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ABSTRACT
We show the following transformation: any two-party pro-
tocol for outputting a (1 + ε)-approximation to f(x, y) =∑n
j=1 g(xj , yj) with probability at least 2/3, for any non-

negative efficienty computable function g, can be transformed
into a two-party private approximation protocol with only a
polylogarithmic factor loss in communication, computation,
and round complexity. In general it is insufficient to use se-
cure function evaluation or fully homomorphic encryption on
a standard, non-private protocol for approximating f . This
is because the approximation may reveal information about
x and y that does not follow from f(x, y). Applying our
transformation and variations of it, we obtain near-optimal
private approximation protocols for a wide range of problems
in the data stream literature for which previously nothing
was known. We give near-optimal private approximation
protocols for the `p-distance for every p ≥ 0, for the heavy
hitters and importance sampling problems with respect to
any `p-norm, for the max-dominance and other dominant
`p-norms, for the distinct summation problem, for entropy,
for cascaded frequency moments, for subspace approxima-
tion and block sampling, and for measuring independence
of datasets. Using a result for data streams, we obtain pri-
vate approximation protocols with polylogarithmic commu-
nication for every non-decreasing and symmetric function
g(xj , yj) = h(xj −yj) with at most quadratic growth. If the
original (non-private) protocol is a simultaneous protocol,
e.g., a sketching algorithm, then our only cryptographic as-
sumption is efficient symmetric computationally-private in-
formation retrieval; otherwise it is fully homomorphic en-
cryption. For all but one of these problems, the original
protocol is a sketching algorithm. Our protocols generalize
straightforwardly to more than two parties.

Categories and Subject Descriptors: F.1.2 Theory of
Computation: Interactive and reactive computation

General Terms: Algorithms, Security, Theory

Keywords: approximation algorithms, communication com-
plexity, cryptography, data stream algorithms
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1. INTRODUCTION
The availability of distributed massive datasets has led to

significant privacy concerns. The use of cryptographic tech-
niques to control access and prevent misuse of the data is
needed. While generic techniques such as secure function
evaluation (SFE) and fully homomorphic encryption (FHE)
are available, such techniques concern exact computation,
while for large datasets, computing even basic statistics ex-
actly is prohibitive or impossible. Hence, there is a need for
private approximation protocols.

Feigenbaum et al. [26] introduced the notion of a two-
party private approximation protocol. Roughly speaking,
a two-party protocol for a function f(x, y), where the first
party has input x and the second input y, is a private ap-
proximation protocol of f(x, y) if it satisfies the following
two properties. First, the output F (x, y) must be a function-
ally private approximation, that is, it approximates f(x, y)
in the usual sense, e.g., is an (ε, δ)-approximation1, and its
distribution can be simulated given only the exact function
value f(x, y). Thus, a functionally private approximation
captures the intuition that each party learns nothing about
the other party’s input from the output except what follows
from f(x, y) and his/her own input. The second condition
of a private approximation protocol is that the entire view
of the parties can be simulated given only f(x, y).

In general, it is insufficient to perform secure function eval-
uation or fully homomorphic encryption on a standard, non-
private protocol for approximating f . This is because the
approximation F (x, y) may reveal information about x and y
that does not follow from f(x, y), e.g., if f(x, y) is the Ham-
ming distance between x and y, the least significant bit of
the approximation may equal an arbitrary bit of x. Given a
protocol that outputs a functionally private approximation,
it can be compiled in a generic way using a fully homo-
morphic encryption scheme of Gentry [30] to obtain a pri-
vate approximation protocol by increasing the computation,
communication, and round complexity by an O∗(1) factor 2.
Thus, the main focus of work on private approximation pro-
tocols is on designing functionally private approximations.
A functionally private approximation is also independently
motivated, for instance, if two honest parties wish to publish
a statistic of their joint data that is functionally private.

Similarity estimation is a basic primitive for comparing

1F (x, y) is an (ε, δ)-approximation of f(x, y) if ∀, x, y,
Pr[(1− ε)f(x, y) ≤ F (x, y) ≤ (1 + ε)f(x, y)] ≥ 1− δ.
2O∗(f) denotes f(k, n,M, ε)poly(kε−1 log(nM) log 1/δ),
where k is a security parameter and the xi, yi ∈
{−M,−M + 1, . . . ,M} for all i ∈ [n] = {1, 2, . . . , n}.



massive data sets. A generic similarity measure between
vectors x, y ∈ {−M,−M + 1, . . . ,M}n is

∑n
j=1 g(xj , yj), for

some function g. One of the well-studied similarity mea-
sures is the `p-distance ‖x − y‖p for p ≥ 0, or equivalently,
the p-th power of the `p-distance, known as the p-th fre-
quency moment. Here the function g(z) = |z|p, so that
‖x − y‖pp =

∑n
j=1 |xj − yj |p. We note that when p = 0,

then 00 is interpreted as 0, and so `0 measures the number
of coordinates for which x and y differ.

Various authors study private approximation protocols for
the `p-distances. Feigenbaum et al. give an O∗(

√
n) commu-

nication protocol for privately approximating the Hamming
distance between bitstrings. This was improved by Indyk
and Woodruff [39] to O∗(1) communication and O∗(n2) work
for the Euclidean distance, for which Hamming distance on
bitstrings is a special case. The work was reduced to O∗(n)
by Kilian et al. [44] using the fast Fourier transform. They
also gave private approximation protocols for the problem of
finding the `2-heavy hitters of x− y, and to a weaker extent
the `1-heavy hitters. The latter problems are used to detect
all coordinates i for which |xi−yi| is large, see, e.g., [16, 20].
Madeira and Muthukrishnan [47] give a functionally private
approximation of the `p-distance which critically relies on
p-stable distributions for p ∈ (0, 2]. Nothing was known for
p ∈ {0} ∪ (2,∞), despite these being well-studied distances.
The case p = 0 is known as the Hamming norm, a general-
ization of Hamming distance to non-binary strings, see, e.g.,
[18], while p = 3 is the skewness and p = 4 the kurtosis (see
[1, 4, 9, 38] and papers citing/cited by these).

There are only a few other upper bounds on private ap-
proximations that we are aware of. Ishai et al. [40] introduce
the multi-party model for private approximation protocols,
and study a relaxed notion of privacy in it. If there are s
parties with respective inputs x1, . . . , xs, they give the sim-
ulator the aggregate vector y =

∑s
j=1 x

j or y = ∧sj=1x
j ,

where ∧ denotes coordinate-wise minimum, rather than just
giving the simulator f(y). They also show the above pri-
vate approximation protocols for Euclidean distance hold in
the multi-party setting. Other work includes a private ap-
proximation protocol for matrix permanent and some #P-
complete problems that have approximation schemes based
on Monte Carlo Markov chain methods [26, 47]. For some
NP-hard functions there are private approximation proto-
cols that are not completely private, but may leak a small
number of bits [34]. However, many natural NP-hard prob-
lems do not admit efficient private approximation protocols
[34], even if leaking many bits [7]. The situation is even
bleaker for private approximation protocols for search prob-
lems, in which the answer is not necessarily unique [6].

Thus, prior to our work, very little was known, especially
for the important class of functions that admit polynomial
time exact algorithms, but have much more efficient approx-
imation algorithms, such as the large body of problems that
are extensively studied in the data streaming literature; for
a survey on streaming, see, e.g., [49]. This was one of the
original motivations of the paper [26] which introduced pri-
vate approximations, stating that “even functions that are
efficiently computable for moderately sized data sets are of-
ten not efficiently computable for massive data sets.” This
class of functions covers practical problems in compressed
sensing, information theory, numerical linear algebra, opti-
mization, similarity estimation, and statistics.

The goal of our work is to design private approximation
protocols for these functions.

1.1 Our Main Transformation
Our main result is a transformation from any two-party

protocol for approximating a function f(x, y) of the form
f(x, y) =

∑n
j=1 g(xj , yj), for any non-negative efficiently

computable function g, into a private approximation proto-
col for f(x, y) with the same communication, computation,
and round complexity, up to an O∗(1) factor3. Despite the
intuition that designing private approximation protocols is
more difficult than feeding a non-private approximation pro-
tocol into secure function evaluation or a fully homomorphic
encryption scheme, our transformation shows there is still a
generic transformation of an approximation protocol into a
private one for a very large class of functions.

We first describe our transformation of a protocol into a
functionally private approximation. This directly implies a
private approximation protocol assuming a fully homomor-
phic encryption scheme. We then discuss cryptographic as-
sumptions weaker than fully homomorphic encryption that,
in the important case that the original protocol is a simul-
taneous protocol with shared randomness, e.g., a sketching
algorithm from the data stream literature, allow us to trans-
form our functionally private approximation into a private
approximation protocol. All of our private approximation
protocols have a straightforward extension to more than two
parties, and only require giving the simulator the exact func-
tion value, rather than the aggregate vector. We focus on
the two-party setting only for the sake of exposition and to
compare with previous work. We also stress that we work in
the standard cryptographic model in which the two parties
do not share any randomness before the protocol begins.

The main idea is to use an efficient non-private approxi-
mation protocol for f as a black box to sample from the set
[n] of indices, where each i ∈ [n] is sampled with probability

within a constant factor of g(xi,yi)
f(x,y)

. This is done by mak-

ing several recursive calls to the non-private approximation
protocol, which are organized in a complete binary tree with
the leaves equal to the indices i ∈ [n]. Upon sampling an
index i ∈ [n], we then correct the resulting distribution by
exact computation of g(xi, yi), which can be done efficiently
by exchanging the single coordinate values xi and yi, and
computing g(xi, yi). To correct the distribution, we design
a rejection sampling procedure, which effectively adjusts our

probability of sampling i to g(xi,yi)
B

, where B = (Mn)O(1) is
a public upper bound on f(x, y). The resulting distribution
is now very close (within statistical distance exp(−k), not
just constant distance) to the distribution π, where π is the

distribution on [n]∪⊥ for which π(i) = g(xi,yi)
B

for all i ∈ [n],

and π(⊥) = 1 −
∑n
i=1 π(i) = B−f(x,y)

B
. Here ⊥ is a symbol

indicating the sample we obtained was later rejected.
Given our sampling procedure, which we sometimes refer

to as importance sampling with respect to g, we can leverage
a technique for truncating information given in [39], though
our application of it is simpler. We set a coin to 1 iff ⊥ is
not returned by our procedure. The coin has expectation∑n

j=1 g(xj ,yj)

B
= f(x,y)

B
. Since the distribution of a Bernoulli

3The computation also increases by a additive O∗(n), but
this does not affect the asymptotic complexity of any prob-
lem considered in this paper, since all problems here require
at least linear time.



random variable is entirely determined by its expectation,
these coin tosses are simulatable. We do this independently
for O∗(1) coins. If most of the coins are 0, then we halve B
and repeat. This process of halving B depends only on the
value f(x, y), so is simulatable. When B is close to f(x, y),
with overwhelming probability a large fraction of coins will
be 1, and we can (ε, δ)-approximate f(x, y).

Transforming this functionally private approximation into
a private approximation protocol can, as discussed above, be
done using fully homomorphic encryption. However, in the
case that Alg is a simultaneous protocol with shared ran-
domness, we design a protocol under the weaker assump-
tion of symmetric computationally-private information re-
trieval (SPIR) with O∗(1) communication and O∗(n) work.
This assumption holds for almost all of our applications,
which have sketching algorithms from the data stream lit-
erature. In an SPIR protocol, there is a user with an index

i ∈ [n]
def
= {1, 2, . . . , n} and a server with a string x ∈ {0, 1}n

who execute a protocol for which the user learns only xi,
while a server learns nothing about i, assuming both parties
must run in poly(n) time. A known construction of Cachin,
Micali, and Stadler [11] or of Gentry and Ramzan [31], cou-
pled with a symmetric version due to Naor and Pinkas [51],
satisfies this under the well-studied Φ-Hiding Assumption
(see work citing [11]). If one is willing to lose a factor of
nγ for arbitrarily small constant γ, one can just assume ad-
ditively homomorphic encryption, for which there are too
many schemes to cite here.

Applications. A summary of the many results we achieve
with our transformation and variations is given in Figure 1
and the next section. In that figure CC-non-private(f) de-
notes the non-private O∗(1)-round randomized communica-
tion complexity of (O(1/ logn), 1/3)-approximating f . We
obtain optimal private approximation protocols, up to O∗(1)
factors, for `p-distances, `p-heavy hitters, and `p-sampling
for any p ≥ 0, entropy, max-dominance and other domi-
nant `p-norms, distinct summation, cascaded moments, sub-
space approximation, block sampling, and measuring `2-
independence of datasets. Except for subspace approxi-
mation and block sampling, our only assumption is SPIR
with O∗(1) communication and O∗(n) computation. For
subspace approximation and block sampling, we use fully
homomorphic encryption. The same bounds hold in the
multi-party setting for any O∗(1) parties.

While some of these applications follow immediately from
our transformation, other ones such as entropy, cascaded
moments, subspace approximation, and `2 distance to inde-
pendence require a few twists to our transformation.

1.2 Related Work
To better understand our work, we compare it with works

on private approximations and also on differential privacy.
Indyk/Woodruff [39]. This work achieves private ap-

proximation protocols for the Hamming and Euclidean dis-
tance. It cannot handle more general functions because of
the lack of a sampling procedure. Also, our method of trun-
cating information is simpler since there it was necessary to
ensure the values g(xi, yi), for different i, are the same, up
to a logarithmic factor. This was tied to their use of uni-
form sampling, i.e., sampling independent of the function
g. Luckily for `2-distance there is a way of randomizing the
instance using a random rotation so that uniform sampling
is possible. In general this is not possible.

Madeira/Muthukrishnan [47]. This work extends [39]
to non-negative functions f that have an efficient negligibly
biased estimator that is also sharply concentrated. This
means that there exists an efficient protocol Alg so that for
any inputs (x, y), the output Alg(x, y) is an unbiased esti-
mator (up to (1±exp(−k))) of f(x, y), and with probability

1 − exp(−k), Alg(x, y) = Θ̃(f(x, y)). Fortunately, the `p-
norms for p ∈ (0, 2] have negligibly biased estimators that
are sharply concentrated, using Li’s estimator [46]. This
class of functions is quite limited though. Indeed, for the
functions considered in this paper it is not known how to effi-
ciently compute sharply concentrated negligibly biased esti-
mators. We note that the usual method of taking the median
of independent repetitions does not preserve the property of
being a negligibly biased estimator, and so one does not ob-
tain a sharply concentrated negligibly biased estimator this
way. In contrast, our sampling procedure works for any, nei-
ther unbiased nor concentrated, efficient protocol Alg which
is capable of providing an (O(1/ logn), 1/3)-approximation.

Differential Privacy. An orthogonal line of research
on privacy is differential privacy, which tries to capture the
notion of individual privacy, see, e.g., the surveys [24, 25].
The privacy guarantees of functional and differential privacy
are incomparable, and the choice between the right notion
of privacy should depend on the semantics of the problem.
Functional privacy asserts that if f(z) = f(z′) for z 6= z′,
then the approximation of f should have the same distri-
bution on z and z′. In contrast, the differential privacy
guarantee deteriorates exponentially with the distance of z
and z′ under some appropriate measure of distance, usually
Hamming distance. But for close z and z′ with f(z) 6= f(z′),
functional privacy gives no guarantees about the closeness
of distributions of approximations of f(z) and f(z′), while
differential privacy would imply these distributions are close.

Summary of Acronyms: In the remainder of the pa-
per, we use PAP for private approximation protocol, FPA
for functionally private approximation, FHE for fully ho-
momorphic encryption, SFE for secure function evaluation,
SPIR for symmetric computationally-private information re-
trieval, and NBE for negligibly biased estimator.

Roadmap: In the next section we describe the proof of
our main transformation. In Section 4 we give applications.

2. PRIVACY DEFINITIONS AND TOOLS
To achieve our strongest results, we need to set the se-

curity parameter k = polylog(n). Thus, in the following
definitions of privacy, it is insufficient to protect against
poly(k)-time adversaries, as the parties themselves run in
poly(n) time. Hence, throughout we shall define security
with respect to exp(k)-time algorithms. We need the notion
of computationaly indistinguishability.

Definition 1. Distributions D1 and D2 are computation-

ally indistinguishable, denoted D1
c≡ D2, if for every pair of

random variables X1 ∼ D1 and X2 ∼ D2 and for any family
of exp(k)-size circuits {Ck}, |Pr[Ck(X1) = 1]−Pr[Ck(X2) =
1]| = exp(−k).

We define a two-party private protocol, as introduced in [26];
we refer the reader to [13] and [32] for more details.

We refer to the two parties as Alice and Bob. Let h
be a possibly randomized mapping from input pairs (a, b)



Problem Communication Work

`p-distance, p > 2, `p-heavy hitters, and `p-sampling O∗(n1−2/p) O∗(n)
`p-distance, p ∈ [0, 2], `p-heavy hitters, and `p-sampling O∗(1) O∗(n)∑n
j=1 h(xj − yj), h satisfies tractability conditions of [10] O∗(1) O∗(n)

Max-Dominance norm and other dominant `p-norms O∗(1) O∗(n)
Distinct Summation O∗(1) O∗(n)
Entropy O∗(1) O∗(n)
Cascaded Moments Fq(Fp) of n× d matrix, every q and p O∗(CC-non-private(Fq(Fp))) O∗(nd)

Subspace Approximation of n points in Rd and Block Sampling O∗(d) O∗(nd)
`2-Distance to Independence O∗(1) O∗(n2)

Figure 1: For each we obtain optimal (up to O∗(1) factors) relative error PAPs. All are O∗(1) rounds.

to output pairs (c, d). A randomized synchronous protocol
proceeds in rounds. In each round a party sends a mes-
sage based on the security parameter k, his/her input and
his/her random tape, as well as messages passed in previous
rounds. During each round either party may decide to ter-
minate based on his/her view, where here a party’s view is
its input, random tape, and all messages exchanged.

For a protocol Π for a mapping h, let REALΠ,A(k, (a, b))
be a random variable which contains the view of Alice in
Π when the input to the protocol is (a, b), concatenated
with the output of Bob (this concatenation is required for
technical reasons). We similarly define REALΠ,B(k, (a, b)).
Next, for an efficient (poly(n)-time) algorithm S known as
a simulator, let IDEALΠ,A,S,h(k, (a, b)) be the output of the
random process: (1) apply h to (a, b), resulting in a pair of
outputs (c, d), (2) invoke S on (k, a, c), (3) concatenate the
output of S with d. Similarly define IDEALΠ,B,S,h(k, (a, b)).

Definition 2. A private two-party protocol Π of a ran-
domized mapping h is a protocol for which: (1) the distri-
bution on outputs has `1-distance exp(−k) from that of h,
and (2) there is a poly(n)-time simulator SA such that for

any input pair (a, b), we have {REALΠ,A(k, (a, b))}k∈N
c≡

{IDEALΠ,A,SA,h(k, (a, b))}k∈N. There must also be an effi-
cient simulator SB with the analogous property for Bob.

We now define an SPIR protocol. Alice has a string a ∈
{0, 1}n while Bob has an index i ∈ [n]. The randomized
mapping is h(a, i) = ai, and an SPIR protocol is a pri-
vate protocol for h. It is known how to construct an SPIR
protocol from a PIR protocol, namely, a protocol for SPIR
which relaxes privacy to only require that there is a simula-
tor SB in definition 2, rather than both simulators SA and
SB . The PIR to SPIR transformation only incurs an O∗(1)
factor blowup in communication, computation, and number
of rounds; see the work by Naor and Pinkas [51]. Let C(n)
be the communication of a PIR protocol with n · polylog(n)
work per party and polylog(n) rounds. C(n) can be as low
as polylog(n), see, e.g., [11]. We assume such a scheme ex-
ists in the remainder of the paper. We also need a definition
and a theorem of Naor and Nissim [50].

Definition 3. ([50]) Two parties are said to jointly eval-
uate a circuit with ROM if the randomized mapping h the
parties compute can be implemented as a circuit with at most
poly(n, k) gates of the following types. The gates can be ei-
ther NAND gates (or gates defining any complete basis on
bits), or so-called lookup gates. To define a lookup gate, Al-
ice (resp. Bob) builds a table RA ∈ {0, 1}n (resp. RB), and

the lookup gate, given a pair (A, j) (resp. (B, j)), outputs
RA(j) (resp. RB(j)).

Theorem 4. ([50]) Given a PIR (and hence an SPIR)
scheme with C(n) = polylog(n), any circuit with ROM Λ
can be privately computed with |Λ| · polylog(n) communica-
tion, n · |Λ| · polylog(n) work, and |Λ| · polylog(n) rounds,
where |Λ| is the # of gates in Λ.

Finally, we use a standard composition theorem [13, 32].

Definition 5. An oracle-aided protocol using an oracle
functionality O (i.e., the parties have an oracle tape for
which they can provide inputs and receive output from the or-
acle) privately computes h if there are simulators SA, SB as
in Definition 2, where the corresponding views of the parties
are defined in the natural manner to include oracle answers.

Theorem 6. ([13, 32]) Suppose there is a private oracle-
aided protocol for h given oracle functionality O, and a pri-
vate protocol for computing h. Then the protocol defined by
replacing each oracle-call to O by a protocol that privately
computes O is a private protocol for h.

Two parties output a secret-sharing [32] of a function f with
output pair (c, d), where c and d are bitstrings of length sc
and sd, respectively, if Alice’s output is a pair of random
strings rA(c) ∈ {0, 1}sc and rA(d) ∈ {0, 1}sd , while Bob’s
output is a pair of random strings rB(c) ∈ {0, 1}sc and
rB(d) ∈ {0, 1}sd , with the property that rA(c) ⊕ rB(c) = c
and rA(d) ⊕ rB(d) = d, but otherwise the strings rA(c),
rA(d), rB(c), and rB(d) are random.

A non-private protocol is a simultaneous protocol [45] for
(ε, δ)-approximation of a function h(a, b) if Alice and Bob
share public randomness, Alice sends a single message MA

to a referee, Bob sends a single message MB to the referee,
and the referee with the public randomness, MA, and MB ,
generates an (ε, δ)-approximation to h(a, b). If, in addition,
a and b are n-dimensional vectors and there is a distribution
over matrices W with n columns, chosen independently of
a, b, for which MA = W ·a and MB = W ·b, then we call the
protocol a sketching algorithm [49]. We stress that all of our
PAPs will be designed in the standard model, i.e., with no
shared public randomness, even if the original non-private
protocol uses shared randomness.

3. MAIN TRANSFORMATION
In our protocols, the parties must run in poly(nkε−1 logM)

time. We can assume that ε > 1/poly(n), as otherwise it



would become more efficient to compute
∑n
j=1 g(xj , yj) ex-

actly using known secure function evaluation techniques [32].
The security parameter k will be polylog(n) or nγ for arbi-
trarily small constant γ > 0. For simplicity we also assume
logM ≤ poly(n). It follows that the parties must run in
poly(n) time. We can, w.l.o.g., assume that both parties
are semi-honest, meaning they follow the protocol but may
keep message histories in an attempt to learn more than
what is prescribed. In Section 6 of [50], it is shown how to
transform a semi-honest protocol into a protocol secure in
the malicious model, at the cost of at most an O∗(1) factor.

Feigenbaum et al. [26] define the following.

Definition 7. A function h′ is functionally private with
respect to a function h if there is a poly(n)-time simulator

S for which for any input x, {S(h(x))} c≡ {h′(x)}.

Definition 8. A two-party private (ε, δ)-approximation
protocol of h is a private protocol (see Definition 2) that

computes a randomized mapping ĥ satisfying the following
two properties: 1. ĥ is functionally private for h, and 2. ĥ
is an (ε, δ)-approximation of h.

We assume, w.l.o.g., that n is a power of 2. We start by
formally defining importance sampling w.r.t. g.

Definition 9. In the g-sampling functionality, both par-
ties receive integers B and k. Alice receives an input x ∈
{−M,−M + 1, . . .M}n, while Bob receives an input y ∈
{−M,−M + 1, . . . ,M}n. There is a promise that B ≥
2
∑n
j=1 g(xj , yj) = 2f(x, y). Define the distribution π on

[n] ∪ ⊥, where π(i) = g(xi,yi)
B

for all i ∈ [n], and π(⊥) =

1 −
∑n
i=1 π(i) = B−f(x,y)

B
. The output is a secret-sharing

of a random I ∈ [n] ∪ {⊥} from a distribution π′ with
‖π′ − π‖1 ≤ exp(−k).

Let Alg(n′, ε′, δ′) be a protocol for (ε′, δ′)-approximating∑
j g(xj , yj) on n′ coordinates. Suppose Alg has r(n′, ε′, δ′)

rounds, c(n′, ε′, δ′) communication, and t(n′, ε′, δ′) time. We
show g-Sampler in Figure 2 privately implements g-sampling.

Lemma 10. Protocol g-Sampler correctly implements the
g-sampling functionality.

Proof. Let I be the value secret-shared by the two par-
ties upon termination of the protocol, assuming it does not
output fail. We need to show that I is sampled from a dis-
tribution π′ that has `1 distance exp(−k) from π. Con-
sider the complete binary tree T on coordinate set [n], and
consider the 2n − 1 subsets Sv associated with nodes v of
T . Since δ = exp(−k), by a union bound, for any sub-
set Sv of coordinates associated with a node v of T , Alg
on vectors x, y restricted to coordinates in Sv succeeds in
providing a (1± ζ)-approximation with probability at least
1− (2n− 1) exp(−k) = 1− exp(−k). Fix the random string
σ used by the protocol, and condition on the event E of it
having this property. The protocol does not invoke Alg on
all subsets Sv, though we assume it is correct on all such Sv.

Fixing σ, all invocations of Alg become deterministic, and
so for each node v ∈ T , there is a well-defined probabil-
ity rv, over the coin tosses of the binary search in step
2(c)iv, that the protocol reaches node v. Namely, suppose
v is at shortest path distance ` from the root v0 of T . Let
v0, v1, v2, . . . , v` = v be the unique path from the root of T

to v. Let w1, w2, . . . , . . . , w` be the siblings of v1, v2, . . . , v`,
respectively. Then, rv =

∏`
i=1

pvi
pvi+pwi

, where the pvi are

as defined in step 2(c)iii. Note if the denominator is 0, then
the numerator is also 0, and in this case the probability is 0.

Since we condition on event E , using the non-negativity
of g, we obtain a telescoping product:

rv =
∏̀
i=1

pvi
pvi + pwi

≤ (1 + ζ)`

(1− ζ)`
∏̀
i=1

∑
j∈Svi

g(xj , yj)∑
j∈Svi

g(xj , yj) +
∑
j∈Swi

g(xj , yj)

=
(1 + ζ)`

(1− ζ)` ·
∑
j∈Sv

g(xj , yj)∑n
j=1 g(xj , yj)

≤ 2 ·
∑
j∈Sv

g(xj , yj)∑n
j=1 g(xj , yj)

,

for a small enough ζ = Θ(1/ logn). An analogous argument

shows also that rv ≥ 1
2
·

∑
j∈Sv

g(xj ,yj)∑n
j=1 g(xj ,yj)

. Notice that these

bounds on rv also hold if
∑
j∈Sv

g(xj , yj) = 0. Now, in

step 4(c), we are promised that B ≥ 2
∑n
j=1 g(xj , yj), so

p ≤ g(xq,yq)

2β
∑n

j=1 g(xj ,yj)
. But β = rq for a leaf q ∈ T , and by

the above rq ≥ 1
2
· g(xq,yq)∑n

j=1 g(xj ,yj)
, and so p ≤ 1. Hence, we do

not output fail in step 4(c). It follows, for our fixed choice
of σ, that the probability we output coordinate I = i is

ri · g(xi,yi)Bri
=

g(xi,yj)

B
. Since we have a distribution, for fixed

σ, it follows that Pr[I = ⊥] = 1 −
∑n

j=1 g(xj ,yj)

B
. Event E

occurs with probability 1 − exp(−k), and the above holds
for any choice of σ for which E occurs.

We prove the following lemmas. Note that the first needs to
be shown even with γ in the parties’ views.

Lemma 11. Protocol g-Sampler privately implements the
g-sampling functionality.

Proof. We first argue the case when Alg is a simultane-
ous protocol. In this case, a party’s view consists of the seed
γ of the generator G, and a collection of secret shares output
from the secure circuit with ROM evaluations. We can apply
Theorem 6 a total of logn+ 1 times, each time using Theo-
rem 4. The only difficulty is that REALg−sampler,A(k, (a, b))
contains the view of Alice concatenated with the output of
Bob, and therefore we must prove the distribution of I con-
ditioned on γ has `1-distance exp(−k) from π. This follows
from Lemma 10, since if the event E in the proof of Lemma
10 occurs, then for any value of γ and hence the value G(γ)
of the pseudorandom generator, the random variable I is
distributed according to π. Since E occurs with probability
1− exp(−k), this shows the simulator for Alice SA can just
output a random γ, in addition to the output of the simula-
tor of Theorem 4. Hence, there is a simulator SA as required
by Definition 2.

If Alg is a general protocol, we instead implement the
entire g-sampler protocol using FHE. The lemma immedi-
ately follows by the properties of FHE [30].

Lemma 12. For ζ = Θ(1/ logn), protocol g-Sampler can
be implemented in O∗(c(n, ζ, 1/3)) communication, a total of
O∗(t(n, ζ, 1/3) + n) time, and O∗(r(n, ζ, 1/3)) rounds.

Proof. We first argue this in the case that Alg is a si-
multaneous protocol. In this case, There are logn iterations
of step 2. In the j-th iteration, both parties invoke Alg



Input: Alice is given x ∈ {−M, . . . ,M}n and 1k, while Bob is given y ∈ {−M, . . . ,M}n and 1k.
Both parties are given an integer B ≥ 2

∑n
j=1 g(xj , yj).

Output: The parties output a secret-sharing of a random I ∈ [n] ∪ {⊥} from a distribution statistically close to:

∀i, Pr[I = i] =
g(xi,yi)

B
, and Pr[⊥] = 1−

∑n
j=1

g(xj ,yj)

B
.

1. Initialize S = [n], δ = exp(−k), ζ = Θ( 1
logn

), β = 1, and q to be a pointer to the root of a complete binary tree on n leaves.

Let G be a PRG stretching O∗(1) bits to O∗(n) bits secure against poly(n)-sized circuits that can be evaluated in O∗(n) time.
Such G are implied by our assumption on SPIR, see, Remark 7 in [39].

Alice sends Bob a seed γ to G, from which the parties share the random string G(γ) = σ.

2. For j = 1, 2, . . . , logn, in the j-th iteration do:

(a) Alice and Bob break the coordinate set [n] into n
2j contiguous blocks of coordinates x1, . . . , x2j

and y1, . . . , y2j
, respectively.

(b) Alice and Bob respectively execute Alg( n
2j , ζ, δ) on x` and y` for each ` ∈ [2j ], using σ as the randomness for each execution.

Let the resulting states of Alg be stateA(1), stateA(2), . . . , stateA(2j) and stateB(1), stateB(2), . . . , stateB(2j), which
are the ROM tables of the parties.

(c) A secure circuit with ROM performs the following computation:

i. It maintains the state of q internally (it is secret-shared between the two parties).

ii. Viewing the set [2j ] as the internal nodes in the j-th level of a complete binary tree, it uses SPIR to retrieve stateA(L),
stateA(R), stateB(L) and stateB(R), where L and R are the left and right child of q, respectively.

iii. It combines stateA(L) and stateB(L) to obtain pL =Alg( n
2j , ζ, δ)(x

L, yL). It combines stateA(R) and stateB(R) to

obtain pR =Alg( n
2j , ζ, δ)(x

R, yR).

iv. Suppose first that (pL, pR) 6= (0, 0). It sets q to point to L with probability pL
pL+pR

, and otherwise sets q to point to

R. In the first case it sets β = β · pL
pL+pR

. In the second case, it sets β = β · pR
pL+pR

. If (pL, pR) = (0, 0), it outputs a

pointer q to ⊥ and β remains the same.

v. If j = logn, it outputs a secret-sharing (e, f) of q and β to the two parties.

3. Alice and Bob create ROM tables for the entries of x and y respectively.

4. A secure circuit with ROM performs the following algorithm:

(a) It uses inputs e and f to reconstruct q and β. If q points to ⊥, it outputs a secret-sharing of ⊥ to the two parties.

(b) Otherwise, it uses SPIR to retrieve xq and yq , and computes g(xq , yq).

(c) Put p =
g(xq,yq)

B·β . If p > 1, output fail.

(d) Otherwise, with probability p, output a secret-sharing of q to the two parties, else output a secret-sharing of ⊥.

5. The parties output the output of the secure circuit evaluation with ROM in step 4.

Figure 2: Our protocol g-Sampler implementing the g-sampling functionality for simultaneous protocols Alg. If Alg is not a
simultaneous protocol, we can instead implement the entire protocol using FHE. In the j-th iteration of step 2, Alice and Bob will
only execute Alg( n

2j , ζ, δ) on the left and right child, L and R, of q. By the properties of FHE, these values L and R are unknown

to the parties.

Main Protocol:
Input: Alice is given x ∈ {−M, . . . ,M}n and 1k, while Bob is given y ∈ {−M, . . . ,M}n, and 1k.
Output: A private (ε, δ)-approximation protocol for f(x, y) =

∑n
j=1 g(xj , yj).

1. Let B be a public upper bound on f(x, y), for any possible inputs x, y. We assume log(B) = O∗(1). Let ` = O∗(1) be sufficiently
large.

2. Repeat the following in a secure circuit with ROM:

(a) For j ∈ [`], independently run g-sampler(x, y, 1k), let the output be shares of Ij ∈ [n] ∪ {⊥}.
(b) Independently generate ` coin tosses z1, . . . , z`, where zj = 1 iff Ij 6= ⊥.

(c) B = B/2.

3. Until
∑`
j=1 zj ≥

`
8

or B < 1.

4. Output Ψ = 2B
`

∑`
j=1 zj .



2j times on inputs of size n/2j to achieve a (ζ, exp(−k))-
approximation. Note that c(n, ζ, δ) = O(k) · c(n, ζ, 1/3),
t(n, ζ, δ) = O(k)·t(n, ζ, 1/3), and r(n, ζ, δ) = O(k)·r(n, ζ, 1/3),
since we may independently repeat Alg O(log 1/δ) times and
take the median of its outputs.

Step 3 and step 4 can be done in O∗(1) communication,
O∗(n) time, and O(1) rounds, given our assumption of an
efficient SPIR protocol. Assuming we use an efficient SPIR
protocol to retrieve each bit of the state of Alg, the commu-
nication is O∗(1) ·

∑logn
j=1 c(n2−j , ζ, 1/3) = O∗(c(n, ζ, 1/3)).

The number of rounds is O∗(1) ·
∑logn
j=1 r(n2−j , ζ, 1/3) =

O∗(r(n, ζ, 1/3)). Finally, the time is O∗(n) +
∑logn
j=1 2j ·

t(n2−j , ζ, 1/3). If t(n′, ζ, 1/3) = Ω̃(n′), then this sum is
O∗(t(n, ζ, 1/3)). Otherwise, the additive O∗(n) dominates.

For the case that Alg is a general protocol, we instead
implement the entire g-sampler protocol using FHE. Notice
that in the j-th iteration of step 2, Alice and Bob will only
execute Alg( n

2j , ζ, δ) on the left and right child, L and R,
of q. FHE only increases communication, round, and time
complexities by an O∗(k) factor (assuming the original time
complexity is at at least linear).

Theorem 13. For ζ = Θ(1/ logn), the protocol Main is
a PAP for f , i.e., an (ε, δ)-FPA, and a private protocol with
O∗(c(n, ζ, 1/3)) communication, O∗(t(n, ζ, 1/3) + n) time,
and O∗(r(n, ζ, 1/3)) rounds.

Proof. We first show that Main outputs an (ε, exp(−k))-
approximation of

∑n
j=1 g(xj , yj). Observe that by Lemma

10, in any iteration and for any j ∈ [`], E[Zj ] = (1 ±
exp(−k))

∑n
j=1 g(xj ,yj)

B
. Since B is halved in step 2c, by

linearity of expectation, E[Ψ] =
∑n
j=1 g(xj , yj). For the

concentration, with probability 1 − exp(−k), if B ≥ Θ(k) ·∑n
j=1 g(xj , yj), then

∑`
j=1 zj <

`
8
. On the other hand, if

B = O(k) ·
∑n
j=1 g(xj , yj), then for sufficiently large ` =

O∗(1), by a Chernoff bound we have

Pr

[∣∣∣∣∣∑̀
j=1

zj −E[
∑̀
j=1

zj ]

∣∣∣∣∣ > εE[
∑̀
j=1

zj ]

]
≤ exp(−k),

and by a union bound we can assume this holds for all such
values of B. If

∑n
j=1 g(xj , yj) = 0, Main outputs 0. Else,

there is a B for which E[
∑`
j=1 zj ] ≥

`
4
, it follows that in

step 3 we will have
∑`
j=1 zj ≥

`
8
, and this sum provides

a (1± ε)-approximation to E[
∑`
j=1 zj ] = `

2B

∑n
j=1 g(xj , yj)

with probability 1− exp(−k).
Next, we show that Main is functionally private. We de-

scribe the simulator S in the figure below.

The simulator S is given f(x, y).

1. Let B be an upper bound on f(x, y), for any possible
inputs x, y. We assume logB = O∗(1). Let ` = O∗(1)
be sufficiently large.

2. Repeat the following:

(a) For j ∈ [`], generate ` independent coin tosses zj

with bias
f(x,y)
B

.

(b) B = B/2.

3. Until
∑`
j=1 zj ≥

`
8

or B < 1.

4. Output Ψ′ = 2B
`

∑`
j=1 zj .

Notice that the probabilities zj = 1 in the simulated and the
real view differ only by a factor of 1 ± exp(−k). It follows
that the distributions of Ψ and Ψ′ have `1-distance exp(−k),
which completes the proof.

We next argue that the protocol is private and efficient.
We argue that Main satisfies the requirements of Definition
2. The first part follows from the above. By Lemma 11
and 6, we can replace the calls to g-sampler with an oracle
functionality. By Theorem 4, the functionality in step 2 can
be implemented privately.

For the efficiency, there is only an O∗(1) overhead in each
of these measures from that of protocol g-sampler, so the
lemma follows by Lemma 12.

4. APPLICATIONS
We say a value is near-optimal if it is optimal up to an

O∗(1) factor. We say a PAP is near-optimal if its commu-
nication, computation, and round complexity are simulta-
neously optimal up to an O∗(1) factor. For all problems
we consider, we obtain near-optimal PAPs. For brevity, we
sometimes describe our PAPs as FPAs, mentioning any sub-
tleties needed to implement the FPA as a PAP using SPIR.
In the interest of space, for some applications we just give
proof sketches, deferring the formal proofs to the full version.
`p-Distances. Combining our transformation with `p-

estimation algorithms [9, 38], for g(xj , yj) = |xj−yj |p we ob-

tain near-optimal O∗(n1−2/p) communication, O∗(n) com-
putation, and O∗(1) round PAPs for the `p-distance, p > 2,
as well as a near-optimal O∗(1) communication, O∗(n) com-
putation, and O∗(1) round PAP for the `0-distance. No sub-
linear communication PAPs were known for these problems,
see the references above. This was the main motivation for
this work. Existing algorithms for these `p and their heavy
hitters (see below) are blatantly not functionally private.
The difference with p ∈ {0} ∪ (2,∞) is that p-stable dis-
tributions do not exist, making algorithms for them much
more complicated, and making FPAs harder to design. We
overcome this since our reduction is black box.

Even though PAPs or FPAs are known for p ∈ (0, 2], our
framework has several advantages. One advantage is that
we transform any protocol for `p into a PAP, making new
tradeoffs possible. We can use protocols more suitable for
inputs given as a list of ranges [5, 12, 27, 53], with faster
update time [42, 52], or that use less randomness [42, 43].
For example, we improve the update time of [47] for `2 by
a factor of k using the algorithm of [59] with ε = 1/ logn
(to do binary search), while for p ∈ (0, 2) we improve [47]
by a factor of k/poly(log logn) using the algorithm of [42].
Our communication is a factor of log2 n/k times that of [47],
since we lose a log2 n factor since ε = 1/ logn as opposed
to ε = 1/2 in [47], but we gain a factor of k since we do
not need k seeds for random functions as in [47]. Another
advantage is our transformation avoids rounding issues of
real numbers needed to ensure functional privacy in previ-
ous work [26, 39, 47]; in our case the parties can compute
g(xi, yi) to arbitrary precision after communicating xi and
yi, where i is the coordinate sampled by g-sampler.

Heavy Hitters and Compressed Sensing. Letting
z = x − y, we want an r-sparse vector z̃ with ‖z − z̃‖pp ≤
(1+ε)‖z−zopt‖pp, where zopt is an r-sparse vector minimizing
‖z − zopt‖pp. In [44], the authors show that if only zopt is
leaked, then Ω(n) communication is requred. The authors
relax the problem by allowing ‖z‖2 to also be leaked, and



show how to near-optimally solve the heavy hitters problem
for p ∈ {1, 2} in this case. For p = 2 they argue this is in fact
desirable, since the leakage is equivalent to ‖z‖22 − ‖z̃‖22 =
‖z̃ − z‖22, the error incurred of the r-sparse representation,
which is a common thing to want (equality holds since we
can assume z̃ agrees with z on its non-zero coordinates).

Plugging our PAPs for `p-distances into the main protocol
in [44], we improve this by showing how to near-optimally
solve the problem of finding z̃ with ‖z̃−z‖pp ≤ (1+ε)‖zopt−
z‖pp leaking zopt and ‖z‖pp for every p ≥ 0. If p ∈ [0, 2], the
communication is O∗(1), while if p > 2 the communication

is O∗(n1−2/p), which is required [4]. We note that the in-
formation we leak is more natural than that leaked in [44],
who for p = 1 leak ‖z‖2 and z̃ rather than ‖z‖1 and z̃, the
latter being equivalent to leaking ‖z − z̃‖1 and z̃, the error
incurred by the sparse representation. One minor point is
that we need a non-private near-optimal heavy-hitters proto-
col for every `p. For p ∈ [0, 2] this is given in, e.g., Corollary
3.1 of [48]. For p > 2 there is an implicit algorithm with

O∗(n1−2/p) space in [38], which is optimal [4, 54].
General Similarity Measures. While our transforma-

tion gives near-optimal PAPs for any function of the form
f(x, y) =

∑n
j=1 g(xj , yj), for non-negative g, we may want

to know for which g we obtain PAPs with O∗(1) computa-
tion, O∗(n) computation, and O∗(1) rounds. For this we can
use a theorem of Braverman and Ostrovsky [10] which very
roughly says that if g(xj , yj) = h(xj − yj) = O((xj − yj)2)
and h satisfies a few additional restrictions, then f(x, y) can
be computed in O∗(1) space, 1-pass, and O∗(n) time (as-
suming h can be computed in O∗(1) time). Applying our
transformation, we obtain PAPs with the aforementioned
resources for any such h, which includes functions as bizarre
as h(x) = (x(x+ 1)).5arctan(x+1). We omit the details.

Max-Dominance Norm, Dominant `p-norms, and
Distinct Summation. The Max-Dominance Norm is use-
ful in financial applications and IP network monitoring [19].
Alice has x ∈ {0, 1, . . . ,M}n, Bob has y ∈ {0, 1, . . . ,M}n,
and the max-dominance norm is

∑n
j=1 max(xj , yj). This

problem, and its generalization, the dominant `p-norm, de-
fined as (

∑n
j=1 max(xj , yj)

p)1/p for p > 0, are studied in

[19, 53, 56, 57, 58] (in [40] this problem is instead stud-
ied for p < 0, which is useful for coordinatewise minima).
There are no sharply concentrated NBEs known for p > 0.
For example, the estimators Z of [56] are distributed as p-
Fréchet, which, if the dominant `p-norm is c, have Pr[Z >
z] = 1 − exp(−cpz−p). For p ≤ 1, there is no expectation,
while for general p these are heavy-tailed, so there is a non-
negligible (1/poly(n)) probability of observing a value that
is poly(n) times c. Nevertheless, the references above give
(ε, δ)-approximations for these problems in O∗(1) space, and
by our transformation, we obtain near-optimal PAPs. We
also get a near-optimal PAP for the related distinct summa-
tion problem in sensor networks [53], which also does not
have a sharply concentrated NBE. Here, for each j ∈ [n]
there is a vj ∈ {1, . . .M} and Alice has either (j, vj) or
(j, 0), while Bob has either (j, vj) or (j, 0). The problem is
to compute

∑
distinct (j,vj) vj , that is, for each j, either the

value vj or 0 contributes to the sum.
Entropy with Relative Error. Entropy H(x, y) =∑n
i=1

xi+yi∑n
j=1 xj+yj

· log
∑n

j=1 xj+yj

xi+yi
is defined for inputs x, y

with (x + y)i ∈ R≥0 for all i ∈ [n]. Here, if xi + yi = 0,
we (as usual) interpret 0 log 1

0
as 0. We allow xi or yi

to be negative, but require their sum to be non-negative.
This is the strict turnstile model in streaming, for which
entropy is well-studied [8, 14, 15, 33, 36], and sketching al-
gorithms with relative error, O∗(1) space and update time
[8, 36] are known. There are no known NBEs concentrated
enough to achieve relative error. The natural NBE is to sam-
ple a coordinate i with probability xi+yi∑n

j=1 xj+yj
and output

log
∑n

j=1 xj+yj

xi+yi
. However, while the estimator is unbiased,

the concentration is poor and can only be used to achieve
additive error. We will achieve relative error. H(x, y) is
not in the class of functions handled by our transforma-
tion. The important observation is that for any parameter
T ≥

∑n
j=1 xj + yj , the function HT (x, y) =

∑n
i=1

xi+yi
T
·

log T
xi+yi

also has an efficient relative error algorithm, given

the values T and
∑n
j=1 xj + yj . Indeed, we run an effi-

cient algorithm for H(x, y), get Ĥ, and output
∑n

j=1 xj+yj

T
·

Ĥ +
∑n

j=1 xj+yj

T
· log

(
T∑n

j=1 xj+yj

)
. The additive error is at

most ε·
∑n

j=1 xj+yj

T
H(x, y) = ε

∑n
i=1

xi+yi
T
·log

∑n
j=1 xj+yj

xi+yi
≤

ε
∑n
i=1

xi+yi
T
· log T

xi+yi
= εHT (x, y). We fix T =

∑n
j=1 xj +

yj and in recursive calls in the binary search use the same
value of T rather than

∑
j∈S xj +yj for the set S under con-

sideration (so we recursively compute HT rather than H).
In the outer level of recursion, H(x, y) = HT (x, y), and HT
has the form of our transformation, so we get a PAP for
H(x, y) with relative error. We do not need FHE, since we
can obtain

∑n
j=1 xj + yj using SFE.

Subspace Approximation and Sampling Blocks. Ap-
proximating a pointset by a subspace is studied in the linear
algebra community. The form we consider is in [22, 23, 28,
29, 35, 55] in the form of approximation to a fixed subspace.
For more references and connections to regression, see the
references therein. In our setting Alice has n × d matrix
A, Bob has n × d matrix B, and C = A + B, represent-
ing n records each with d attributes. They want to secret
share a coreset, i.e., a small weighted subset of rows of C
so that later, for any fixed j-dimensional subspace F of Rd,
cost(C,F ) =

∑n
i=1 dist(Ci, F ) can be (1 + ε)-approximated

from the coreset with functional privacy and probability
1− exp(−k). dist is `2-distance of a point to a subspace.

We first review a coreset construction of [29], the main
algorithms being DimReduction and AdaptiveSampling
algorithms given there. Assume the dimension j of the
query subspace is constant. The authors efficiently obtain an
O(1)-approximationDj to the best j-subspace using approx-
imate volume sampling [22]. Then, r = O(ε−2 log 1/δ) sam-
ples s1, . . . , sr are drawn with replacement from C, where

Pr[Ci] = dist(Ci,D
j)

cost(C,Dj)
. Point si is assigned weight 1

Pr[si]
. For

each si, let s′i = proj(si, D
j), the projection of si onto Dj ,

which is assigned a weight of − 1
Pr[si]

. Finally, all points are

projected ontoDj . In recursive steps, anO(1)-approximation
Dj−1 to the best j − 1-subspace of proj(C,Dj) is found,
and the above sampling procedure is repeated. The recur-
sion stops when all points are projected to the origin. The
weighted coreset is the union of the si and s′i over the j + 1
stages. In [29], it is shown that for any fixed subspace F , the
sum of (weighted) distances of coreset points to F is an unbi-
ased estimator of cost(C,F ) and is an (ε, δ)-approximation.

While we have an NBE, and in this case making δ =
exp(−k), a sharply concentrated one, this construction is



not communication-efficient. We now describe our PAP for
this problem assuming additively homomorphic encryption,
which achieves O∗(d2) communication, O∗(nd) work, and
O∗(1) rounds. We then show how to reduce the communi-
cation to near-optimal O∗(d) assuming FHE.

We first show how to obtain shares of anO(1)-approximation
Dj to the best j-subspace with probability 1− exp(−k) us-
ing our sampling procedure to privately implement approx-
imate volume sampling. Importantly, the actual Dj we ob-
tain won’t matter, as the estimator of [29] is an NBE and is
sharply concentrated providedDj is anyO(1)-approximation.
Hence, we will be able to apply the result of [47].

Consider the quantity F1(`2(C)) =
∑n
i=1 ‖Ci‖2. We first

sample a row Ci with probability ‖Ci‖2
F1(`2(C))

, using that an

O∗(1)-communication and O∗(nd)-computation protocol for
(ε, δ)-approximation to F1(`2) exists [2]. We use SPIR to re-
trieve Ai, Bi, then compute ‖Ci‖2 exactly with O∗(d) com-
munication, which allows us to do rejection sampling to out-

put a coin with bias F1(`2(C))
B

for an upper bound B. We
repeatedly halve B until we obtain a sample Ci1 , i.e., un-
til we do not reject. Then Ci1 is sampled with probability
‖Ci‖2∑n

i=1 ‖Ci‖2
, and is additively shared. This is the same as our

g-sampler protocol, except it is applied to vectors.
An SFE then computes the d × d projection matrix P1

corresponding to Ci1 , and sends the parties an additively
homomorphic encryption E(I − P1), where I is the d × d
identity matrix. The parties compute E(A · (I − P1)) and
E(B ·(I−P1)) using the homomorphism. The second crucial
observation is that the sketch of [2] is a linear map, so it can
be applied to the encryptions of the new points. We repeat
this process, the SFE obtains Ci1 , Ci2 , and computes a ho-
momorphic encryption of I −P2, where P2 is the projection
onto span{Ci1 , Ci2}, and the parties compute E(A ·(I−P2))
and E(B ·(I−P2)). The process repeats until the points are
homomorphically encrypted on the orthogonal complement
of Dj = span{Ci1 , Ci2 , . . . , Cij}. The parties also compute

homomorphic encryptions of their points projected onto Dj .
Given our approximate volume sampling, implementing

[29] can again be done by sampling a homomorphically en-
crypted row according to its `2 norm using [2] (these rows
are now the normal vectors to Dj). Inductively, the en-
tire procedure of [29] can be implemented this way. Setting
δ = exp(−k), we get a sharply concentrated NBE and can
appeal to [47]. The critical use of our transformation was to
privately obtain a sample according to its `2-norm in an un-
biased way. Our PAP generalizes to sampling rows (blocks)
according to any norm (not just `2), using [2].

To achieve communication O∗(d), note that the projection
matrices Pi have rank at most j = O(1), so can instead be
communicated using FHE with O∗(d) bits. There is an Ω(d)
lower bound, which follows even to store a single point.
`p-sampling and Cascaded Moments. Sampling ac-

cording to the distribution π is useful in its own right, for
cascaded moments [3, 41, 48], machine learning problems
(here g(z) = z2) [17], and forward sampling [21, 48]. There
are no known NBEs for these problems. Our importance
sampling procedure solves this sampling primitive privately.

As an example application, the authors of [41] study es-
timating the cascaded moment Fq(Fp(A)) of an n × d ma-

trix A, defined as
∑n
i=1(

∑d
j=1 |Ai,j |

p)q, for integer constants

q, p and give a near-optimal O∗(n1−2/(qp)d1−2/p) space al-
gorithm for integers q ≥ p ≥ 2. In [3], the authors ob-

tained optimal space, up to O∗(1) factors, for every q and
p. To obtain a PAP, we first use our importance sam-
pling procedure with a binary search on rows and black
box use of the non-private algorithm of [3] to sample a row

Ai with probability ri = C · Fq(Fp(Ai))

B
, for a sufficiently

large constant C (that depends on q and p) and an up-
per bound B on Fq(Fp(A)) (we can achieve any constant
C with minor modifications to our g-sampler protocol).
The next observation is that Fq(Fp(Ai)) is a low-degree
polynomial, namely, it equals

∏
j1,...,jq

|Ai,j1 · · ·Ajq |p. We

use our importance sampling procedure with a non-private
Fp-estimation algorithm to obtain samples Ai,j1 , . . . , Ai,jq
each with an approximation to their probability, denoted
β1, . . . , βq. Then ri · β1 · · ·βq is our probability of sam-
pling the monomial Ai,j1 . . . Ai,jq , which we can enforce is

a constant-factor over-estimate to
|Ai,j1

···Ajq |
p

Fq(Fp(Ai))
. We can

then compute |Ai,j1 · · ·Ajq |p exactly, then reject the sam-
pled monomial with the appropriate probability, so that,
summing over all monomials, the probability we do not re-

ject whatever sampled monomial we obtain equals
Fq(Fp(Ai))

B
.

The protocol proceeds as in main, by halving B, etc.
`2-Distance to Independence of Datasets. In [37],

Indyk and McGregor study the streaming version of the
problem: Alice has (i, j, ai,j) ∈ [n]2 × {0, 1, . . . ,M}, and
Bob has (i, j, bi,j) ∈ [n]2 × {0, 1, . . . ,M}. Define the joint

probabilities pi,j =
ai,j+bi,j∑

i′,j′ ai′,j′+bi′,j′
, and marginals qi =∑

j′ ai,j′+bi,j′∑
i′,j′ ai′,j′+bi′,j′

and rj =
∑

i′ ai′,j+bi′,j∑
i′,j′ ai′,j′+bi′,j′

. They obtain

an (ε, δ)-approximation for h(a, b) =
∑
i.j(pi,j − qirj)

2 in

O∗(1) space in O∗(n2) time. Their algorithm chooses inde-
pendent 4-wise independent vectors u, v ∈ {−1,+1}n, main-
tains s =

∑
i,j uivj(ai,j + bi,j), t1 =

∑
i ui

∑
j(ai,j + bi,j),

t2 =
∑
j vj

∑
i(ai,j + bi,j), and L =

∑
i′,j′ ai′,j′ + bi′,j′ , and

computes ( s
L
− t1t2

L2 )2. It averages out O(ε−2) independent
copies, and takes the median of O(log 1/δ) independent av-
erages. Their algorithm is not an NBE due to the median.

To obtain a PAP, we treat q, r, and L as fixed, coming
from the outer level of recursion. Define h(a, b, q, r, L) =∑
i.j

(
ai,j+bi,j

L
− qirj

)2

. The key point is that the sketch

of [37] provides an (ε, δ)-approximation even if p, q, and
r are arbitrary vectors (of dimension n2, n, and n, respec-
tively). We sample an i∗ ∈ [n], expressing h(a, b, q, r, L)

as the quantity
∑
i(
∑
j(
ai,j+bi,j

L
− qirj)2), and use binary

search together with the sketch of [37] to get an i∗ ∈ [n] with

probability C
B

∑
j(
ai∗,j+bi∗,j

L
− qi∗rj)2 for an upper bound

B on h(a, b, q, r, L) and a C > 1 that can be computed. In
our applications of the sketch of [37], we sum over all i, j
in sketches t1, t2, and L above, but for s we only sum over
the set of i corresponding to the current internal node of
the binary tree (though we sum over all j ∈ [n]). Omitting
details, we sample a coordinate j∗ for this i∗, resulting in

a pair (i∗, j∗) with probability C′

B
(
ai∗,j∗+bi∗,j∗

L
− qi∗rj∗)2,

for a value C′ > 1 that can be computed, and an upper
bound B on h(a, b, q, r, L) = h(a, b). Via rejection sampling,

we can flip a coin with bias h(a,b,q,r,L)
B

, and proceed as usual.
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