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ABSTRACT
We resolve several fundamental questions in the area of distributed
functional monitoring, initiated by Cormode, Muthukrishnan, and
Yi (SODA, 2008), and receiving recent attention. In this model
there are k sites each tracking their input streams and communicat-
ing with a central coordinator. The coordinator’s task is to continu-
ously maintain an approximate output to a function computed over
the union of the k streams. The goal is to minimize the number of
bits communicated.

Let the p-th frequency moment be defined as Fp =
∑
i f

p
i ,

where fi is the frequency of element i. We show the randomized
communication complexity of estimating the number of distinct el-
ements (that is, F0) up to a 1 + ε factor is Ω(k/ε2), improving
upon the previous Ω(k + 1/ε2) bound and matching known up-
per bounds. For Fp, p > 1, we improve the previous Ω(k + 1/ε2)

communication bound to Ω̃(kp−1/ε2). We obtain similar improve-
ments for heavy hitters, empirical entropy, and other problems.
Our lower bounds are the first of any kind in distributed functional
monitoring to depend on the product of k and 1/ε2. Moreover,
the lower bounds are for the static version of the distributed func-
tional monitoring model where the coordinator only needs to com-
pute the function at the time when all k input streams end; sur-
prisingly they almost match what is achievable in the (dynamic
version of) distributed functional monitoring model where the co-
ordinator needs to keep track of the function continuously at any
time step. We also show that we can estimate Fp, for any p >
1, using Õ(kp−1poly(ε−1)) communication. This drastically im-
proves upon the previous Õ(k2p+1N1−2/ppoly(ε−1)) bound of
Cormode, Muthukrishnan, and Yi for general p, and their Õ(k2/ε+
k1.5/ε3) bound for p = 2. For p = 2, our bound resolves their
main open question.

Our lower bounds are based on new direct sum theorems for
approximate majority, and yield improvements to classical prob-
lems in the standard data stream model. First, we improve the
known lower bound for estimating Fp, p > 2, in t passes from
Ω̃(n1−2/p/(ε2/pt)) to Ω̃(n1−2/p/(ε4/pt)), giving the first bound
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that matches what we expect when p = 2 for any constant num-
ber of passes. Second, we give the first lower bound for estimating
F0 in t passes with Ω(1/(ε2t)) bits of space that does not use the
hardness of the gap-hamming problem.

Categories and Subject Descriptors
F.2.0 [ANALYSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY]: General

General Terms
Algorithms, theory

Keywords
Distributed functional monitoring, data streams, frequency moments,
heavy hitters, quantiles, entropy

1. INTRODUCTION
Recent applications in sensor networks and distributed systems

have motivated the distributed functional monitoring model, initi-
ated by Cormode, Muthukrishnan, and Yi [20]. In this model there
are k sites and a single central coordinator. Each site Si (i ∈ [k])
receives a stream of data Ai(t) for timesteps t = 1, 2, . . ., and
the coordinator wants to keep track of a function f that is defined
over the multiset union of the k data streams at each time t. For
example, the function f could be the number of distinct elements
in the union of the k streams. We assume that there is a two-way
communication channel between each site and the coordinator so
that the sites can communicate with the coordinator. The goal is to
minimize the total amount of communication between the sites and
the coordinator so that the coordinator can approximately maintain
f(A1(t), . . . , Ak(t)) at any time t. Minimizing the total communi-
cation is motivated by power constraints in sensor networks, since
communication typically uses a power-hungry radio [25]; and also
by network bandwidth constraints in distributed systems. There is a
large body of work on monitoring problems in this model, includ-
ing maintaining a random sample [21, 48], estimating frequency
moments [18, 20], finding the heavy hitters [6, 40, 43, 53], approxi-
mating the quantiles [19, 33, 53], and estimating the entropy [5].

We can think of the distributed functional monitoring model as
follows. Each of the k sites holds an N -dimentional vector where
N is the size of the universe. An update to a coordinate j on site
Si causes vij to increase by 1. The goal is to estimate a statistic of
v =

∑k
i=1 v

i, such as the p-th frequency moment Fp = ‖v‖pp, the
number of distinct elements F0 = |support(v)|, and the empirical
entropy H =

∑
i

vi
‖v‖1

log ‖v‖1
vi

. This is the standard insertion-
only model. For many of these problems, with the exception of



the empirical entropy, there are strong lower bounds (e.g., Ω(N))
if allowing updates to coordinates that cause vij to decrease [5].
The latter is called the update model. Thus, except for entropy, we
follow previous work and consider the insertion-only model.

To prove lower bounds, we consider the static version of the dis-
tributed functional monitoring model, where the coordinator only
needs to compute the function at the time when all k input streams
end. It is clear that a lower bound for the static case is also a lower
bound for the dynamic case in which the coordinator has to keep
track of the function at any point in time. The static version of
the distributed functional monitoring model is closely related to
the multiparty number-in-hand communication model, where we
again have k sites each holding an N -dimensional vector vi, and
they want to jointly compute a function defined on the k input vec-
tors. It is easy to see that these two models are essentially the same
since in the former, if site Si would like to send a message to Sj ,
it can always send the message first to the coordinator and then the
coordinator can forward the message to Sj . Doing this will only
increase the total amount of communication by a factor of two.
Therefore, we do not distinguish between these two models in this
paper.

There are two variants of the multiparty number-in-hand com-
munication model we will consider: the blackboard model, in which
each message a site sends is received by all other sites, i.e., it is
broadcast, and the message-passing model, in which each message
is between the coordinator and a specific site.

Despite the large body of work in the distributed functional mon-
itoring model, the complexity of basic problems is not well under-
stood. For example, for estimating F0 up to a (1 + ε)-factor, the
best upper bound is Õ(k/ε2) [20]1, while the only known lower
bound is Ω(k + 1/ε2). The dependence on ε in the lower bound
is not very insightful, as the Ω(1/ε2) bound follows just by con-
sidering two sites [5, 16]. The real question is whether the k and
1/ε2 factors should multiply. Even more embarrassingly, for the
frequency moments Fp, p > 2, the known algorithms use commu-
nication Õ(k2p+1N1−2/ppoly(1/ε)), while the only known lower
bound is Ω(k + 1/ε2) [5, 16]. Even for p = 2, the best known
upper bound is Õ(k2/ε + k1.5/ε3) [20], and the authors’ main
open question in their paper is “It remains to close the gap in the
F2 case: can a better lower bound than Ω(k) be shown, or do there
exist Õ(k · poly(1/ε)) solutions?”

Our Results: We significantly improve the previous communi-
cation bounds for approximating the frequency moments, entropy,
heavy hitters, and quantiles in the distributed functional monitoring
model. In many cases our bounds are optimal. Our results are sum-
marized in Table 1, where they are compared with previous bounds.
We have three main results, each introducing a new technique:

1. We show that for estimatingF0 in the message-passing model,
Ω(k/ε2) communication is required, matching an upper bound
of [20] up to a polylogarithmic factor. Our lower bound holds
in the static model in which the k sites just need to approxi-
mate F0 once on their inputs.

2. We show that we can estimate Fp, for any p > 1, using
Õ(kp−1poly(ε−1)) communication in the message-passing
model2. This drastically improves upon the previous bound
Õ(k2p+1N1−2/ppoly(ε−1)) of [20]. In particular, setting
p = 2, we resolve the main open question of [20].

3. We show Ω̃(kp−1/ε2) communication is necessary for ap-
proximating Fp (p > 1) in the blackboard model, signifi-

1We use Õ(f) to denote a function of the form f · logO(1)(Nk/ε).
2We assume the total number of updates is poly(N).

cantly improving the prior Ω(k + 1/ε2) bound. As with our
lower bound for F0, these are the first lower bounds which
depend on the product of k and 1/ε. As with F0, our lower
bound holds in the static model in which the sites just ap-
proximate Fp once.

Our other results in Table 1 are explained in the body of the paper,
and use similar techniques.

Our Techniques: Lower Bound for F0: Our Ω(k/ε2) bound for
F0 is based on the following primitive problem k-GAP-MAJ. For
illustration, suppose k = 1/ε2. There are 1/ε2 sites each hold-
ing a random independent bit. Their task is to decide if at least
1/(2ε2) + 1/ε of the bits are 1, or at most 1/(2ε2) − 1/ε of the
bits are 1. We show any correct protocol must reveal Ω(1/ε2) bits
of information about the sites’ inputs. We “compose” this with 2-
party disjointness (2-DISJ) [46], in which each party has a bitstring
of length 1/ε2 and either the strings have disjoint support (the so-
lution is 0) or there is a single coordinate which is 1 in both strings
(the solution is 1). Let τ be the hard distribution for 2-DISJ, shown
to require Ω(1/ε2) communication to solve [46]. Suppose the co-
ordinator and each site share an instance of 2-DISJ in which the
solution to 2-DISJ is a random bit, which is the site’s effective in-
put to k-GAP-MAJ. The coordinator has the same input for each of
the 1/ε2 instances, while the sites have an independent input drawn
from τ conditioned on the coordinator’s input and output bit deter-
mined by k-GAP-MAJ. The inputs are chosen so that if the output
of 2-DISJ is 1, then F0 increases by 1, otherwise it remains the
same. This is not entirely accurate, but it illustrates the main idea.
Now, the key is that by the rectangle property of k-party commu-
nication protocols, the 1/ε2 different output bits are independent
conditioned on the transcript. Thus if a protocol does not reveal
Ω(1/ε2) bits of information about these output bits, by an anti-
concentration theorem we can show that the protocol cannot suc-
ceed with large probability. Finally, since a (1 + ε)-approximation
to F0 can decide k-GAP-MAJ, and since any correct protocol for
k-GAP-MAJ must reveal Ω(1/ε2) information, the protocol must
solve Ω(1/ε2) instances of 2-DISJ, each requiring Ω(1/ε2) com-
munication (otherwise the coordinator could simulate k − 1 of the
sites and obtain an o(1/ε2)- communication protocol for 2-DISJ
with the remaining site, contradicting the communication lower
bound for 2-DISJ on this distribution). We obtain an Ω(k/ε2)
bound for k ≥ 1/ε2 by using similar arguments. One cannot show
this in the blackboard model since there is an Õ(k + 1/ε2) bound
for F0

3.
Lower Bound for Fp: Our Ω̃(kp−1/ε2) bound for Fp cannot

use the above reduction since we do not know how to turn a pro-
tocol for approximating Fp into a protocol for solving the com-
position of k-GAP-MAJ and 2-DISJ. Instead, our starting point is
a recent Ω(1/ε2) lower bound for the 2-party gap-hamming dis-
tance problem GHD [16]. The parties have a length-1/ε2 bitstring,
x and y, respectively, and they must decide if the Hamming dis-
tance ∆(x, y) > 1/(2ε2) + 1/ε or ∆(x, y) < 1/(2ε2) − 1/ε.
A simplification by Sherstov [47] shows a related problem called
2-GAP-ORT also has Ω(1/ε2) communication. Here there are two
parties, each with 1/ε2-length bitstrings x and y, and they must de-
cide if |∆(x, y)− 1/(2ε2)| > 2/ε or |∆(x, y)− 1/(2ε2)| < 1/ε.
We observe that Sherstov proves that 2-GAP-ORT is hard when

3The idea is to first obtain a 2-approximation. Then, sub-sample
so that there are Θ(1/ε2) distinct elements. Then the first party
broadcasts his distinct elements, the second party broadcasts the
distinct elements he has that the first party does not, etc.



Previous work This paper Previous work This paper
Problem LB LB (all static) UB UB
F0 Ω(k) [20] Ω(k/ε2) Õ(k/ε2) [20] –
F2 Ω(k) [20] Ω̃(k/ε2) (BB) Õ(k2/ε+ k1.5/ε3) [20] Õ( k

poly(ε)
)

Fp (p > 1) Ω(k + 1/ε2) [5, 16] Ω̃(kp−1/ε2) (BB) Õ( p

ε1+2/p k
2p+1N1−2/p) [20] Õ( kp−1

poly(ε)
)

All-quantile Ω̃(min{
√
k
ε
, 1
ε2
}) [33] Ω(min{

√
k
ε
, 1
ε2
}) (BB) Õ(min{

√
k
ε
, 1
ε2
}) [33] –

Heavy Hitters Ω̃(min{
√
k
ε
, 1
ε2
}) [33] Ω(min{

√
k
ε
, 1
ε2
}) (BB) Õ(min{

√
k
ε
, 1
ε2
}) [33] –

Entropy Ω̃(1/
√
ε) [5] Ω̃(k/ε2) (BB) Õ( k

ε3
) [5], Õ( k

ε2
) (static) [32] –

`p (p ∈ (0, 2]) – Ω̃(k/ε2) (BB) Õ(k/ε2) (static) [38] –

Table 1: UB denotes upper bound; LB denotes lower bound; BB denotes blackboard model. N denotes the universe size. All bounds
are for randomized algorithms. We assume all bounds hold in the dynamic setting by default, and will state explicitly if they hold
in the static setting. For lower bounds we assume the message-passing model by default, and state explicitly if they also hold in the
blackboard model.

x and y are drawn from a product uniform distribution 4. There-
fore, by a simulation result of Barak et al. [9], this implies that any
correct protocol for 2-GAP-ORT must reveal Ω̃(1/ε2) 5 informa-
tion about (x, y). By independence and the chain rule, this means
for Ω̃(1/ε2) indices i, Ω̃(1) information is revealed about (xi, yi)
conditioned on values (xj , yj) for j < i. We now “embed” an
independent copy of a variant of k-party-disjointness, the k-XOR
problem, on each of the 1/ε2 coordinates of 2-GAP-ORT. In this
variant, there are k parties each holding a bitstring of length kp. On
all but one “special” randomly chosen coordinate, there is a single
site assigned to the coordinate and that site uses private randomness
to choose whether the value on the coordinate is 0 or 1 (with equal
probability), and the remaining k−1 sites have 0 on this coordinate.
On the special coordinate, with probability 1/4 all sites have a 0 on
this coordinate (a “00” instance), with probability 1/4 the first k/2
parties have a 1 on this coordinate and the remaining k/2 parties
have a 0 (a “10” instance), with probability 1/4 the second k/2
parties have a 1 on this coordinate and the remaining k/2 parties
have a 0 (a “01” instance), and with the remaining probability 1/4
all k parties have a 1 on this coordinate (a “11” instance). We show,
via a direct sum for distributional communication complexity, that
any deterministic protocol that decides which case the special co-
ordinate is in with probability 1/4+Ω̃(1) has conditional informa-
tion cost Ω̃(kp−1). This implies that any protocol that can decide
whether the output is in the set {10, 01} (the “XOR” of the out-
put bits) with probability 1/2 + Ω̃(1) has conditional information
cost Ω̃(kp−1). We do the direct sum argument by conditioning the
mutual information on low-entropy random variables which allow
us to fill in inputs on remaining coordinates without any commu-
nication between the parties and without asymptotically affecting
our Ω̃(kp−1) lower bound. We design a reduction so that on the
i-th coordinate of 2-GAP-ORT, the input of the first k/2-players of
k-XOR is determined by the public coin (which we condition on)
and the first party’s input bit to 2-GAP-ORT, and the input of the
second k/2-players of k-XOR is determined by the public coin and
the second party’s input bit to 2-GAP-ORT . We show that any pro-
tocol that solves the composition of 2-GAP-ORT with 1/ε2 copies
of k-XOR , a problem that we call k-BTX , must reveal Ω̃(1) bits

4We note that the hardness under the product uniform distribution
may also follow from ideas in [16].
5We assume that the communication cost of all protocols in the
paper is at most poly(N), where N is the number of coordinates
in the vector inputs to the parties, since otherwise the lower bound
can be proved directly (will be discussed in more detail in Section
4.1). In this case, applying Theorem 1.3 of [9], we have that the
external information cost of the protocol is at least Ω̃(1/ε2).

of information about the two output bits of an Ω̃(1) fraction of the
1/ε2 copies, and from our Ω̃(kp−1) information cost lower bound
for a single copy, we can obtain an overall Ω̃(kp−1/ε2) bound. Fi-
nally, one can show that a (1 + ε)-approximation algorithm for Fp
can be used to solve k-BTX .

Upper Bound for Fp: We illustrate the algorithm for p = 2 and
constant ε. Unlike [20], we do not use AMS sketches [4]. A nice
property of our protocol is that it is the first 1-way protocol (the pro-
tocol of [20] is not), in the sense that only the sites send messages
to the coordinator (the coordinator does not send any messages).
Moreover, all messages are simple: if a site receives an update to
the j-th coordinate, provided the frequency of coordinate j in its
stream exceeds a threshold, it decides with a certain probability to
send j to the coordinator. Unfortunately, one can show that this
probability cannot be the same for all coordinates j, as otherwise
the communication would be too large.

To determine the threshold and probability to send an update to
a coordinate j, the sites use the public coin to randomly group all
coordinates j into buckets S`, where S` contains a 1/2` fraction of
the input coordinates. For j ∈ S`, the threshold and probability are
only a function of `. Inspired by work on sub-sampling [34], we try
to estimate the number of coordinates j of magnitude in the range
[2h, 2h+1), for each h. Call this class of coordinates Ch. If the
contribution to F2 from Ch is significant, then |Ch| ≈ 2−2h · F2,
and to estimate |Ch| we only consider those j ∈ Ch that are in S`
for a value ` which satisfies |Ch| · 2−` ≈ 2−2h · F2 · 2−` ≈ 1. We
do not know F2 and so we also do not know `, but we can make
a logarithmic number of guesses. We note that the work [34] was
available to the authors of [20] for several years, but adapting it to
the distributed framework here is tricky in the sense that the “heavy
hitters” algorithm used in [34] for finding elements in different Ch
needs to be implemented in a k-party communication-efficient way.

When choosing the threshold and probability we have two com-
peting constraints; on the one hand these values must be chosen so
that we can accurately estimate the values |Ch| from the samples.
On the other hand, these values need to be chosen so that the com-
munication is not excessive. Balancing these two constraints forces
us to use a threshold instead of just the same probability for all co-
ordinates in S`. By choosing the thresholds and probabilities to be
appropriate functions of `, we can satisfy both constraints. Other
minor issues in the analysis arise from the fact that different classes
contribute at different times, and that the coordinator must be cor-
rect at all times. These issues can be resolved by conditioning on
a quantity related to the protocol’s correctness being accurate at a
small number of selected times in the stream, and then arguing that
the quantity is non-decreasing and that this implies that it is correct
at all times.



Implications for the Data Stream Model: In 2003, Indyk and
Woodruff introduced the GHD problem [35], where a 1-round lower
bound shortly followed [50]. Ever since, it seemed the space com-
plexity of estimating F0 in a data stream with t > 1 passes hinged
on whether GHD required Ω(1/ε2) communication for t rounds,
see, e.g., Question 10 in [2]. A flurry [10, 11, 16, 47, 49] of re-
cent work finally resolved the complexity of GHD. What our lower
bound shows for F0 is that this is not the only way to prove the
Ω(1/ε2) space bound for multiple passes for F0. Indeed, we just
needed to look at 1/ε2 parties instead of 2 parties. Since we have
an Ω(1/ε4) communication lower bound for F0 with 1/ε2 parties,
this implies an Ω((1/ε4)/(t/ε2)) = Ω(1/(tε2)) bound for t-pass
algorithms for approximating F0. Arguably our proof is simpler
than the recent GHD lower bounds.

Our Ω̃(kp−1/ε2) bound for Fp also improves a long line of
work on the space complexity of estimating Fp for p > 2 in a
data stream. The current best upper bound is Õ(N1−2/pε−2) bits
of space [28]. See Figure 1 of [28] for a list of papers which
make progress on the ε and logarithmic factors. The previous best
lower bound is Ω̃(N1−2/pε−2/p/t) for t passes [8]. By setting
kp = ε2N , we obtain that the total communication is at least
Ω̃(ε2−2/pN1−1/p/ε2), and so the implied space lower bound for t-
pass algorithms forFp in a data stream is Ω̃(ε−2/pN1−1/p/(tk)) =

Ω̃(N1−2/p/(ε4/pt)). This gives the first bound that agrees with
the tight Θ̃(1/ε2) bound when p = 2 for any constant t. After our
work, Ganguly [29] improved this for the special case t = 1. That
is, for 1-pass algorithms for estimating Fp, p > 2, he shows a space
lower bound of Ω(N1−2/p/(ε2 logn)).

As mentioned, we observe that 2-GAP-ORT has information cost
Ω̃(1/ε2) under the product uniform distribution or the protocol
must have super-polynomial (inN ) communication. Since 2-GAP-
ORT can be written as the AND of two GHD instances on Θ(1/ε2)
bits (see the Corollary after the Main Theorem in [47]), this im-
plies a useful distribution for which either the communication cost
of GHD is super-polynomial or the external information cost is at
least Ω̃(1/ε2), partly answering Question 25 in the Open Prob-
lems in Data Streams list from the Bertinoro and IITK workshops
[3]. Using standard direct sum theorems, this implies solving r
independent instances of F0 or F2, say, in a data stream requires
Ω̃(r/ε2) bits of space, which was unknown.

Other Related Work: There are quite a few papers on multi-
party number-in-hand communication complexity, though they are
not directly relevant for the problems studied in this paper. Alon
et al. [4] and Bar-Yossef et al. [8] studied lower bounds for mul-
tiparty set-disjointness, which has applications to p-th frequency
moment estimation for p > 2 in the streaming model. Their re-
sults were further improved in [15, 30, 36]. Chakrabarti et al. [13]
studied random-partition communication lower bounds for multi-
party set-disjointness and pointer jumping, which have a number
of applications in the random-order data stream model. Other work
includes Chakrabarti et al. [14] for median selection, Magniez et
al. [42] and Chakrabarti et al. [12] for streaming language recogni-
tion. Very few studies have been conducted in the message-passing
model. Duris and Rolim [23] proved several lower bounds in the
message-passing model, but only for some simple boolean func-
tions. Three related but more restrictive private-message models
were studied by Gal and Gopalan [27], Ergün and Jowhari [24],
and Guha and Huang [31]. The first two only investigated deter-
ministic protocols and the third was tailored for the random-order
data stream model.

Recently Phillips et al. [45] introduced a technique called sym-
metrization for the number-in-hand communication model. The
idea is to try to find a symmetric hard distribution for the k players.
Then one reduces the k-player problem to a 2-player problem by
assigning Alice the input of a random player and Bob the inputs of
the remaining k − 1 players. The answer to the k-player problem
gives the answer to the 2-player problem. By symmetrization one
can argue that if the communication lower bound for the resulting
2-player problem is L, then the lower bound for the k-player prob-
lem is Ω(kL). While symmetrization can be used to solve some
problems for which other techniques are not known, such as bitwise
AND and OR, it has several serious limitations. First, symmetriza-
tion requires a symmetric hard distribution, and for many problems
this is not known or unlikely to exist; this is true of all of the prob-
lems (except for the auxiliary problem k-GAP-MAJ) considered
in this paper. Second, for many problems (e.g., the k-GAP-MAJ),
when Bob knows the inputs of k − 1 players, he can determine the
answer without any communication, and so no embedding into a
k-player protocol of the form studied in [45] is possible. Also, it
does not give information cost bounds, and so it is difficult to use
when composing problems as is done in this paper.

Paper Outline: In Section 3 and Section 4 we prove our lower
bounds forF0 andFp, p > 1. The lower bounds apply to functional
monitoring, but hold even in the static model. In Section 5 we show
improved upper bounds for Fp, p > 1, for functional monitoring.
Finally, in Section 6 we prove lower bounds for all-quantile, heavy
hitters, entropy and `p for any p ≥ 1 in the blackboard model.

2. PRELIMINARIES
In this section we review some basics on communication com-

plexity and information theory.

Information Theory We refer the reader to [22] for a compre-
hensive introduction to information theory. Here we review a few
concepts and notation.

Let H(X) denote the Shannon entropy of the random variable
X , and let Hb(p) denote the binary entropy function when p ∈
[0, 1]. Let H(X | Y ) denote conditional entropy of X given Y .
Let I(X;Y ) denote the mutual information between two random
variables X,Y . Let I(X;Y | Z) denote the mutual information
between two random variables X,Y conditioned on Z. The fol-
lowing is a summarization of the basic properties of entropy and
mutual information that we need.

PROPOSITION 1. Let X,Y, Z be random variables.

1. If X takes value in {1, 2, . . . ,m}, then H(X) ∈ [0, logm].

2. H(X) ≥ H(X | Y ) and I(X;Y ) = H(X)−H(X | Y ) ≥
0.

3. If X and Z are independent, then we have I(X;Y | Z) ≥
I(X;Y ).

4. (Chain rule of mutual information)

I(X,Y ;Z) = I(X;Z) + I(Y ;Z |X).

And in general, for any random variablesX1, X2, . . . , Xn, Y ,

I(X1, . . . , Xn;Y ) =
∑n
i=1 I(Xi;Y |X1, . . . , Xi−1).

5. (Data processing inequality) If X and Z are conditionally
independent given Y , then I(X;Y | Z) ≤ I(X;Y ).



6. (Fano’s inequality) Let X be a random variable chosen from
domain X according to distribution µX , and Y be a ran-
dom variable chosen from domain Y according to distribu-
tion µY . For any reconstruction function g : Y → X with
error δg ,

Hb(δg) + δg log(|X | − 1) ≥ H(X | Y ).

7. (The Maximum Likelihood Estimation principle) With the no-
tation as in Fano’s inequality, if the reconstruction function
is g(y) = x for the x that maximizes the conditional proba-
bility µX(x | Y = y), then

δg ≤ 1− 1

2H(X | Y )
.

Communication complexity In the two-party randomized com-
munication complexity model (see e.g., [41]), we have two players
Alice and Bob. Alice is given x ∈ X and Bob is given y ∈ Y ,
and they want to jointly compute a function f(x, y) by exchang-
ing messages according to a protocol Π. Let Π(x, y) denote the
message transcript when Alice and Bob run protocol Π on input
pair (x, y). We sometimes abuse notation by identifying the proto-
col and the corresponding random transcript, as long as there is no
confusion.

The communication complexity of a protocol is defined as the
maximum number of bits exchanged among all pairs of inputs. We
say a protocol Π computes f with error probability δ (0 ≤ δ ≤
1) if there exists a function g such that for all input pairs (x, y),
Pr[g(Π(x, y)) 6= f(x, y)] ≤ δ. The δ-error randomized communi-
cation complexity, denoted by Rδ(f), is the cost of the minimum-
communication randomized protocol that computes f with error
probability δ. The (µ, δ)-distributional communication complexity
of f , denoted byDδ

µ(f), is the cost of the minimum-communication
deterministic protocol that gives the correct answer for f on at
least a 1 − δ fraction of all input pairs, weighted by distribution
µ. Yao [52] showed thatRδ(f) ≥ maxµD

δ
µ(f). Thus, one way to

prove a lower bound for randomized protocols is to find a hard dis-
tribution µ and lower bound Dδ

µ(f). This is called Yao’s Minimax
Principle.

The definitions for two-party protocols can be easily extended to
the multiparty setting, where we have k players and the i-th player
is given an input xi ∈ Xi. Again the k players want to jointly com-
pute a function f(x1, x2, . . . , xk) by exchanging messages accord-
ing to a protocol Π.

Information complexity Information complexity was introduced
in a series of papers including [8, 17]. We refer the reader to Bar-
Yossef’s Thesis [7]; see Chapter 6 for a detailed introduction. Here
we briefly review the concepts of information cost and conditional
information cost for k-player communication problems. All of
them are defined in the blackboard number-in-hand model.

Let µ be an input distribution on X1 ×X2 × . . .×Xk and let X
be a random input chosen from µ. Let Π be a randomized protocol
running on inputs in X1 × X2 × . . . × Xk. The information cost
of Π with respect to µ is I(X; Π) 6. The information complexity
of a problem f with respect to a distribution µ and error parameter
δ (0 ≤ δ ≤ 1), denoted ICµ,δ(f), is the minimum information
cost of a δ-error protocol for f with respect to µ. We will work
in the public coin model, in which all parties also share a common
source of randomness.
6In some of the literature this is called the external information
cost, in contrast with the internal information cost. In this paper
we only need the former.

We say a distribution λ partitions µ if conditioned on λ, µ is a
product distribution. Let X be a random input chosen from µ and
D be a random variable chosen from λ. For a randomized protocol
Π on X1 × X2 × . . . × Xk, the conditional information cost of Π
with respect to the distribution µ on X1 × X2 × . . . × Xk and a
distribution λ partitioning µ is defined as I(X; Π | D). The con-
ditional information complexity of a problem f with respect to a
distribution µ, a distribution λ partitioning µ, and error parameter
δ (0 ≤ δ ≤ 1), denoted ICµ,δ(f | λ), is the minimum informa-
tion cost of a δ-error protocol for f with respect to µ and λ. The
following proposition can be found in [8].

PROPOSITION 2. For any distribution µ, distribution λ parti-
tioning µ, and error parameter δ (0 ≤ δ ≤ 1),

Rδ(f) ≥ ICµ,δ(f) ≥ ICµ,δ(f | λ).

Statistical distance measures Given two probability distributions
µ and ν over the same space X , the following statistical distance
measures will be used in this paper:

1. Total variation distance: V (µ, ν)
def
= maxA⊆X |µ(A)− ν(A)|.

2. Hellinger distance: h(µ, ν)
def
=

√
1
2

∑
x∈X

(√
µ(x)−

√
ν(x)

)2

We have the following relation between total variation distance and
Hellinger distance (cf. [7], Chapter 2).

PROPOSITION 3. h2(µ, ν) ≤ V (µ, ν) ≤ h(µ, ν)
√

2− h2(µ, ν).

Conventions In the rest of the paper we call a player a site, as
to be consistent with the distributed functional monitoring model.
We denote [n] = {1, . . . , n}. Let ⊕ be the XOR function. All
logarithms are base-2 unless noted otherwise. We say W̃ is a (1 +

ε)-approximation of W , 0 < ε < 1, if W ≤ W̃ ≤ (1 + ε)W .

3. A LOWER BOUND FOR F0

We introduce the problem k-GAP-MAJ, and then compose it
with 2-DISJ to prove a lower bound for F0.

3.1 The k-GAP-MAJ Problem
In the k-GAP-MAJ problem we have k sites S1, S2, . . . , Sk, and

each site has a bit zi (1 ≤ i ≤ k). The sites want to compute the
following function in the blackboard model:

k-GAP-MAJ(z1, . . . , zk) =


0, if

∑
i∈[k] zi ≤ βk −

√
βk,

1, if
∑
i∈[k] zi ≥ βk +

√
βk,

∗, otherwise,

where β (ω(1/k) ≤ β ≤ 1/2) is a parameter, and “∗" means that
the answer can be arbitrary. We define the input distribution µ as
follows. For each i ∈ [k], let zi = 1 with probability β and zi = 0
with probability (1− β).

Let Z = {Z1, Z2, . . . , Zk} be a random input chosen according
to distribution µ. Let Π be the transcript of any protocol for k-
GAP-MAJ on the random input vector Z. Let µ̃ be the probability
distribution of the random transcript Π.

DEFINITION 1. We say a transcript π is weak if for at least
0.5k of Zi (i ∈ [k]), it holds that H(Zi | Π = π) ≥ Hb(0.01β),
otherwise we say it is strong.

In this section we will prove the following main theorem for k-
GAP-MAJ. Intuitively, it says that in order to correctly compute
k-GAP-MAJ with a good probability, we have to learn Ω(k) Zi’s
well.



THEOREM 1. If a protocol correctly computes k-GAP-MAJ on
input distribution µ with error probability δ for some sufficiently
small constant δ, then PrΠ∼µ̃[Π is strong] = Ω(1).

We have the following immediate corollary, which will be used
to prove the lower bound for the quantile problem in Section 6.1.

COROLLARY 1. Suppose that β = Θ(1), then I(Z; Π) = Ω(k)
for any protocol that computes k-GAP-MAJ on input distribution µ
with error probability δ for some sufficiently small constant δ.

PROOF. By the chain rule and independence, we have

I(Z; Π) ≥
∑
i∈[k]

I(Zi; Π)

≥
∑

π:π is strong

PrΠ∼µ̃[Π = π]
∑
i∈[k]

(H(Zi)−H(Zi | Π = π))


≥ Ω(1) · 0.5k · (Hb(β)−Hb(0.01β))

≥ Ω(k) (for β = Θ(1)).

Now we prove Theorem 1. The following observation, which
easily follows from the rectangle property of communication pro-
tocols, is crucial in our proof.

OBSERVATION 1. Conditioned on Π, we have that the random
variables Z1, Z2, . . . , Zk are independent.

Let c1 be a constant chosen later. We introduce the following
definition.

DEFINITION 2. (Goodness of a transcript) We say a transcript
π is bad+ if E

[∑
i∈[k] Zi | Π = π

]
≥ βk + c1

√
βk and bad− if

E
[∑

i∈[k] Zi | Π = π
]
≤ βk− c1

√
βk. In both cases we say π is

bad. Otherwise we say it is good.

We first show that a transcript is bad only with a small probabil-
ity.

LEMMA 1. PrΠ∼µ̃[Π is bad] ≤ 2e−(c1−1)2/3/(1− e−1/3).

PROOF. Set c2 = c1 − 1. We say Z = {Z1, Z2, . . . , Zk} is a
joker+ if

∑
i∈[k] Zi ≥ βk + c2

√
βk, and a joker− if

∑
i∈[k] Zi ≤

βk − c2
√
βk. In both cases we say Z is a joker.

First, we can apply a Chernoff bound on random variables Zi for
i = 1, . . . , k, and so we have that

Pr[Z is a joker+] = Pr
[∑

i∈[k] Zi ≥ βk + c2
√
βk
]
≤ e−c

2
2/3.

Second, by Observation 1, we can apply a Chernoff bound on
random variables Zi for i = 1, . . . , k conditioned on Π being bad,

Pr[Z is a joker+ | Π is bad+]

≥
∑
π

Pr
[
Π = π | π is bad+

]
Pr
[
Z is a joker+ | Π = π, π is bad+

]
=

∑
π

Pr
[
Π = π | π is bad+

]
Pr
[∑

i∈[k] Zi ≥ βk + c2
√
βk
∣∣∣

E
[∑

i∈[k] Zi | Π = π
]
≥ βk + c1

√
βk,Π = π

]
≥

∑
π

Pr
[
Π = π | π is bad+

] (
1− e−(c1−c2)2/3

)
=

(
1− e−(c1−c2)2/3

)
.

Finally by Bayes’ theorem, we have that

Pr[Π is bad+] =
Pr[Z is a joker+] · Pr[Π is bad+ | Z is a joker+]

Pr[Z is a joker+ | Π is bad+]

≤ e−c
2
2/3

1− e−(c1−c2)2/3
.

Similarly, we can also show that

Pr[Π is bad−] ≤ e−c
2
2/3/(1− e−(c1−c2)2/3).

Therefore Pr[Π is bad] ≤ 2e−(c1−1)2/3/(1− e−1/3) (recall that
we set c2 = c1 − 1).

Our next lemma indicates that if a transcript π is good and weak,
then the sum of Zi’s will deviate from its mean considerably with
a significant probability. Let c3 be a constant chosen later.

LEMMA 2. For a good and weak transcript π, there exists a
universal constant c̃ such that

Pr
[∑

i∈[k] Zi ≤ βk − (c3 − c1)
√
βk
∣∣∣ Π = π

]
≥ c̃ · e−100(c3+1)2 ,

and Pr
[∑

i∈[k] Zi ≥ βk + (c3 − c1)
√
βk
∣∣∣ Π = π

]
≥ c̃ · e−100(c3+1)2 .

PROOF. We only need to prove the first inequality. The proof
for the second inequality is the same.

Since π is weak, we can find a set T ∈ [n] with |T | = 0.5k,
such that for any i ∈ T we have H(Zi | Π = π) ≥ Hb(0.01β).
Let N1 =

∑
i∈T Zi and N2 =

∑
i∈[k]\T Zi. Let c4 and c5 with

c5 − c4 = c3 be constants chosen later. The idea of the proof is
to show that conditioned on Π = π, N2 will concentrate around
E [N2 | Π = π] within c4

√
βk with a good probability, while N1

will deviate from E [N1 | Π = π] by at least c5
√
βk with a good

probability, therefore
∑
i∈[k] Zi = N1 + N2 will deviate from its

mean by at least (c5 − c4)
√
βk = c3

√
βk with a good probabil-

ity. Here we use the fact that N1 and N2 are independent random
variables conditioned on Π = π.

To show that N2 will concentrate around its mean, we use a
Chernoff bound. Since π is good, we have by the definition of
the goodness of a transcript that E[N2 | Π = π] ≤ E[Z | Π =
π] ≤ βk + c1

√
βk ≤ 2βk. Thus by a Chernoff bound,

Pr
[
N2 − E[N2 | Π = π] ≤ −c4

√
βk
∣∣∣ Π = π

]
≤ e−

c24βk

3·2βk = e−c
2
4/6. (1)

To show that N1 will deviate from its mean considerably, we
prove an anti-concentration property of the distribution of N1 con-
ditioned on Π = π. We need the following result which is an easy
consequence of Feller [26] (cf. [44]).

LEMMA 3. ([44]) Let Y be a sum of independent random vari-
ables, each attaining values in [0, 1], and let σ =

√
Var[Y ] ≥ 200.

Then for all t ∈ [0, σ2/100], we have

Pr[Y ≥ E[Y ] + t] ≥ c · e−t
2/(3σ2)

for a universal constant c > 0.

Since for each i ∈ T it holds thatH(Zi |Π = π) ≥ Hb(0.01β),
we have Var(Zi | Π = π) ≥ 0.01β(1 − 0.01β) ≥ 0.009β.
Since conditioned on Π = π, the Zi’s are independent, we have



Var(N1 | Π = π) ≥ 0.009β · 0.5k ≥ 0.004βk. By Lemma 3 we
have for some universal constant c,

Pr
[
N1 ≥ E[N1 | Π = π] + c5

√
βk
∣∣ Π = π

]
≥ c · e−

(c5
√
βk)2

3·0.004βk ≥ c · e−100c25 . (2)

Set c4 = 1 and c5 = c3 + 1. By (1) and (2) and the fact that π is
good and weak, we obtain

Pr
[∑

i∈[k] Zi ≥ βk + (c3 − c1)
√
βk
∣∣∣ Π = π

]
≥ Pr

[∑
i∈[k] Zi − E[

∑
i∈[k] Zi | Π = π] ≥ c3

√
βk
∣∣∣ Π = π

]
≥ (1− e−c

2
4/6) · c · e−100c25

= c · (1− e−1/6) · e−100(c3+1)2

= c̃ · e−100(c3+1)2 ,

where c̃ is a universal constant.

Now we prove our main theorem for k-GAP-MAJ.

PROOF. (of Theorem 1) First, by Lemma 1 we know that with
probability

(
1− 2e−(c1−1)2/3/(1− e−1/3)

)
a transcript π sam-

pled according to µ̃ is good. Second, conditioned on π being good,
it cannot be weak with probability more than 1/2. We show this
by contradiction. Suppose that π is weak with probability at least
1/2 conditioned on it being good. Set c3 − c1 = 1, c1 = 5 and
constant δ sufficiently small. By Lemma 2, we have that the error
probability of the protocol will be at least(

1− 2e−(c1−1)2/3/(1− e−1/3)
)
· 1/2 · c̃ · e−100(c1+2)2 > δ,

violating the success guarantee of Theorem 1.
Therefore with probability at least

1/2 ·
(

1− 2e−(c1−1)2/3/(1− e−1/3)
)
≥ Ω(1),

π is both good and strong (thus strong). We are done.

3.2 The 2-DISJ Problem
In 2-DISJ Alice and Bob each have an n-bit vector. If we view

vectors as sets, then each of them has a subset of [n] corresponding
to the 1 bits. Let x be the set of Alice and y be the set of Bob. The
goal is to return 1 if x ∩ y 6= ∅, and 0 otherwise.

We define the input distribution τt as follows. Let ` = (n+1)/4.
With probability 1/t, x and y are random subsets of [n] such that
|x| = |y| = ` and |x ∩ y| = 1. And with probability 1 − 1/t,
x and y are random subsets of [n] such that |x| = |y| = ` and
x ∩ y = ∅. Razborov [46] (see also [37]) proved that for t =

4, D1/(400)
τ4 (2-DISJ) = Ω(n). It is easy to extend this result to

general t by the following claim.

CLAIM 1. If a protocol P solves the problem for general t with
error 1/(100t) and communication cost o(n), then it also solves
the problem when t = 4 with error 1/400 and communication cost
o(n).

PROOF. Under input distribution τt, let p be the probability that
P succeeds conditioned on x and y intersecting, and q be the prob-
ability thatP succeeds conditioned on x and y being disjoint. Then
p/t+ q(1− 1/t) ≥ 1− 1/(100t) by definition of τt. Notice that
conditioned on x and y intersecting, or conditioned on x and y be-
ing disjoint, τt and τ4 are equal as distributions. Hence, the success
probability of the same protocolP on distribution τ4 is p/4+3q/4.

Substituting p/t ≥ 1 − 1/(100t) − q(1 − 1/t) into this, the suc-
cess probability of P on τ4 is at least t/4− 1/400− tq/4 + q/4 +
3q/4 = t(1 − q)/4 − 1/400 + q, and since t ≥ 4, this is at least
1− q − 1/400 + q = 399/400, as desired.

By Razborov’s lower bound for τ4, D1/(100t)
τt (2-DISJ) = Ω(n). In

the rest of the paper we omit the subscript t in τt when there is no
confusion.

3.3 The Complexity of F0

We choose the input distribution ζ for the (1 + ε)-approximate
F0 problem as follows. Set n = A/ε2 where A = 20000/δ is a
constant, β = 1/(kε2) and t = 1/β. We start with a set Y with
cardinality ` = (n + 1)/4 chosen uniformly at random from [n],
and then choose X1, X2, . . . , Xk according to the marginal distri-
bution τ | Y independently, where τ is the hard input distribution
for 2-DISJ. We assign X1, X2, . . . , Xk to the k sites, respectively.

Let Ti = Xi ∩ Y if |Xi ∩ Y | 6= ∅ and NULL otherwise. Let
N = |{i ∈ [k] | Ti 6= NULL}|. LetR = F0(T1, T2, . . . , Tk). The
following lemma shows thatR will concentrate around its expecta-
tion E[R], which can be calculated exactly.

LEMMA 4. With probability at least (1 − 6500/A), we have
|R− E[R]| ≤ 1/(10ε), where E[R] = (1 − λ)N for some fixed
constant 0 ≤ λ ≤ 4/A.

PROOF. We can think of our problem as a bin-ball game: those
Ti (i ∈ [k])’s that are not NULL are balls (thus we have N balls),
and elements in the set Y are bins (thus we have ` bins). We throw
each of theN balls into one of the ` bins uniformly at random. Our
goal is to estimate the number of non-empty bins at the end of the
process.

By a Chernoff bound we have that with probability at least(
1− e−Ω(βk)

)
= 1 − o(1), it holds that N ≤ 2βk = 2/ε2. By

Fact 1 and Lemma 1 in [39] we have E[R] = `
(
1− (1− 1/`)N

)
and Var[R] < 4N2/`. Thus by Chebyshev’s inequality we have

Pr[|R− E[R]| > 1/(10ε)] ≤ Var[R]

1/(100ε2)
≤ 6400

A
.

Let θ = N/` ≤ 8/A. We can write

E[R] = `
(

1− e−θ
)

+O(1) = θ`

(
1− θ

2!
+
θ2

3!
− θ3

4!
+

)
+O(1).

This series converges and thus we can write E[R] = (1 − λ)θ` =
(1− λ)N for some fixed constant 0 ≤ λ ≤ θ/2 ≤ 4/A.

The next lemma shows that we can use a protocol for F0 to solve
k-GAP-MAJ with good properties.

LEMMA 5. If there exists a protocol P ′ that computes a (1 +
αε)-approximation to F0 (for some sufficiently small constant α)
on input distribution ζ with error probability δ/2, then there ex-
ists a protocol P that computes the k-GAP-MAJ problem on input
distribution µ with error probability δ.

PROOF. We first describe the construction of P using P ′ and
then show its correctness.

Protocol P . Given a random input Z = {Z1, Z2, . . . , Zk} of
k-GAP-MAJ chosen from distribution µ, we construct an input
(X1, X2, . . . , Xk) of F0 as follows: We first choose Y to be a
subset of [n] of size ` uniformly at random. Let I`1, I`2, . . . , I`k be
random subsets of size ` from [n] \ Y , and I`−1

1 , I`−1
2 , . . . , I`−1

k



be random subsets of size (`− 1) from [n] \ Y . Let I1
1 , I

1
2 , . . . , I

1
k

be random elements from Y . We next choose

Xj (j = 1, . . . , k) =

{
I`j if Zj = 0,

I`−1
j ∪ I1

j if Zj = 1.

It is easy to see that (X1, X2, . . . , Xk, Y ) is chosen from distribu-
tion ζ.

Protocol P first uses P ′ to compute W̃ which is a (1 + αε)-
approximation of F0(X1, X2, . . . , Xk), and then determines the
answer to k-GAP-MAJ as follows.

k-GAP-MAJ(Z1, . . . , Zk) =

{
1, if W̃−(n−`)

1−λ > 1/ε2(= βk),

0, otherwise.

Recall that we set n = A/ε2, ` = (n+ 1)/4 and 0 ≤ λ ≤ 4/A is
some fixed constant.

Correctness. Given a random input (X1, X2, . . . , Xk, Y ) chosen
from distribution ζ, the exact value of W = F0(X1, X2, . . . , Xk)
can be written as the sum of two components.

W = Q+R, (3)

where Q is a random variable that counts F0(∪i∈[k]Xi\Y ), and
R is a random variable that counts F0(∪i∈[k]Xi

⋂
Y ). First, from

our construction it is easy to see by Chernoff bounds and the union
bound that with probability

(
1− 1/ε2 · e−Ω(k)

)
= 1 − o(1), we

have Q = |{[n]− Y }| = n− `, since each element in {[n]− Y }
will be chosen by everyXi (i = 1, 2, . . . , k) with probability more
than 1/4. Second, by Lemma 4 we know that with probability (1−
6500/A), R is within 1/(10ε) from its mean (1 − λ)N for some
fixed constant 0 ≤ λ ≤ 4/A. Thus with probability (1−6600/A),
we can write Equation (3) as

W = (n− `) + (1− λ)N + κ1, (4)

for a value |κ1| ≤ 1/(10ε).
Since F0(X1, X2, . . . , Xk) computes a value W̃ which is a (1+

αε)-approximation of W , we can substitute W with W̃ in Equa-
tion (4), resulting in the following.

W̃ = (n− `) + (1− λ)N + κ1 + κ2, (5)

where κ2 ≤ αε · F0(X1, X2, . . . , Xk) ≤ αA/ε. We can choose
α = 1/(10A) to make κ2 ≤ 1/(10ε). Now we have

N = (W̃ − (n− `)− κ1 − κ2)/(1− λ)

= (W̃ − (n− `))/(1− λ) + κ3,

where |κ3| ≤ (1/(10ε) + 1/(10ε))/(1− 4/A) ≤ 1/(4ε). There-
fore (W̃ − (n − `))/(1 − λ) estimates N =

∑
i∈[k] Zi correctly

up to an additive error 1/(4ε) <
√
βk = 1/ε, thus computes k-

GAP-MAJ correctly. The total error probability of this simulation
is at most (δ/2 + 6600/A), where the first term counts the error
probability of P ′ and the second term counts the error probabil-
ity introduced by the reduction. This is less than δ if we choose
A = 20000/δ.

From Theorem 1 we know that if a protocol computes k-GAP-
MAJ(Z1, Z2, . . . , Zk) correctly with error probability δ, then with
probability Ω(1), for at least 0.5k Zi’s we have H(Zi | Π =
π) ≤ Hb(0.01β). This is equivalent to the following: With prob-
ability Ω(1), the protocol has to solve at least 0.5k copies of 2-
DISJ(Xi, Y ) (i ∈ [k]) on input distribution τ each with error
probability at most 0.01β = 1/(100t). By the lower bound for 2-
DISJ on input distribution τ , solving each copy of 2-DISJ requires
Ω(1/ε2) bits of communication (recall that we set n = A/ε2 for a
constant A), thus in total we need Ω(k/ε2) bits of communication.

THEOREM 2. Any protocol that computes a (1+ε)-approximation
to F0 on input distribution ζ with error probability δ for some suf-
ficiently small constant δ has communication complexity Ω(k/ε2).

4. A LOWER BOUND FOR FP (P > 1)

We first introduce a problem called k-XOR which can be con-
sidered to some extent as a combination of two k-DISJ (introduced
in [4, 8]) instances, and then compose it with 2-GAP-ORT (in-
troduced in [47]) to create another problem that we call the k-
BLOCK-THRESH-XOR (k-BTX) problem. We prove that the com-
munication complexity of k-BTX is large. Finally, we prove a com-
munication complexity lower bound for Fp by performing a reduc-
tion from k-BTX.

4.1 The 2-GAP-ORT Problem
In the 2-GAP-ORT problem we have two players Alice and Bob.

Alice has a vector x = {x1, x2, . . . , x1/ε2} ∈ {0, 1}1/ε
2

and Bob

has a vector y = {y1, y2, . . . , y1/ε2} ∈ {0, 1}1/ε
2

. They want to
compute

2-GAP-ORT(x, y) =


1,

∣∣∣∣∣ ∑
i∈[1/ε2]

XOR(xi, yi)− 1
2ε2

∣∣∣∣∣ ≥ 2
ε
,

0,

∣∣∣∣∣ ∑
i∈[1/ε2]

XOR(xi, yi)− 1
2ε2

∣∣∣∣∣ ≤ 1
ε
,

∗, otherwise.

Let φ be the uniform distribution on {0, 1}1/ε
2

× {0, 1}1/ε
2

and
let (X,Y ) be a random input chosen from distribution φ.

We assume that the communication cost of all protocols in the
paper is at most poly(N), whereN is the number of coordinates in
the vector inputs to the parties. This assumption is fine for our pur-
poses because we will show in Section 4.4 that a k-party protocolP
for F2 implies a 2-party protocol P ′ for 2-GAP-ORT with asymp-
totically the same communication. Thus if P ′ has communication
cost larger than poly(N), then we obtain a poly(N) lower bound
for the communication cost of F2 immediately (for any poly(N)).

THEOREM 3. Let Π be the transcript of any protocol for 2-
GAP-ORT on input distribution φ with error probability ι, for a suf-
ficiently small constant ι > 0, and assume Π uses at most poly(N)

communication. Then, I(X,Y ; Π) ≥ Ω̃(1/ε2).

PROOF. Sherstov [47] proved that under the product uniform
distribution φ, any protocol that computes 2-GAP-ORT correctly
with error probability ι for some sufficiently small constant ι >
0 has communication complexity Ω(1/ε2). By Theorem 1.3 of
Barak et al. [9] which says that under a product distribution, if
the communication complexity of a two-player problem is at most
poly(t), then the information cost of the two-player game is at least
the communication complexity of the two-player game up to a fac-
tor of poly log(t). That is, we have I(X,Y ; Π) ≥ Ω̃(1/ε2).

4.2 The k-XOR Problem
In the k-XOR problem we have k sites S1, S2, . . . , Sk. Each

site Si (i = 1, 2, . . . , k) holds a block bi = {bi,1, bi,2, . . . , bi,n}
of n (n ≥ k1+Ω(1)) bits. Let b = (b1, b2, . . . , bk) be the list of the
inputs of k sites. We assume k ≥ 4 is a power of 2. The k sites
want to compute the following function in the blackboard model.

k-XOR(b1, . . . , bk) =

 1, if ∃ j ∈ [n] such that bi,j = 1
for exactly k/2 i’s,

0, otherwise.



We define the input distribution ϕn for the k-XOR problem as
follows. For each coordinate ` (` ∈ [n]) there is a variable D`
chosen uniformly at random from {1, 2, . . . , k}. Conditioned on
D`, all but the D`-th sites set their inputs to 0, whereas the D`-th
site sets its input to 0 or 1 with equal probability. We call theD`-th
site the special site in the `-th coordinate. Let ϕ1 denote this input
distribution on one coordinate.

Next, we choose a random special coordinate M ∈ [n] and re-
place the k sites’ inputs on the M -th coordinate as follows: for
the first k/2 sites, with probability 1/2 we replace all k/2 sites’
inputs with 0 and with probability 1/2 we replace all k/2 sites’ in-
puts with 1; and we independently perform the same operation to
the second k/2 sites. Let ψ1 denote the distribution on this spe-
cial coordinate. And let ψn denote the input distribution that on
the special coordinate M is distributed as ψ1 and on each of the
remaining n− 1 coordinates is distributed as ϕ1.

LetB,Bi, Bi,` be the corresponding random variables of b, bi, bi,`
when the input of k-XOR is chosen according to the distribution
ψn. Let D = {D1, D2, . . . , Dn}. Let X = 1 if the inputs of the
first k/2 sites in the special coordinate M are all 1 and X = 0
otherwise. Let Y = 1 if the inputs of the second k/2 sites in the
special coordinate M are all 1 and Y = 0 otherwise. It is easy
to see that under ψn we have k-XOR(B) = X ⊕ Y . We say the
instance B is a 00-instance if X = Y = 0, a 10-instance if X = 1
and Y = 0, a 01-instance ifX = 0 and Y = 1, and a 11-instance if
X = Y = 1. Let S ∈ {00, 01, 10, 11} be the type of the instance.

THEOREM 4. Let Π be the transcript of any protocol on in-
put distribution ψn for which I(X,Y ; Π) = Ω̃(1). Then we have
I(B; Π | M,D,S) = Ω̃(n/k), where information is measured 7

with respect to the input distribution ψn.

PROOF. Since I(X,Y ; Π) = Ω̃(1), we have

Ω̃(1) = I(X,Y ; Π) = H(X,Y )−H(X,Y |Π) = 2−H(X,Y |Π),

or H(X,Y |Π) = 2 − Ω̃(1). By the Maximum Likelihood Princi-
ple in Proposition 1, there is a reconstruction function g from the
transcript of Π for which the error probability δg satisfies

δg ≤ 1− 1

2H(X,Y |Π)
≤ 1− 1

22−Ω̃(1)
= 1− 2Ω̃(1)

4
=

3

4
− Ω̃(1),

and therefore the success probability of the reconstruction function
g over inputs X,Y is 1

4
+ Ω̃(1). Since g is deterministic given the

transcript Π, we abuse notation and say the success probability of
Π is 1

4
+ Ω̃(1).

For an ` ∈ [n], say ` is good if Pr[Π(B) = (X,Y )|M = `] =

1/4 + Ω̃(1). By averaging, there are Ω̃(n) good `.
By the chain rule, expanding the conditioning, and letting D−`

denote the random variable D with `-th component missing, and
B[k],<` and B[k],` the inputs to the k sites on the first `− 1 coordi-
nates and the `-th coordinate, respectively, we have

I(B; Π |D,S,M) =

n∑
`=1

I(B[k],`; Π |D,S,M,B[k],<`)

≥
∑

good `

I(B[k],`; Π |D,S,M,B[k],<`),

7When we say that the information is measured with respect to a
distributionαwe mean that the inputs to the protocol are distributed
according to α when computing the mutual information.

which is

Eb,d

∑
good `

I(B[k],`; Π |D`, S,M,D−` = d,B[k],<` = b)

 .
Say a pair (b, d) is good for a good ` if

Pr[Π(B) = (X,Y )|M = `,D−` = d,B[k],<` = b] = 1/4+Ω̃(1).

By a Markov argument,

Pr[(b, d) is good ] = Ω̃(1).

We therefore have that I(B; Π |D,S,M) is at least

Ω̃(1)
∑

good `

I(B[k],`; Π |D`, S,M,D−` = d,B[k],<` = b, (b, d) is good).

Now define a protocol Π`,b,d which on inputA1, . . . , Ak distributed
according to ψ1, attempts to output (U, V ), where U = 1 if A1 =
. . . = Ak/2 = 1 and U = 0 otherwise, and V = 1 if Ak/2+1 =
. . . = Ak = 1 and V = 0 otherwise. The protocol Π`,b,d has `, b
and d hardwired into it. It fills in the inputs for coordinates `′ > `
by using the value d and the fact that the inputs to the parties are
independent conditioned on D−` = d. It fills in the inputs for co-
ordinates `′ < ` using the value b. This can all be done with no
communication. Since ` is good and (b, d) is good for `, it follows
that Pr[Π`,b,d(A1, . . . , Ak) = (U, V )] = 1

4
+ Ω̃(1).

Hence, for a good `,

I(B[k],`; Π |D,S,M,B[k],<`)

= Ω̃(1) · I(A1, . . . , Ak; Π′ | R,S,M),

where Π′ is a (randomized) protocol which succeeds in outputting
(U, V ) with probability 1/4 + Ω̃(1) when A1, . . . , Ak are dis-
tributed as in ψ1, and R ∈ [k] is chosen uniformly at random and
independently of S,M,A1, . . . , Ak, and the private randomness of
Π′ (hereR denotes the random variableD` in the reduction above).
The information is measured with respect to the marginal distribu-
tion of ψn on a good coordinate `. Observe that

I(A1, . . . , Ak; Π′ | R,M,S)

=
1

4

∑
s∈{00,01,10,11}

I(A1, . . . , Ak; Π′ | R,M,S = s),

and so

I(B[k],`; Π |D,S,M,B[k],<`)

= Ω̃(1) · I(A1, . . . , Ak; Π′ | R,M,S = 00).

Let E be the event that all sites have the value 0 in the M -th coor-
dinate when the inputs are drawn from ϕn. Observe that (ϕn|E) =
(ψn|S = 00) as distributions, and so

I(B[k],`; Π |D,S,M,B[k],<`)

= Ω̃(1) · I(A1, . . . , Ak; Π′ | R,M, E),

where the information on the left hand side is measured with re-
spect to inputs B drawn from ψn, and the information on the right
hand side is measured with respect to inputs A1, . . . , Ak drawn
from ϕn. Observe that Pr[M = `] = 1/n, and so

I(B[k],`; Π |D,S,M,B[k],<`)

≥ Ω̃(1) · I(A1, . . . , Ak; Π′ | R,M 6= `, E) · n− 1

n



≥ Ω̃(1) · I(A1, . . . , Ak; Π′ | R,M 6= `, E).

By definition of the mutual information, and using thatA1, . . . , Ak
are independent of E given M 6= `,

I(A1, . . . , Ak; Π′ | R,M 6= `, E)

= H(A1, . . . , Ak | R,M 6= `, E)

−H(A1, . . . , Ak | Π′, R,M 6= `, E)

≥ H(A1, . . . , Ak | R,M 6= `)−H(A1, . . . , Ak | Π′, R,M 6= `)

= I(A1, . . . , Ak ; Π′| R,M 6= `).

Notice that we have that I(A1, . . . , Ak ; Π′ | R,M 6= `) is equal
to I(A1, . . . , Ak; Π′ | R) where the information is measured with
respect to the input distribution ϕ1, and Π′ is a protocol which
succeeds with probability 1/4 + Ω̃(1) on ψ1.

It remains to show that I(A1, . . . , Ak; Π′ |R) = Ω̃(1/k) where
the information is measured with respect to ϕ1. Let 0 be the all-
0 vector, 1 be the all-1 vector and ei be the standard basis vector
with the i-th coordinate being 1. By the relationship between mu-
tual information and Hellinger distance (see Proposition 2.51 and
Proposition 2.53 of [7]), we have

I(A1, . . . , Ak; Π′ | R) = (1/k)
∑
i∈[k]

I(A1, . . . , Ak; Π′ | R = i)

= Ω(1/k)
∑
i∈[k] h

2(Π′(0),Π′(ei)),

where h(·, ·) is the Hellinger distance (see Section 2 for a defini-
tion). Now we assume k and k/2 are powers of 2, and we use
Theorem 7 of [36], which says that the following three statements
hold:

1.
∑
i∈[k] h

2(Π′(0),Π′(ei)) = Ω(1)·h2(Π′(0),Π′(1k/20k/2))

2.
∑
i∈[k] h

2(Π′(0),Π′(ei)) = Ω(1)·h2(Π′(0),Π′(0k/21k/2))

3.
∑
i∈[k] h

2(Π′(0),Π′(ei)) = Ω(1) · h2(Π′(0),Π′(1))

It follows that

I(A1, . . . , Ak; Π′ | R)

= Ω(1/k) ·
(
h2(Π′(0),Π′(1k/20k/2))

+h2(Π′(0),Π′(0k/21k/2)) + h2(Π′(0),Π′(1))
)
.

By the Cauchy-Schwartz inequality we have,

I(A1, . . . , Ak; Π′ | R)

= Ω(1/k) ·
(
h(Π′(0),Π′(1k/20k/2))

+h(Π′(0),Π′(0k/21k/2)) + h(Π′(0),Π′(1))
)2

.

We can rewrite this as

I(A1, . . . , Ak; Π′ | R)

= Ω(1/k) ·
(

3h(Π′(0),Π′(1k/20k/2))

+3h(Π′(0),Π′(0k/21k/2)) + 3h(Π′(0),Π′(1))
)2

.

Now by the triangle inequality of Hellinger distance (which is just
the Euclidean norm of the so-called transcript wave function, see
[36]), we obtain the following,

I(A1, . . . , Ak; Π′ | R)

= Ω(1/k) ·
(∑

a,b∈{0, 1, 1k/20k/2, 0k/21k/2} h(Π′(a),Π′(b))
)2

The claim is that at least one of h(Π′(a),Π′(b)) in the RHS in
Equation (6) is Ω̃(1), and this will complete the proof. By Propo-
sition 3, this is true if the total variation distance between Π′(a)

and Π′(b) is Ω̃(1) for an a, b ∈ {0, 1, 1k/20k/2, 0k/21k/2}, and
there must be such a pair (a, b), as otherwise Π′ cannot succeed
with probability 1/4+Ω̃(1) on distribution ψ1 (since it cannot dis-
tinguish different outputs), violating its success probability guaran-
tee.

4.3 The k-BTX Problem
The input of the k-BTX problem is a concatenation of 1/ε2

copies of inputs of the k-XOR problem. That is, each site Si (i =
1, 2, . . . , k) holds an input consisting of 1/ε2 blocks each of which
is an input for a site in the k-XOR problem. More precisely, each
Si (i ∈ [k]) holds an input bi = {b1i , b2i , . . . , b

1/ε2

i } where bji =

{bji,1, b
j
i,2, . . . , b

j
i,n} (j ∈ [1/ε2]) is a vector of n (n > k1+Ω(1))

bits. Let b = {b1, b2, . . . , bk} be the union of the inputs of k sites.
In the k-BTX problem the k sites want to compute the following.

k-BTX(b1, . . . , bk) =



1, if

∣∣∣∣∣ ∑
j∈[1/ε2]

k-XOR(bj1, . . . , b
j
k)− 1

2ε2

∣∣∣∣∣
≥ 2/ε,

0, if

∣∣∣∣∣ ∑
j∈[1/ε2]

k-XOR(bj1, . . . , b
j
k)− 1

2ε2

∣∣∣∣∣
≤ 1/ε,

∗, otherwise.

We define the input distribution ν for the k-BTX problem as fol-
lows: the input of the k sites in each block is chosen independently
according to the input distribution ψn, which is defined for the
k-XOR problem. Let B,Bi, Bji , B

j
i,` be the corresponding ran-

dom variables of b, bi, bji , b
j
i,` when the input of k-BTX is chosen

according to the distribution ν. Let Dj = {Dj
1, D

j
2, . . . , D

j
n}

where Dj
` (` ∈ [n], j ∈ [1/ε2]) is the special site in the `-th

coordinate of block j, and let D = {D1, D2, . . . , D1/ε2}. Let
M = {M1,M2, . . . ,M1/ε2} where M j is the special coordinate
in block j. Let S = {S1, S2, . . . , S1/ε2}where Sj ∈ {00, 01, 10, 11}
is the type of the k-XOR instance in block j.

For each block j (j ∈ [1/ε2]), let Xj = 1 if the inputs of the
first k/2 sites in the special coordinate M j are all 1 and Xj = 0
otherwise; and similarly let Y j = 1 if the inputs of the second k/2
sites in the coordinate M j are all 1 and Y j = 0 otherwise. Let
X = {X1, X2, . . . , X1/ε2} and Y = {Y 1, Y 2, . . . , Y 1/ε2}. We
first show the following theorem.

THEOREM 5. Let Π be the transcript of any protocol for k-BTX
on input distribution ν with error probability δ for a sufficiently
small constant δ > 0. Then I(X,Y ; Π) = Ω̃(1/ε2), where the
information is measured with respect to the uniform distribution on
X,Y .

PROOF. Consider the following randomized 2-player protocol
Π′ for 2-GAP-ORT, where the error probability is over both the
coin tosses of Π′ and the uniform distribution φ on inputs (X,Y ).
Alice and Bob run Π, with Alice controlling the first k/2 players,
and Bob controlling the second k/2 players. Alice and Bob use the
public coin to generateM j andDj values for each j ∈ [1/ε2]. For
each j ∈ [1/ε2], Alice sets the M j-th coordinate of each of the
first k/2 players to Xj . Similarly, Bob sets the M j-th coordinate
of each of the last k/2 players to Yj . Alice and Bob then use private
randomness and theDj vectors to fill in the remaining coordinates.
Observe that the resulting inputs are distributed according to ν for



k-BTX by definition of ν and the fact that (X,Y ) is uniformly
distributed.

Alice and Bob run the deterministic protocol Π. Every time a
message is sent between any two of the k players in Π, it is ap-
pended to the transcript. That is, if the two players are among the
first k/2, Alice still forwards this message to Bob. If the two play-
ers are among the last k/2, Bob still forwards this message to Alice.
If the message is between a player in the first group and the second
group, Alice and Bob exchange a message. The output of Π′ is
equal to that of Π. Let rand denote the randomness used in Π′,
which since Π is deterministic, is just the randomness used to help
create the inputs to Π. Note that rand consists of the public ran-
domness and private randomness. The only public randomness is
that used to define the M j and Dj values for each j ∈ [1/ε2]. Let
Π′rand(X,Y ) denote the induced deterministic protocol we obtain
by hardwiring rand.

By a Markov argument if Π succeeds with probability at least
1− δ, then for at least a 1/2 fraction of choices of rand,

PrX,Y [Π′rand(X,Y ) = 2-GAP-ORT(X,Y )] ≥ 1− 2δ.

By construction of Π′,

I(X,Y ; Π(X,Y )) = I(X,Y ; Π′(X,Y, rand)),

where rand is not included in the transcript of Π′. By definition of
the mutual information,

I(X,Y ; Π′(X,Y, rand))

= Erand

[
EΠ′

rand
(X,Y )

[
DKL(p(X,Y |Π′rand(X,Y )) || p(X,Y ))

]]
,

where DKL(p, q) is the KL-divergence between distributions p
and q, and p(V ) for a random variable V denotes its distribution.
By a Markov argument, for at least a 2/3 fraction of random strings
rand,

I(X,Y, ; Π′rand(X,Y ))

= EΠ′
rand

(X,Y )

[
DKL(p(X,Y |Π′rand(X,Y )) || p(X,Y )

]
≤ 3 · I(X,Y ; Π(X,Y )).

By a union bound, there exists a setting of rand for which we have

Pr[Π′rand(X,Y ) = 2-GAP-ORT(X,Y )] ≥ 1− 2δ, (6)

and

I(X,Y ; Π′rand(X,Y )) ≤ 3I(X,Y ; Π(X,Y )). (7)

Since Π′rand is deterministic, it follows by (6) and Theorem 3 that
I(X,Y ; Π′rand(X,Y )) = Ω̃(1/ε2), and hence by (7), we have
I(X,Y ; Π(X,Y )) = Ω̃(1/ε2), which completes the proof.

Now we are ready to prove our main theorem for k-BTX.

THEOREM 6. Let Π be the transcript of any protocol for k-BTX
on input distribution ν with error probability δ for a sufficiently
small constant δ > 0. We have I(B; Π |M,D,S) ≥ Ω̃(n/(kε2))

for any n ≥ k1+Ω(1), where the information is measured with re-
spect to the input distribution ν.

PROOF. By Theorem 5 we have I(X,Y ; Π) = Ω̃(1/ε2). Using
the chain rule we obtain that

I(Xj , Y j ; Π |X<j , Y <j) = Ω̃(1)

for at least Ω̃(1/ε2) j’s, where X<j = {X1, X2, . . . , Xj−1} and
similarly for Y <j . We say such a j for which this holds is good.

Now we consider a good j ∈ [1/ε2]. We show that

I(Bj ; Π |M,D,S,B<j) = Ω̃(n/k)

if j is good. Since B<j determines (X<j , Y <j) and B<j is inde-
pendent ofBj , by the third part of Proposition 1, it suffices to prove
that I(Bj ; Π |M,D,S,X<j , Y <j) = Ω̃(n/k). By expanding the
conditioning, we can write I(Bj ; Π |M,D,S,X<j , Y <j) as

Em,d,s,x,y[I(Bj ; Π |M j , Dj , Sj ,M−j = m,D−j = d,

S−j = s,X<j = x, Y <j = y)].

For each m, d, s, x, y, we define a randomized protocol Πm,d,s,x,y

for computing Xj , Y j on distribution ψn. Suppose the k sites are
given inputs a1, a2, . . . , ak chosen randomly according to ψn. For
each i ∈ [k] the i-th site sets Bji = ai. The k sites set the re-
maining inputs as follows. Independently for each block j′ 6= j,
conditioned on Sj

′
,M j′ and Dj′ , the k sites sample the input Bj

′

randomly and independently according to ψn, using their private
random coins (note that S−j determines X<j and Y <j). Finally
the k sites run Π on B and define

Πm,d,s,x,y(a1, . . . , ak) = Π(B).

By the definition of a good j ∈ [1/ε2], we know by a Markov
bound that with probability Ω̃(1) over the choice of (x, y) from the
uniform distribution, if (X<j , Y <j) = (x, y) then we have

I(Xj , Y j ; Π |X<j = x, Y <j = y) = Ω̃(1).

Call these (x, y) for which this holds good. Now for a good pair
(x, y), we say a tuple (m, d, s) is good if

I(X<j , Y <j ; Π |M−j = m,D−j = d,

S−j = s,X<j = x, Y <j = y) = Ω̃(1).

Since I(X<j , Y <j ; Π | X<j = x, Y <j = y) = Ω̃(1) for a good
pair (x, y), by another Markov bound we have that

Prm,d,s[(m, d, s) is good] = Ω̃(1).

Combining the above arguments with Theorem 4, we obtain

I(Bj ; Π |M,D,S,B<j)

≥ I(Bj ; Π |M,D,S,X<j , Y <j)

= Em,d,s,x,y[I(Bj ; Π |M j , Dj , Sj ,M−j = m,D−j = d,

S−j = s,X<j = x, Y <j = y)]

≥ Ω̃(1) · Em,d,s,x,y[I(Bj ; Π |M j , Dj , Sj ,

(M−j , D−j , S−j) = (m, d, s), (X<j , Y <j) = (x, y),

(m, d, s) is good, (x, y) is good)]

= Ω̃(n/k) (By Theorem 4).

By the chain rule, the fact that there are Ω̃(1/ε2) good j ∈ [1/ε2],
and part 3 of Proposition 1,

I(B; Π |M,D,S) ≥
∑

j∈[1/ε2]∧ j is good

I(Bj ; Π |M,D,S,B<j)

≥
∑

j∈[1/ε2]∧ j is good

I(Bj ; Π |M,D,S)

≥ Ω̃(n/(kε2)).

This completes the proof.

By Proposition 2 that says that the randomized communication
complexity is always at least the conditional information cost, we
have the following immediate corollary.



COROLLARY 2. Any protocol that computes k-BTX on input
distribution ν with error probability δ for some sufficient small con-
stant δ has communication complexity Ω̃(n/(kε2)).

4.4 The Complexity of Fp (p > 1)

The input of ε-approximate Fp (p > 1) is chosen to be the same
as k-BTX by setting n = kp. That is, we choose {b1, b2, . . . , bk}
randomly according to distribution ν. bi is the input vector for site
Si consisting of 1/ε2 blocks each having n = kp coordinates. We
prove the lower bound for Fp by performing a reduction from k-
BTX.

LEMMA 6. If there exists a protocol P ′ that computes a (1 +
αε)-approximate Fp (p > 1) for a sufficiently small constant α on
input distribution ν with communication complexity C and error
probability at most δ, then there exists a protocol P for k-BTX on
input distribution ν with communication complexity C and error
probability at most 3δ+σ, where σ is an arbitrarily small constant.

PROOF. We pick a random input B = {B1, B2, . . . , Bk} from
distribution ν. Each coordinate (column) of B represents an item.
Thus we have a total of 1/ε2 · kp = kp/ε2 possible items. If we
view each input vector Bi (i ∈ [k]) as a set, then each site has a
subset of [kp/ε2] corresponding to these 1 bits. LetW0 be the exact
value of Fp(B). W0 can be written as the sum of four components:

W0 =

(
kp − 1

2ε2
+Q

)
· 1p +

(
1

2ε2
+ U

)
· (k/2)p

+

(
1

4ε2
+ V

)
· kp, (8)

whereQ,U, V are random variables (it will be clear why we write it
this way in what follows). The first term of the RHS of Equation (8)
is the contribution of non-special coordinates across all blocks in
each of which one site has 1. The second term is the contribution of
the special coordinates across all blocks in each of which k/2 sites
have 1. The third term is the contribution of the special coordinates
across all blocks in each of which all k sites have 1.

Note that k-BTX(b1, b2, . . . , bk) is 1 if |U | ≥ 2/ε and 0 if
|U | ≤ 1/ε. Our goal is to use a protocol P ′ for Fp to construct a
protocol P for k-BTX such that we can differentiate the two cases
(i.e., |U | ≥ 2/ε or |U | ≤ 1/ε) with a very good probability.

Given a random inputB, letW1 be the exactFp-value on the first
k/2 sites, and W2 be the exact Fp-value on the second k/2 sites.
That is,W1 = Fp(B1, . . . , Bk/2) andW2 = Fp(Bk/2+1, . . . , Bk).
We have

W1 +W2 =

(
kp − 1

2ε2
+Q

)
· 1p +

(
1

2ε2
+ U

)
· (k/2)p

+

(
1

4ε2
+ V

)
· 2 · (k/2)p. (9)

By Equation (8) and (9) we can cancel out V :

2p−1(W1 +W2)−W0 = (2p−1 − 1)

((
kp − 1

2ε2
+Q

)
+

(
1

2ε2
+ U

)
· (k/2)p

)
. (10)

Let W̃0, W̃1 and W̃2 be the estimatedW0,W1 andW2 obtained by
running P ′ on the k sites’ inputs, the first k/2 sites’ inputs and the
second k/2 sites’ inputs, respectively. Observe that W0 ≤ (2p +
1)kp/ε2 and W1,W2 ≤ 2kp/ε2. By properties of P ′ and the
discussion above we have that with probability at least 1− 3δ,

2p−1(W1 +W2)−W0 = 2p−1(W̃1 +W̃2)−W̃0±β′kp/ε, (11)

where |β′| ≤ 3(2p + 1)α.
By a Chernoff bound we have that |Q| ≤ c1k

p/2/ε with prob-
ability at least 1 − σ, where σ is an arbitrarily small constant and
c1 ≤ κ log1/2(1/σ) for some universal constant κ. Combining this
fact with Equation (10) and (11) and letting W̃ = (2p−1(W̃1 +

W̃2) − W̃0)/(2p−1 − 1), we have that with probability at least
1− 3δ − σ,

U =
2pW̃

kp
− 2p + 1

2ε2
− 2pβ

(2p−1 − 1)ε
, (12)

where |β| ≤ 3(2p + 1)α+ o(1).

Protocol P . Given an input B for k-BTX, protocol P first uses
P ′ to obtain the value W̃ described above, and then determines the
answer to k-BTX as follows:

k-BTX(B) =

{
1, if

∣∣∣2pW̃/kp − (2p + 1)/(2ε2)
∣∣∣ ≥ 1.5/ε,

0, otherwise.

Correctness. Note that with probability at least 1 − 3δ − σ, we
have |β| ≤ 3(2p + 1)α+ o(1), where α > 0 is a sufficiently small

constant, and thus
∣∣∣ 2pβ

(2p−1−1)ε

∣∣∣ < 0.5/ε. Therefore, in this case
protocol P will always succeed.

Theorem 6 (set n = kp) and Lemma 6 directly imply the follow-
ing main theorem for Fp.

THEOREM 7. Any protocol that computes a (1+ε)-approximate
Fp (p > 1) on input distribution ν with error probability δ for
some sufficiently small constant δ has communication complexity
Ω̃(kp−1/ε2).

5. AN UPPER BOUND FOR FP (P > 1)

We describe the following protocol to give a factor (1 + Θ(ε))-
approximation to Fp at all points in time in the union of k streams
each held by a different site. Each site has a non-negative vector
vi ∈ Rm, 8 which evolves with time, and at all times the coordi-
nator holds a (1 + Θ(ε))-approximation to ‖

∑k
i=1 v

i‖pp. Let n be
the length of the union of the k streams. We assume n = poly(m),
and that k is a power of 2.

As observed in [20], up to a factor ofO(ε−1 logn log(ε−1 logn))
in communication, the problem is equivalent to the threshold prob-
lem: given a threshold τ , with probability 2/3: when ‖

∑k
i=1 v

i‖pp >
τ , the coordinator outputs 1, when ‖

∑k
i=1 v

i‖pp < τ/(1 + ε), the
coordinator outputs 0, and for τ/(1 + ε) ≤ ‖

∑k
i=1 v

i‖pp ≤ τ , the
coordinator can output either 0 or 19.

We can thus assume we are given a threshold τ in the follow-
ing algorithm description. For notational convenience, define τ` =
τ/2` for an integer `. A nice property of the algorithm is that it is
one-way, namely, all communication is from the sites to the coor-
dinator. We leave optimization of the poly(ε−1 logn) factors in
the communication complexity to future work.

5.1 Our Protocol
The protocol consists of four algorithms illustrated in Algorithm 1

to Algorithm 4. Let v =
∑k
i=1 v

i at any point in time during the
8We use m instead of N for universe size only in this section.
9To see the equivalence, by independent repetition, we can assume
the success probability of the protocol for the threshold problem
is 1 − Θ(ε/ logn). Then we can run a protocol for each τ =
1, (1 + ε), (1 + ε)2, (1 + ε)3, . . . ,Θ(n2), and we are correct on all
instantiations with probability at least 2/3.



Algorithm 1: Intepretation of the random public coin by sites
and the coordinator
r = Θ(logn) /* A parameter used by the sites

and coordinator */
for z = 1, 2, . . . , r do

for ` = 0, 1, 2, . . . , logm do
Create a set Sz` by including each coordinate in [m]
independently with probability 2−`.

Algorithm 2: Initialization at Coordinator

γ = Θ(ε), B = poly(ε−1 logn). Choose η ∈ [0, 1]
uniformly at random /* Parameters */

for z = 1, 2, . . . , r do
for ` = 0, 1, 2, . . . , logm do

for j = 1, 2, . . . ,m do
fz,`,j ← 0 /* Initialize all

frequencies seen to 0 */

out← 0 /* The coordinator’s current output

*/

Algorithm 3: When Site i receives an update vi ← vi + ej for
standard unit vector ej

for z = 1, 2, . . . , r do
for ` = 0, 1, 2, . . . , logm do

if j ∈ Sz` and vij > τ
1/p
` /(kB) then

With probability min(B/τ
1/p
` , 1), send (j, z, `) to

the coordinator

Algorithm 4: Algorithm at Coordinator if a tuple (j, z, `) ar-
rives

fz,`,j ← fz,`,j + τ
1/p
` /B

for h = 0, 1, 2, . . . , O(γ−1 log(n/ηp)) do
for z = 1, 2, . . . , r do

Choose ` for which 2` ≤ τ
ηp(1+γ)phB

< 2`+1, or
` = 0 if no such ` exists
Let
Fz,h = {j ∈ [m] | fz,`,j ∈ [η(1+γ)h, η(1+γ)h+1)}

c̃h = medianz 2` · |Fz,h|
if
∑
h≥0 c̃h · η

p · (1 + γ)ph > (1− ε)τ then
out← 1
Terminate the protocol

union of the k streams. At times we will make the following as-
sumptions on the algorithm parameters γ,B, and r: we assume
γ = Θ(ε) is sufficiently small, and B = poly(ε−1 logn) and
r = Θ(logn) are sufficiently large.

5.2 Communication Cost

LEMMA 7. Consider any setting of v1, . . . , vk for which we
have ‖

∑k
i=1 v

i‖pp ≤ 2p ·τ. Then the expected total communication
is kp−1 · poly(ε−1 logn) bits.

PROOF. Fix any particular z ∈ [r] and ` ∈ [0, 1, . . . , logm].
Let vi,`j equal vij if j ∈ S` and equal 0 otherwise. Let vi,` be the

vector with coordinates vi,`j for j ∈ [m]. Also let v` =
∑k
i=1 v

i,`.
Observe that E[‖v`‖pp] ≤ 2p · τ/2` = 2p · τ`.

Because of non-negativity of the vi,

k∑
i=1

∑
j∈S`

(vi,`j )p ≤
k∑
i=1

‖vi,`‖pp ≤ ‖v`‖pp.

Notice that a j ∈ S` is sent by a site with probability at most
B/τ

1/p
` and only if (vij)

p ≥ τ`
kpBp

. Hence the expected number of
messages sent for this z and `, over all randomness, is

B

τ
1/p
`

E
[∑

i,j | (vij)
p≥ τ`

kpBp
vij

]
≤ B

τ
1/p
`

· E[‖v`‖pp]

τ`/(k
pBp)

· τ
1/p
`
kB

≤ 2p · τ` · kp−1 ·Bp

τ`
= 2p · kp−1 ·Bp, (13)

where we used that
∑
vij is maximized subject to (vij)

p ≥ τ`
kpBp

and
∑

(vij)
p ≤ ‖v`‖pp when all the vij are equal to τ1/p

` /(kB).
Summing over all z and `, it follows that the expected number of
messages sent in total isO(kp−1Bp log2 n). Since each message is
O(logn) bits, the expected number of bits is kp−1·poly(ε−1 logn).

5.3 Correctness
We let C > 0 be a sufficiently large constant.

5.3.1 Concentration of Individual Frequencies
We shall make use of the following standard multiplicative Cher-

noff bound.

FACT 1. Let X1, . . . Xs be i.i.d. Bernoulli(q) random vari-
ables. Then for all 0 < β < 1,

Pr

[
|
s∑
i=1

Xi − qs| ≥ βqs

]
≤ 2 · e−

β2qs
3 .

LEMMA 8. For a sufficiently large constant C > 0, with prob-
ability 1 − n−Ω(C), for all z, `, j ∈ S`, and all times in the union
of the k streams,

1. fz,`,j ≤ 2e · vj +
Cτ

1/p
`

logn

B
, and

2. if vj ≥
C(log5 n)τ

1/p
`

Bγ10
, then

|fz,`,j − vj | ≤
γ5

log2 n
· vj

.

PROOF. Fix a particular time snapshot in the stream. Let gz,`,j =

fz,`,j · B/τ1/p
` . Then gz,`,j is a sum of indicator variables, where

the number of indicator variables depends on the values of the
vij . The indicator variables are independent, each with expectation
min(B/τ

1/p
` , 1).

First part of lemma. The number s of indicator variables is at
most vj , and the expectation of each is at mostB/τ1/p

` . Hence, the
probability that w = 2e · vj · B/τ1/p

` + C logn or more of them
equal 1 is at most(

vj
w

)
·

(
B

τ
1/p
`

)w
≤

(
evjB

wτ
1/p
`

)w
≤
(

1

2

)C logn

= n−C .

This part of the lemma now follows by scaling the gz,`,j by τ1/p
` /B

to obtain a bound on the fz,`,j .



Second part of lemma. Suppose at this time vj ≥
C(log5 n)τ

1/p
`

Bγ10
.

The number s of indicator variables is minimized when there are
k − 1 distinct i for which vij =

τ
1/p
`
kB

, and one value of i for which

vij = vj − (k − 1) ·
τ

1/p
`

kB
.

Hence,

s ≥ vj − (k − 1) ·
τ

1/p
`

kB
−
τ

1/p
`

kB
= vj −

τ
1/p
`

B
.

If the expectation is 1, then fz,`,j = vj −
τ
1/p
`
B

, and using that

vj ≥
C(log5 n)τ

1/p
`

Bγ10
establishes this part of the lemma. Otherwise,

applying Fact 1 with s ≥ vj−
τ
1/p
`
B
≥ C(log5 n)τ

1/p
`

2Bγ10
and q = B

τ
1/p
`

,

and using that qs ≥ C log5 n
2γ10

, we have

Pr

[
|gz,`,j − qs| >

γ5qs

2 log2 n

]
= n−Ω(C).

Scaling by τ
1/p
`
B

= 1
q

, we have

Pr

[
|fs,`,j − s| >

γ5s

2 log2 n

]
= n−Ω(C),

and since vj −
τ
1/p
`
B
≤ s ≤ vj ,

Pr

[
|fs,`,j − vj | ≥

γ5vj

2 log2 n
+
τ

1/p
`

B

]
= n−Ω(C),

and finally using that τ
1/p
`
B

<
γ5vj

2 log2 n
, and union-bounding over a

stream of length n as well as all choices of z, `, and j, the lemma
follows.

5.3.2 Estimating Class Sizes
Define the classes Ch as follows:

Ch = {j ∈ [m] | η(1 + γ)h ≤ vj < η(1 + γ)h+1}.

Say that Ch contributes at a point in time in the union of the k
streams if

|Ch| · ηp(1 + γ)ph ≥
γ‖v‖pp

B1/2 log(n/ηp)
.

Since the number of non-zero |Ch| is O(γ−1 log(n/ηp)), we have∑
non-contributing h

|Ch| · ηp(1 + γ)ph+p = O

(
‖v‖pp
B1/2

)
. (14)

LEMMA 9. With probability 1 − n−Ω(C), at all points in time
in the union of the k streams and for all h and `, for at least a 3/5
fraction of the z ∈ [r],

|Ch ∩ Sz` | ≤ 3 · 2−` · |Ch|
PROOF. The random variable |Ch ∩ Sz` | is a sum of |Ch| in-

dependent Bernoulli(2−`) random variables. By a Markov bound,
Pr[|Ch ∩ Sz` | ≤ 3 · 2−`|Ch|] ≥ 2/3. Letting Xz be an indicator
variable which is 1 iff |Ch ∩ Sz` | ≤ 3 · 2−`|Ch|, the lemma fol-
lows by applying Fact 1 to theXz , using that r is large enough, and
union-bounding over a stream of length n and all h and `.

For a given Ch, let `(h) be the value of ` for which we have 2` ≤
τ

ηp(1+γ)phB
< 2`+1, or ` = 0 if no such ` exists.

LEMMA 10. With probability 1− n−Ω(C), at all points in time
in the union of the k streams and for all h, for at least a 3/5 fraction
of the z ∈ [r],

1. 2`(h) · |Ch ∩ Sz`(h)| ≤ 3|Ch|, and

2. if at this time Ch contributes and ‖v‖pp ≥ τ
5

, then 2`(h) ·
|Ch ∩ Sz`(h)| = (1± γ) |Ch|.

PROOF. We show this statement for a fixed h and at a particular
point in time in the union of the k streams. The lemma will follow
by a union bound.

The first part of the lemma follows from Lemma 9.
We now prove the second part. In this case ‖v‖pp ≥ τ

5
. We can

assume that there exists an ` for which 2` ≤ τ
ηp(1+γ)phB

< 2`+1.
Indeed, otherwise `(h) = 0 and |Ch ∩ Sz`(h)| = |Ch| and the
second part of the lemma follows.

Let q(z) = |Ch∩Sz`(h)|, which is a sum of independent indicator
random variables and so Var[q(z)] ≤ E[q(z)]. Also,

E[q(z)] = 2−`|Ch| ≥
ηp(1 + γ)phB

τ
· |Ch|. (15)

Since Ch contributes, |Ch| · ηp · (1 + γ)ph ≥ γ‖v‖pp
B1/2 log(n/ηp)

, and
combining this with (15),

E[q(z)] ≥
Bγ‖v‖pp

B1/2τ log(n/ηp)
≥ B1/2γ

5 log(n/ηp)
.

It follows that for B sufficiently large, and assuming η ≥ 1/nC

which happens with probability 1−1/nC , we have E[q(z)] ≥ 3
γ2

,
and so by Chebyshev’s inequality,

Pr [|q(z)−E[q(z)]| ≥ γE[q(z)]] ≤ Var[q(z)]

γ2 ·E2[q(z)]
≤ 1

3
.

Since E[q(z)] = 2−`|Ch|, and r = Θ(logn) is large enough, the
lemma follows by a Chernoff bound.

5.3.3 Combining Individual Frequency Estimation and
Class Size Estimation

We define the set T to be the set of times in the input stream
for which the Fp-value of the union of the k streams first exceeds
(1 + γ)i for an i satisfying

0 ≤ i ≤ log(1+γ) 2p · τ.

LEMMA 11. With probability 1− O(γ), for all times in T and
all h,

1. c̃h ≤ 3|Ch|+ 3γ(2 + γ)(|Ch−1|+ |Ch+1|), and

2. if at this time Ch contributes and ‖v‖pp ≥ τ
5

, then

(1−4γ)|Ch| ≤ c̃h ≤ (1+γ)|Ch|+3γ(2+γ)(|Ch−1|+|Ch+1|).

PROOF. We assume the events of Lemma 8 and Lemma 10 oc-
cur, and we add n−Ω(C) to the error probability. Let us fix a class
Ch, a point in time in T , and a z ∈ [r] which is among the at least
3r/5 different z that satisfy Lemma 10 at this point in time.

By Lemma 8, for any j ∈ Ch∩Sz`(h) for which vj ≥
C(log5 n)τ

1/p
`(h)

Bγ10
,

if

|min(vj − η(1 + γ)h, η(1 + γ)h+1 − vj)| ≥
γ5

log2 n
· vj , (16)



then j ∈ Fz,h. Let us first verify that for j ∈ Ch, we have vj ≥
C(log5 n)τ

1/p
`(h)

Bγ10
. We have

vpj ≥ η
p(1 + γ)ph ≥ τ

2`(h)+1B
≥
τ`(h)

2B
, (17)

and so

vj ≥
(τ`(h)

2B

)1/p

≥
C(log5 n)τ

1/p

`(h)

Bγ10
,

where the final inequality follows for large enoughB = poly(ε−1 logn)
and p > 1.

It remains to consider the case when (16) does not hold.
Conditioned on all other randomness, η ∈ [0, 1] is uniformly

random subject to vj ∈ Ch, or equivalently,
vj

(1 + γ)h+1
< η ≤ vj

(1 + γ)h
.

If (16) does not hold, then either

(1− γ5/ log2 n)vj
(1 + γ)h

≤ η, or η ≤ (1 + γ5/ log2 n)vj
(1 + γ)h+1

.

Hence, the probability over η that inequality (16) holds is at least

1−
γ5vj

(1+γ)h log2 n
+

γ5vj
(1+γ)h+1 log2 n

vj
(1+γ)h

− vj
(1+γ)h+1

= 1− γ4(2 + γ)

log2 n
.

It follows by a Markov bound that

Pr
[
|Ch ∩ Sz`(h)| ≥ |Ch| · (1− γ(2 + γ))

]
≤ γ3

log2 n
. (18)

Now we must consider the case that there is a j′ ∈ Ch′ ∩ Sz`(h)

for which j′ ∈ Fz,h for an h′ 6= h. There are two cases, namely,

if vj′ <
C(log5 n)τ

1/p
`(h)

Bγ10
or if vj′ ≥

C(log5 n)τ
1/p
`(h)

Bγ10
. We handle each

case in turn.

Case: vj′ <
C(log5 n)τ

1/p
`(h)

Bγ10
. Then by Lemma 8,

fz,`(h),j′ ≤ 2e · vj′ +
Cτ

1/p

`(h) logn

B
.

Therefore, it suffices to show that

2e ·
C(log5 n)τ

1/p

`(h)

Bγ10
+
Cτ

1/p

`(h) logn

B
< η(1 + γ)h,

from which we can conclude that j′ /∈ Fz,h. But by (17),

η(1 + γ)h ≥
(τ`(h)

2B

)1/p

> 2e ·
C(log5 n)τ

1/p

`(h)

Bγ10
+
Cτ

1/p

`(h) logn

B
,

where the last inequality follows for large enoughB = poly(ε−1 logn).
Hence, j′ /∈ Fz,h.

Case: vj′ ≥
C(log5 n)τ

1/p
`(h)

Bγ10
. We claim that h′ ∈ {h − 1, h + 1}.

Indeed, by Lemma 8 we must have

η(1 + γ)h − γ5

log2 n
· vj′ ≤ vj′ ≤ η(1 + γ)h+1 +

γ5

log2 n
· vj′ .

This is equivalent to

η(1 + γ)h

1 + γ5/ log2 n
≤ vj′ ≤

η(1 + γ)h+1

1− γ5/ log2 n
,

If j′ ∈ Ch′ for h′ < h− 1, then

vj′ ≤ η(1 + γ)h−1 =
η(1 + γ)h

1 + γ
<

η(1 + γ)h

1 + γ5/ log2 n
,

which is impossible. Also, if j′ ∈ Ch′ for h′ > h+ 1, then

vj′ ≥ η(1 + γ)h+2 = η(1 + γ)h+1 · (1 + γ) >
η(1 + γ)h+1

1− γ5/ log2 n
,

which is impossible. Hence, h′ ∈ {h− 1, h+ 1}.
Let Nz,h = Fz,h \ Ch. Then

E[|Nz,h| ≤
γ4(2 + γ)

log2 n
· (|Ch−1 ∩ Sz`(h)|+ |Ch+1 ∩ Sz`(h)|). (19)

By (18) and applying a Markov bound to (19), together with a union
bound, with probability ≥ 1− 2γ3

log2 n
,

(1− γ(2 + γ)) · |Ch ∩ Sz`(h)| ≤ |Fz,h| (20)

|Fz,h| ≤ |Ch ∩ Sz`(h)|+ γ(2 + γ) · (|Ch−1 ∩ Sz`(h)|
+ |Ch+1 ∩ Sz`(h)|). (21)

By Lemma 9,

2`(h)|Ch−1 ∩ Sz`(h)| ≤ 3|Ch−1|

and 2`(h)|Ch+1 ∩ Sz`(h)| ≤ 3|Ch+1|. (22)

First part of lemma. At this point we can prove the first part of
this lemma. By the first part of Lemma 10,

2`(h) · |Ch ∩ Sz`(h)| ≤ 3|Ch|. (23)

Combining (21), (22), and (23), we have with probability at least
1− 2γ3

log2 n
− n−Ω(C),

2`(h)|Fz,h| ≤ 3|Ch|+ 3γ(2 + γ)(|Ch−1|+ |Ch+1|).

Since this holds for at least 3r/5 different z, it follows that

c̃h ≤ 3|Ch|+ 3γ(2 + γ)(|Ch−1|+ |Ch+1|),

and the first part of the lemma follows by a union bound. In-
deed, the number of h is O(γ−1 log(n/ηp)), which with proba-
bility 1 − 1/n, say, is O(γ−1 logn) since with this probability
ηp ≥ 1/np. Also, |T | = O(γ−1 logn). Hence, the probability
this holds for all h and all times in T is 1−O(γ).

Second part of the lemma. Now we can prove the second part
of the lemma. By the second part of Lemma 10, if at this time Ch
contributes and ‖v‖pp ≥ τ

5
, then

2`(h) · |Ch ∩ Sz`(h)| = (1± γ)|Ch|. (24)

Combining (20), (21), (22), and (24), we have with probability at
least 1− 2γ3

log2 n
− n−Ω(C),

(1− γ(2 + γ))(1− γ)|Ch| ≤ 2`(h)|Fz,h| ≤ (1 + γ)|Ch|
+ 3γ(2 + γ)(|Ch−1|+ |Ch+1|).

Since this holds for at least 3r/5 different z, it follows that

(1− γ(2 + γ))(1− γ)|Ch| ≤ c̃h ≤ (1 + γ)|Ch|
+ 3γ(2 + γ)(|Ch−1|+ |Ch+1|).



and the second part of the lemma now follows by a union bound
over all h and all times in T , exactly in the same way as the first
part of the lemma. Note that 1− 4γ ≤ (1− γ(2 + γ))(1− γ) for
small enough γ = Θ(ε).

5.3.4 Putting It All Together

LEMMA 12. With probability at least 5/6, at all times the co-
ordinator’s output is correct.

PROOF. The coordinator outputs 0 up until the first point in time
in the union of the k streams for which

∑
h≥0 c̃h ·η

p · (1 +γ)ph >

(1− ε/2)τ . It suffices to show that∑
h≥0

c̃hη
p(1 + γ)ph = (1± ε/2)‖v‖pp (25)

at all times in the stream. We first show that with probability at
least 5/6, for all times in T ,∑

h≥0

c̃hη
p(1 + γ)ph = (1± ε/4)‖v‖pp, (26)

and then use the structure of T and the protocol to argue that (25)
holds at all times in the stream.

Fix a particular time in T . We condition on the event of Lemma
11, which by setting γ = Θ(ε) small enough, can assume occurs
with probability at least 5/6.

First, suppose at this point in time we have ‖v‖pp < τ
5

. Then by
Lemma 11, for sufficiently small γ = Θ(ε), we have∑

h≥0

c̃h · ηp(1 + γ)ph

≤
∑
h≥0

(3|Ch|+ 3γ(2 + γ)(|Ch−1|+ |Ch+1|)) · ηp(1 + γ)ph

≤
∑
h≥0

3
∑
j∈Ch

vpj + 3γ(2 + γ)(1 + γ)2
∑

j∈Ch−1∪Ch+1

vpj


≤ 4‖v‖pp

≤ 4τ

5
,

and so the coordinator will correctly output 0, provided ε < 1
5

.
We now handle the case ‖v‖pp ≥ τ

5
. Then for all contributing

Ch, we have

(1−4γ)|Ch| ≤ c̃h ≤ (1+γ)|Ch|+3γ(2+γ)(|Ch−1|+ |Ch+1|),

while for all Ch, we have

c̃h ≤ 3|Ch|+ 3γ(2 + γ)(|Ch−1|+ |Ch+1|).

Hence, using (14),∑
h≥0

c̃h · ηp(1 + γ)ph ≥
∑

contributingCh

(1− 4γ)|Ch|ηp(1 + γ)ph

≥ (1− 4γ)

(1 + γ)2

∑
contributingCh

∑
j∈Ch

vpj

≥ (1− 6γ) · (1−O(1/B1/2)) · ‖v‖pp.
For the other direction,∑

h≥0

c̃h · ηp(1 + γ)ph

≤
∑

contributingCh

(1 + γ)|Ch|ηp(1 + γ)ph

+
∑

non-contributingCh

3|Ch|ηp(1 + γ)ph

+
∑
h≥0

3γ(2 + γ)(|Ch−1|+ |Ch+1|)ηp(1 + γ)ph

≤ (1 + γ)
∑

contributingCh

∑
j∈Ch

vpj +O(1/B1/2) · ‖v‖pp +O(γ) · ‖v‖pp

≤ (1 +O(γ) +O(1/B1/2))‖v‖pp.

Hence, (26) follows for all times in T provided that γ = Θ(ε) is
small enough and B = poly(ε−1 logn) is large enough.

It remains to argue that (25) holds for all points in time in the
union of the k streams. Recall that each time in the union of the k
streams for which ‖v‖pp ≥ (1 + γ)i for an integer i is included in
T , provided ‖v‖pp ≤ 2pτ .

The key observation is that the quantity
∑
h≥0 c̃hη

p(1 + γ)ph is
non-decreasing, since the values |Fz,h| are non-decreasing. Now,
the value of ‖v‖pp at a time t not in T is, by definition of T , within a
factor of (1±γ) of the value of ‖v‖pp for some time in T . Since (26)
holds for all times in T , it follows that the value of

∑
h≥0 c̃hη

p(1+

γ)ph at time t satisfies

(1−γ)(1−ε/4)‖v‖pp ≤
∑
h≥0

c̃hη
p(1+γ)ph ≤ (1+γ)(1+ε/4)‖v‖pp,

which implies for γ = Θ(ε) small enough that (25) holds for all
points in time in the union of the k streams. This completes the
proof.

THEOREM 8. (MAIN) With probability at least 2/3, at all times
the coordinator’s output is correct and the total communication is
kp−1 · poly(ε−1 logn) bits.

PROOF. Consider the setting of v1, . . . , vk at the first time in the
stream for which ‖

∑k
i=1 v

i‖pp > τ . For any non-negative integer
vector w and any update ej , we have ‖w+ej‖pp ≤ (‖w‖p+1)p ≤
2p‖w‖pp. Since ‖

∑k
i=1 v

i‖pp is an integer and τ ≥ 1, we therefore
have ‖

∑k
i=1 v

i‖pp ≤ 2p · τ . By Lemma 7, the expected commu-
nication for these v1, . . . , vk is kp−1 ·poly(ε−1 logn) bits, so with
probability at least 5/6 the communication is kp−1·poly(ε−1 logn)
bits. By Lemma 12, with probability at least 5/6, the protocol ter-
minates at or before the time for which the inputs held by the play-
ers equal v1, . . . , vk. The theorem follows by a union bound.

6. RELATED PROBLEMS
In this section we show that the techniques we have developed

for distributed F0 and Fp (p > 1) can also be used to solve other
fundamental problems. In particular, we consider the problems:
all-quantile, heavy hitters, empirical entropy and `p for any p > 0.
For the first three problems, we are able to show that our lower
bounds holds even if we allow some additive error ε. From def-
initions below one can observe that lower bounds for additive ε-
approximations also hold for their multiplicative (1+ε)-approximation
counterparts.

6.1 The All-Quantile and Heavy Hitters
We first give the definitions of the problems. Given a set A =
{a1, a2, . . . , am}where each ai is drawn from the universe [N ], let
fi be the frequency of item i in the set A. Thus

∑
i∈[N ] fi = m.

DEFINITION 3. (φ-heavy hitters) For any 0 ≤ φ ≤ 1, the set
of φ-heavy hitters of A is Hφ(A) = {x | fx ≥ φm}. If an ε-
approximation is allowed, then the returned set of heavy hitters
must contain Hφ(A) and cannot include any x such that fx <



(φ − ε)m. If (φ − ε)m ≤ fx < φm, then x may or may not be
included in Hφ(A).

DEFINITION 4. (φ-quantile) For any 0 ≤ φ ≤ 1, the φ-quantile
of A is some x such that there are at most φm items of A that are
smaller than x and at most (1 − φ)m items of A that are greater
than x. If an ε-approximation is allowed, then when asking for the
φ-quantile ofA we are allowed to return any φ′-quantile ofA such
that φ− ε ≤ φ′ ≤ φ+ ε.

DEFINITION 5. (All-quantile) The ε-approximate all-quantile
(QUAN) problem is defined in the coordinator model, where we
have k sites and a coordinator. Site Si (i ∈ [k]) has a set Ai of
items. The k sites want to communicate with the coordinator so
that at the end of the process the coordinator can construct a data
structure from which all ε-approximate φ-quantile for any 0 ≤ φ ≤
1 can be extracted. The cost is defined as the total number of bits
exchanged between the coordinator and the k sites.

THEOREM 9. Any protocol that computes ε-approximate QUAN
or ε-approximate min{ 1

2
, ε
√
k

2
}-heavy hitters with error probabil-

ity δ for some sufficiently small constant δ has communication com-
plexity Ω(min{

√
k/ε, 1/ε2}) bits.

PROOF. We first prove the theorem for QUAN. In the case that
k ≥ 1/ε2, we prove an Ω(1/ε2) lower bound. We prove this by
a simple reduction from k-GAP-MAJ. We can assume k = 1/ε2

since if k > 1/ε2 then we can just give inputs to the first 1/ε2 sites.
Set β = 1/2. Given a random input Z1, Z2, . . . , Zk of k-GAP-
MAJ chosen from distribution µ, we simply give the site Si with
Zi for the first 1 ≤ i ≤ k sites. It is easy to observe that a protocol
that computes ε/2-approximate QUAN on A = {Z1, Z2, . . . , Zk}
with error probability δ also computes k-GAP-MAJ on input distri-
bution µ with error probability δ, since the answer to k-GAP-MAJ
is simply the answer to 1

2
-quantile. The Ω(1/ε2) lower bound fol-

lows from Corollary 1.
In the case that k < 1/ε2, we prove an Ω(

√
k/ε) lower bound.

We again perform a reduction from k-GAP-MAJ. Set β = 1/2.
The reduction works as follows. We are given ` = 1/(ε

√
k) inde-

pendent copies of k-GAP-MAJ with Z1, Z2, . . . , Z` being the in-
puts, where Zi = {Zi1, Zi2, . . . , Zik} ∈ {0, 1}k is chosen from dis-
tribution µ. We construct an input for QUAN by giving the j-th site
the item setAj = {Z1

j , 2+Z2
j , 4+Z3

j , . . . , 2(`−1)+Z`j}. It is not
difficult to observe that a protocol that computes ε/2-approximate
QUAN on the set A = {A1, A2, . . . , Aj} with error probability δ
also computes the answer to each copy of k-GAP-MAJ on distribu-
tion µ with error probability δ, simply by returning (Xi−2(i−1))
for the i-th copy of k-GAP-MAJ, whereXi is the ε/2-approximate
i−1/2
`

-quantile.
On the other hand, any protocol that computes each of the ` in-

dependent copies of k-GAP-MAJ correctly with error probability
δ for a sufficiently small constant δ has communication complexity
Ω(
√
k/ε). This is simply because for any transcript Π, by Corol-

lary 1, independence and the chain rule we have that

I(Z1, Z2, . . . , Z`; Π) ≥
∑
i∈[`]

I(Zi; Π) ≥ Ω(`k) ≥ Ω(
√
k/ε).

(27)
By our reduction the theorem follows.

The proof for heavy hitters is done by essentially the same re-
duction as that for QUAN. In the case that k = 1/ε2 (or k ≥ 1/ε2

in general), a protocol that computes ε/2-approximate 1
2

-heavy
hitters on A = {Z1, Z2, . . . , Zk} with error probability δ also
computes k-GAP-MAJ on input distribution µ with error proba-
bility δ. In the case that k < 1/ε2, it also holds that a protocol

that computes ε/2-approximate ε
√
k

2
-heavy hitters on the set A =

{A1, A2, . . . , Aj} where Aj = {Z1
j , 2 + Z2

j , 4 + Z3
j , . . . , 2(` −

1)+Z`j} with error probability δ also computes the answer to each
copy of k-GAP-MAJ on distribution µwith error probability δ.

6.2 Entropy Estimation
We are given a setA = {(e1, a1), (e2, a2), . . . , (em, am)}where

each ek (k ∈ [m]) is drawn from the universe [N ], and ak ∈
{+1,−1} denotes an insertion or a deletion of item ek. The en-
tropy estimation problem (ENTROPY) asks for the value H(A) =∑
j∈[N ](|fj | /L) log(L/ |fj |) where fj =

∑
k:ek=j ak and L =∑

j∈[N ] |fj |. In the ε-approximate ENTROPY problem, the items
in the set A are distributed among k sites who want to compute a
value H̃(A) for which

∣∣∣H̃(A)−H(A)
∣∣∣ ≤ ε. In this section we

prove the following theorem.

THEOREM 10. There exists an input distribution such that any
protocol that computes ε-approximate ENTROPY on this distribu-
tion correctly with error probability at most δ for some sufficiently
small constant δ has communication complexity Ω̃(k/ε2).

PROOF. Due to space constraints, we refer the reader to the full
version of this paper [51] for the proof.

6.3 `p for any constant p ≥ 1

Consider an n-dimensional vector x with integer entries. It is
well-known that for a vector v of n i.i.d. N(0, 1) random vari-
ables that 〈v, x〉 ∼ N(0, ‖x‖22). Hence, for any real p > 0,
E[|〈v, x〉|p] = ‖x‖p2Gp, where Gp > 0 is the p-th moment of the
standard half-normal distribution (see [1] for a formula for these
moments in terms of confluent hypergeometric functions). Let r =
O(ε−2), and v1, . . . , vr be independent n-dimensional vectors of
i.i.d. N(0, 1) random variables. Let yj = 〈vj , x〉/G1/p

p , so that
y = (y1, . . . , yr). By Chebyshev’s inequality for r = O(ε−2)
sufficiently large, ‖y‖pp = (1± ε/3)‖x‖p2 with probability at least
1− c for an arbitrarily small constant c > 0.

We thus have the following reduction which shows that estimat-
ing `p up to a (1 + ε)-factor requires communication complexity
Ω̃(k/ε2) for any p > 0. Let the k parties have respective inputs
x1, . . . , xk, and let x =

∑k
i=1 x

i. The parties use the shared ran-
domness to choose shared vectors v1, . . . , vr as described above.
For i = 1, . . . , k and j = 1, . . . , r, let yij = 〈vj , xi〉/G1/p

p ,
so that yi = (yi1, . . . , y

i
r). Let y =

∑k
i=1 y

i. By the above,
‖y‖pp = (1± ε/3)‖x‖p2 with probability at least 1− c for an arbi-
trarily small constant c > 0. We note that the entries of the vi can
be discretized to O(logn) bits, changing the p-norm of y by only
a (1±O(1/n)) factor, which we ignore.

Hence, given a randomized protocol for estimating ‖y‖pp up to a
(1 + ε/3) factor with probability 1 − δ, and given that the parties
have respective inputs y1, . . . , yk, this implies a randomized pro-
tocol for estimating ‖x‖p2 up to a (1± ε/3) · (1± ε/3) = (1± ε)
factor with probability at least 1− δ − c, and hence a protocol for
estimating `2 up to a (1± ε) factor with this probability. The com-
munication complexity of the protocol for `2 is the same as that for
`p. By our communication lower bound for estimating `2 (in fact,
for estimating F2 in which all coordinates of x are non-negative),
this implies the following theorem.

THEOREM 11. The randomized communication complexity of
approximating the `p-norm, p ≥ 1, up to a factor of 1 + ε with
constant probability, is Ω̃(k/ε2).
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