

ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Scenes(P=2)

ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Scenes(P=5)

ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Scenes(P=20)

ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

3 6 9 12 15
1

2

3

4

5

6

7

8

9

10

isolet

ratio 0.5, actual result
ratio 0.25, actual result
ratio 0.1, actual result

Fig. 2. Relative error v.s. projection dimension. The results of actual relative
errors.

can be used in real world applications. Although we only give
additive error guarantees, we show the hardness of relative
error guarantees in the distributed model we studied.

There are a number of interesting open questions raised by
our work. Although our algorithm can work for a wide class
of functions applied to a matrix, we still want to know whether
there are efficient protocols for other functions which are not
studied in this paper. Furthermore, this paper does not provide
any lower bound for additive error protocols. It is an interesting
open question whether there are more efficient protocols even
with additive error.

Acknowledgements Peilin Zhong would like to thank
Periklis A. Papakonstantinou for his very useful course Al-
gorithms and Models for Big Data. David Woodruff was
supported in part by the XDATA program of the Defense
Advanced Research Projects Agency (DARPA), administered
through Air Force Research Laboratory contract FA8750-12-
C-0323.

REFERENCES

[1] Xuan Hong Dang, Ira Assent, Raymond T Ng, Arthur Zimek, and
Eugen Schubert. Discriminative features for identifying and interpreting
outliers. In Data Engineering (ICDE), 2014 IEEE 30th International
Conference on, pages 88–99. IEEE, 2014.

[2] Zhe Zhao, Bin Cui, Wee Hyong Tok, and Jiakui Zhao. Efficient
similarity matching of time series cliques with natural relations. In
Data Engineering (ICDE), 2010 IEEE 26th International Conference
on, pages 908–911. IEEE, 2010.

[3] Richard O Duda, Peter E Hart, and David G Stork. Pattern classifica-
tion. John Wiley & Sons, 2012.

[4] Deng Cai, Xiaofei He, and Jiawei Han. Training linear discriminant
analysis in linear time. In Data Engineering, 2008. ICDE 2008. IEEE
24th International Conference on, pages 209–217. IEEE, 2008.

[5] Maria-Florina Balcan, Yingyu Liang, Le Song, David P. Woodruff,
and Bo Xie. Distributed kernel principal component analysis. CoRR,
abs/1503.06858, 2015.

[6] Christos Boutsidis and David P. Woodruff. Communication-optimal
distributed principal component analysis in the column-partition model.
CoRR, abs/1504.06729, 2015.

[7] Ravindran Kannan, Santosh S Vempala, and David P Woodruff. Prin-
cipal component analysis and higher correlations for distributed data.
In Proceedings of The 27th Conference on Learning Theory, 2014.

[8] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data
into tiny data: Constant-size coresets for k-means, pca and projective
clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1434–1453. SIAM, 2013.

[9] Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and
David Woodruff. Improved distributed principal component analysis.
In Advances in Neural Information Processing Systems, pages 3113–
3121, 2014.

[10] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In Advances in neural information processing systems, pages
1177–1184, 2007.

[11] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo
algorithms for finding low-rank approximations. Journal of the ACM
(JACM), 51(6):1025–1041, 2004.

[12] Boris Babenko, Piotr Dollár, Zhuowen Tu, and Serge Belongie. Simul-
taneous learning and alignment: Multi-instance and multi-pose learning.
In Workshop on Faces in’Real-Life’Images: Detection, Alignment, and
Recognition, 2008.

[13] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis
of feature pooling in visual recognition. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), pages 111–
118, 2010.

[14] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp
samplers, finding duplicates in streams, and related problems. In Pro-
ceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 49–58. ACM, 2011.

[15] Morteza Monemizadeh and David P Woodruff. 1-pass relative-error
l p-sampling with applications. In Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms, pages 1143–
1160. Society for Industrial and Applied Mathematics, 2010.

[16] Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood–approximating
kernel expansions in loglinear time. In Proceedings of the international
conference on machine learning, 2013.

[17] Zhengyou Zhang. Parameter estimation techniques: A tutorial with
application to conic fitting. Image and vision Computing, 15(1):59–
76, 1997.

[18] Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws.
In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
281–290, 2010.

[19] Piotr Indyk and David Woodruff. Optimal approximations of the
frequency moments of data streams. In Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, pages 202–
208. ACM, 2005.

[20] Mina Ghashami and Jeff M Phillips. Relative errors for deterministic
low-rank matrix approximations. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 707–717.
SIAM, 2014.

[21] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding
frequent items in data streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[22] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern
analysis. Cambridge university press, 2004.

[23] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, and D Sivakumar. An
information statistics approach to data stream and communication
complexity. In Foundations of Computer Science, 2002. Proceedings.
The 43rd Annual IEEE Symposium on, pages 209–218. IEEE, 2002.

[24] Alexander A. Razborov. On the distributional complexity of disjoint-
ness. Theoretical Computer Science, 106(2):385–390, 1992.

[25] Amit Chakrabarti and Oded Regev. An optimal lower bound on the
communication complexity of gap-hamming-distance. SIAM Journal
on Computing, 41(5):1299–1317, 2012.

[26] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear
spatial pyramid matching using sparse coding for image classification.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1794–1801. IEEE, 2009.

[27] Kevin Bache and Moshe Lichman. Uci machine learning repository.
URL http://archive. ics. uci. edu/ml, 901, 2013.

[28] Chris Ding, Ding Zhou, Xiaofeng He, and Hongyuan Zha. R 1-
pca: rotational invariant l 1-norm principal component analysis for
robust subspace factorization. In Proceedings of the 23rd international
conference on Machine learning, pages 281–288. ACM, 2006.

