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Abstract

We study low-rank approximation in the streaming model in which the rows of
an n × d matrix A are presented one at a time in an arbitrary order. At the end
of the stream, the streaming algorithm should output a k × d matrix R so that
‖A−AR†R‖2F ≤ (1 + ε)‖A−Ak‖2F , where Ak is the best rank-k approximation
to A. A deterministic streaming algorithm of Liberty (KDD, 2013), with an im-
proved analysis of Ghashami and Phillips (SODA, 2014), provides such a stream-
ing algorithm using O(dk/ε) words of space. A natural question is if smaller
space is possible. We give an almost matching lower bound of Ω(dk/ε) bits of
space, even for randomized algorithms which succeed only with constant proba-
bility. Our lower bound matches the upper bound of Ghashami and Phillips up to
the word size, improving on a simple Ω(dk) space lower bound.

1 Introduction

In the last decade many algorithms for numerical linear algebra problems have been proposed, often
providing substantial gains over more traditional algorithms based on the singular value decomposi-
tion (SVD). Much of this work was influenced by the seminal work of Frieze, Kannan, and Vempala
[9]. These include algorithms for matrix product, low rank approximation, regression, and many
other problems. These algorithms are typically approximate and succeed with high probability.
Moreover, they also generally only require one or a small number of passes over the data.

When the algorithm only makes a single pass over the data and uses a small amount of memory,
it is typically referred to as a streaming algorithm. The memory restriction is especially important
for large-scale data sets, e.g., matrices whose elements arrive online and/or are too large to fit in
main memory. These elements may be in the form of an entry or entire row seen at a time; we
refer to the former as the entry-update model and the latter as the row-update model. The row-
update model often makes sense when the rows correspond to individual entities. Typically one is
interested in designing robust streaming algorithms which do not need to assume a particular order
of the arriving elements for their correctness. Indeed, if data is collected online, such an assumption
may be unrealistic.

Muthukrishnan asked the question of determining the memory required of data stream algorithms
for numerical linear algebra problems, including best rank-k approximation, matrix product, eigen-
values, determinants, and inverses [20]. This question was posed again by Sarlós [23]. A number
of exciting streaming algorithms now exist for matrix problems. Sarlós [23] gave 2-pass algorithms
for matrix product, low rank approximation, and regression, which were sharpened by Clarkson and
Woodruff [5], who also proved lower bounds in the entry-update model for a number of these prob-
lems. See also work by Andoni and Nguyen for estimating eigenvalues in a stream [2], and work in
[1, 4, 6] which implicitly provides algorithms for approximate matrix product.

In this work we focus on the low rank approximation problem. In this problem we are given an
n × d matrix A and would like to compute a matrix B of rank at most k for which ‖A − B‖F ≤
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(1+ ε)‖A−Ak‖F . Here, for a matrix A, ‖A‖F denotes its Frobenius norm
√∑n

i=1

∑d
j=1A

2
i,j and

Ak is the best rank-k approximation to A in this norm given by the SVD.

Clarkson and Woodruff [5] show in the entry-update model, one can compute a factorization B =
L ·U ·R with L ∈ Rn×k, U ∈ Rk×k, andR ∈ Rk×d, with a streaming algorithm usingO(kε−2(n+
d/ε2) log(nd)) bits of space. They also show a lower bound of Ω(kε−1(n + d) log(nd)) bits of
space. One limitation of these bounds is that they hold only when the algorithm is required to output
a factorization L · U · R. In many cases n � d, and using memory that grows linearly with n (as
the above lower bounds show is unavoidable) is prohibitive. As observed in previous work [10, 17],
in downstream applications we are often only interested in an approximation to the top k principal
components, i.e., the matrix R above, and so the lower bounds of Clarkson and Woodruff can be
too restrictive. For example, in PCA the goal is to compute the most important directions in the row
space of A.

By reanalyzing an algorithm of Liberty [17], Ghashami and Phillips [10] were able to overcome this
restriction in the row-update model, showing that Liberty’s algorithm is a streaming algorithm which
finds a k×dmatrixR for which ‖A−AR†R‖F ≤ (1+ε)‖A−Ak‖F using onlyO(dk/ε) words of
space. Here R† is the Moore-Penrose pseudoinverse of R and R†R denotes the projection onto the
row space of R. Importantly, this space bound no longer depends on n. Moreover, their algorithm
is deterministic and achieves relative error. We note that Liberty’s algorithm itself is similar in spirit
to earlier work on incremental PCA [3, 11, 12, 16, 21], but that work missed the idea of using a
Misra-Gries heavy hitters subroutine [19] which is used to bound the additive error (which was then
improved to relative error by Ghashami and Phillips). It also seems possible to obtain a streaming
algorithm using O(dk(log n)/ε) words of space, using the coreset approach in an earlier paper by
Feldman et al. [8].

This work is motivated by the following questions: Is the O(dk/ε) space bound tight or can one
achieve an even smaller amount of space? What if one also allows randomization?

In this work we answer the above questions. Our main theorem is the following.

Theorem 1. Any, possibly randomized, streaming algorithm in the row-update model which outputs
a k×d matrix R and guarantees that ‖A−AR†R‖2F ≤ (1 + ε)‖A−Ak‖2F with probability at least
2/3, must use Ω(kd/ε) bits of space.

Up to a factor of the word size (which is typicallyO(log(nd)) bits), our main theorem shows that the
algorithm of Liberty is optimal. It also shows that allowing for randomization and a small probability
of error does not significantly help in reducing the memory required. We note that a simple argument
gives an Ω(kd) bit lower bound, see Lemma 2 below, which intuitively follows from the fact that
if A itself is rank-k, then R needs to have the same rowspace of A, and specifying a random k-
dimensional subspace of Rd requires Ω(kd) bits. Hence, the main interest here is improving upon
this lower bound to Ω(kd/ε) bits of space. This extra 1/ε factor is significant for small values of ε,
e.g., if one wants approximations as close to machine precision as possible with a given amount of
memory.

The only other lower bounds for streaming algorithms for low rank approximation that we know of
are due to Clarkson and Woodruff [5]. As in their work, we use the Index problem in communication
complexity to establish our bounds, which is a communication game between two players Alice and
Bob, holding a string x ∈ {0, 1}r and an index i ∈ [r] =: {1, 2, . . . , r}, respectively. In this
game Alice sends a single message to Bob who should output xi with constant probability. It is
known (see, e.g., [14]) that this problem requires Alice’s message to be Ω(r) bits long. If Alg is a
streaming algorithm for low rank approximation, and Alice can create a matrix Ax while Bob can
create a matrix Bi (depending on their respective inputs x and i), then if from the output of Alg
on the concatenated matrix [Ax;Bi] Bob can output xi with constant probability, then the memory
required of Alg is Ω(r) bits, since Alice’s message is the state of Alg after running it on Ax.

The main technical challenges are thus in showing how to choose Ax and Bi, as well as showing
how the output of Alg on [Ax;Bi] can be used to solve Index. This is where our work departs
significantly from that of Clarkson and Woodruff [5]. Indeed, a major challenge is that in Theorem
1, we only require the output to be the matrix R, whereas in Clarkson and Woodruff’s work from
the output one can reconstruct AR†R. This causes technical complications, since there is much less
information in the output of the algorithm to use to solve the communication game.
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The intuition behind the proof of Theorem 1 is that given a 2 × d matrix A = [1, x; 1, 0d], where
x is a random unit vector, then if P = R†R is a sufficiently good projection matrix for the low
rank approximation problem on A, then the second row of AP actually reveals a lot of information
about x. This may be counterintuitive at first, since one may think that [1, 0d; 1, 0d] is a perfectly
good low rank approximation. However, it turns out that [1, x/2; 1, x/2] is a much better low rank
approximation in Frobenius norm, and even this is not optimal. Therefore, Bob, who has [1, 0d]
together with the output P , can compute the second row of AP , which necessarily reveals a lot of
information about x (e.g., if AP ≈ [1, x/2; 1, x/2], its second row would reveal a lot of information
about x), and therefore one could hope to embed an instance of the Index problem into x. Most of
the technical work is about reducing the general problem to this 2× d primitive problem.

2 Main Theorem

This section is devoted to proving Theorem 1. We start with a simple lemma showing an Ω(kd)
lower bound, which we will refer to. The proof of this lemma is in the full version.

Lemma 2. Any streaming algorithm which, for every input A, with constant probability (over its
internal randomness) succeeds in outputting a matrix R for which ‖A− AR†R‖F ≤ (1 + ε)‖A−
Ak‖F must use Ω(kd) bits of space.

Returning to the proof of Theorem 1, let c > 0 be a small constant to be determined. We consider
the following two player problem between Alice and Bob: Alice has a ck/ε × d matrix A which
can be written as a block matrix [I,R], where I is the ck/ε × ck/ε identity matrix, and R is a
ck/ε× (d− ck/ε) matrix in which the entries are in {−1/(d− ck/ε)1/2,+1/(d− ck/ε)1/2}. Here
[I,R] means we append the columns of I to the left of the columns of R. Bob is given a set of k
standard unit vectors ei1 , . . . , eik , for distinct i1, . . . , ik ∈ [ck/ε] = {1, 2, . . . , ck/ε}. Here we need
c/ε > 1, but we can assume ε is less than a sufficiently small constant, as otherwise we would just
need to prove an Ω(kd) lower bound, which is established by Lemma 2.

Let B be the matrix [A; ei1 , . . . , eik ] obtained by stacking A on top of the vectors ei1 , . . . , eik .
The goal is for Bob to output a rank-k projection matrix P ∈ Rd×d for which ‖B − BP‖F ≤
(1 + ε)‖B −Bk‖F .

Denote this problem by f . We will show the randomized 1-way communication complexity of this
problem R1−way

1/4 (f), in which Alice sends a single message to Bob and Bob fails with probability
at most 1/4, is Ω(kd/ε) bits. More precisely, let µ be the following product distribution on Alice
and Bob’s inputs: the entries of R are chosen independently and uniformly at random in {−1/(d−
ck/ε)1/2,+1/(d − ck/ε)1/2}, while {i1, . . . , ik} is a uniformly random set among all sets of k
distinct indices in [ck/ε]. We will show that D1−way

µ,1/4 (f) = Ω(kd/ε), where D1−way
µ,1/4 (f) denotes

the minimum communication cost over all deterministic 1-way (from Alice to Bob) protocols which
fail with probability at most 1/4 when the inputs are distributed according to µ. By Yao’s minimax
principle (see, e.g., [15]), R1−way

1/4 (f) ≥ D1−way
µ,1/4 (f).

We use the following two-player problem Index in order to lower bound D1−way
µ,1/4 (f). In this prob-

lem Alice is given a string x ∈ {0, 1}r, while Bob is given an index i ∈ [r]. Alice sends a single
message to Bob, who needs to output xi with probability at least 2/3. Again by Yao’s minimax prin-
ciple, we have that R1−way

1/3 (Index) ≥ D1−way
ν,1/3 (Index), where ν is the distribution for which x and

i are chosen independently and uniformly at random from their respective domains. The following
is well-known.

Fact 3. [14] D1−way
ν,1/3 (Index) = Ω(r).

Theorem 4. For c a small enough positive constant, and d ≥ k/ε, we haveD1−way
µ,1/4 (f) = Ω(dk/ε).

Proof. We will reduce from the Index problem with r = (ck/ε)(d−ck/ε). Alice, given her string x
to Index, creates the ck/ε×dmatrixA = [I,R] as follows. The matrix I is the ck/ε×ck/ε identity
matrix, while the matrixR is a ck/ε×(d−ck/ε) matrix with entries in {−1/(d−ck/ε)1/2,+1/(d−
ck/ε)1/2}. For an arbitrary bijection between the coordinates of x and the entries of R, Alice sets a
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given entry in R to−1/(d− ck/ε)1/2 if the corresponding coordinate of x is 0, otherwise Alice sets
the given entry inR to +1/(d−ck/ε)1/2. In the Index problem, Bob is given an index, which under
the bijection between coordinates of x and entries of R, corresponds to being given a row index i
and an entry j in the i-th row of R that he needs to recover. He sets i` = i for a random ` ∈ [k],
and chooses k − 1 distinct and random indices ij ∈ [ck/ε] \ {i`}, for j ∈ [k] \ {`}. Observe that
if (x, i) ∼ ν, then (R, i1, . . . , ik) ∼ µ. Suppose there is a protocol in which Alice sends a single
message to Bob who solves f with probability at least 3/4 under µ. We show that this can be used
to solve Index with probability at least 2/3 under ν. The theorem will follow by Fact 3. Consider
the matrix B which is the matrix A stacked on top of the rows ei1 , . . . , eik , in that order, so that B
has ck/ε+ k rows.

We proceed to lower bound ‖B − BP‖2F in a certain way, which will allow our reduction to Index
to be carried out. We need the following fact:

Fact 5. ((2.4) of [22]) Let A be an m × n matrix with i.i.d. entries which are each +1/
√
n with

probability 1/2 and −1/
√
n with probability 1/2, and suppose m/n < 1. Then for all t > 0,

Pr[‖A‖2 > 1 + t+
√
m/n] ≤ αe−α′nt3/2 .

where α, α′ > 0 are absolute constants. Here ‖A‖2 is the operator norm supx ‖Ax‖/‖x‖ of A.

We apply Fact 5 to the matrix R, which implies,

Pr[‖R‖2 > 1 +
√
c+

√
(ck/ε)/(d− (ck/ε))] ≤ αe−α′(d−(ck/ε))c3/4 ,

and using that d ≥ k/ε and c > 0 is a sufficiently small constant, this implies

Pr[‖R‖2 > 1 + 3
√
c] ≤ e−βd, (1)

where β > 0 is an absolute constant (depending on c). Note that for c > 0 sufficiently small,
(1 + 3

√
c)2 ≤ 1 + 7

√
c. Let E be the event that ‖R‖22 ≤ 1 + 7

√
c, which we condition on.

We partition the rows of B into B1 and B2, where B1 contains those rows whose projection onto
the first ck/ε coordinates equals ei for some i /∈ {i1, . . . , ik}. Note that B1 is (ck/ε − k) × d and
B2 is 2k× d. Here, B2 is 2k× d since it includes the rows in A indexed by i1, . . . , ik, together with
the rows ei1 , . . . , eik . Let us also partition the rows of R into RT and RS , so that the union of the
rows in RT and in RS is equal to R, where the rows of RT are the rows of R in B1, and the rows
of RS are the non-zero rows of R in B2 (note that k of the rows are non-zero and k are zero in B2

restricted to the columns in R).

Lemma 6. For any unit vector u, write u = uR+uS+uT , where S = {i1, . . . , ik}, T = [ck/ε]\S,
and R = [d] \ [ck/ε], and where uA for a set A is 0 on indices j /∈ A. Then, conditioned on E
occurring, ‖Bu‖2 ≤ (1 + 7

√
c)(2− ‖uT ‖2 − ‖uR‖2 + 2‖uS + uT ‖‖uR‖).
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Proof. Let C be the matrix consisting of the top ck/ε rows of B, so that C has the form [I,R],
where I is a ck/ε × ck/ε identity matrix. By construction of B, ‖Bu‖2 = ‖uS‖2 + ‖Cu‖2. Now,
Cu = uS + uT +RuR, and so

‖Cu‖22 = ‖uS + uT ‖2 + ‖RuR‖2 + 2(us + uT )TRuR

≤ ‖uS + uT ‖2 + (1 + 7
√
c)‖uR‖2 + 2‖uS + uT ‖‖RuR‖

≤ (1 + 7
√
c)(‖uS‖2 + ‖uT ‖2 + ‖uR‖2) + (1 + 3

√
c)2‖uS + uT ‖‖uR‖

≤ (1 + 7
√
c)(1 + 2‖uS + uT ‖‖uR‖),

and so

‖Bu‖2 ≤ (1 + 7
√
c)(1 + ‖uS‖2 + 2‖uS + uT ‖‖uR‖)

= (1 + 7
√
c)(2− ‖uR‖2 − ‖uT ‖2 + 2‖uS + UT ‖‖uR‖).

We will also make use of the following simple but tedious fact, shown in the full version.

Fact 7. For x ∈ [0, 1], the function f(x) = 2x
√

1− x2 − x2 is maximized when x =√
1/2−

√
5/10. We define ζ to be the value of f(x) at its maximum, where ζ = 2/

√
5 +
√

5/10−
1/2 ≈ .618.

Corollary 8. Conditioned on E occurring, ‖B‖22 ≤ (1 + 7
√
c)(2 + ζ).

Proof. By Lemma 6, for any unit vector u,

‖Bu‖2 ≤ (1 + 7
√
c)(2− ‖uT ‖2 − ‖uR‖2 + 2‖uS + uT ‖‖uR‖).

Suppose we replace the vector uS + uT with an arbitrary vector supported on coordinates in S with
the same norm as uS+uT . Then the right hand side of this expression cannot increase, which means
it is maximized when ‖uT ‖ = 0, for which it equals (1 + 7

√
c)(2−‖uR‖2 + 2

√
1− ‖uR‖2‖uR‖),

and setting ‖uR‖ to equal the x in Fact 7, we see that this expression is at most (1+7
√
c)(2+ζ).

Write the projection matrix P output by the streaming algorithm as UUT , where U is d × k with
orthonormal columns ui (so R†R = P in the notation of Section 1). Applying Lemma 6 and Fact 7
to each of the columns ui, we show in the full version:

‖BP‖2F ≤ (1 + 7
√
c)((2 + ζ)k −

k∑
i=1

‖uiT ‖2). (2)

Using the matrix Pythagorean theorem, we thus have,

‖B −BP‖2F = ‖B‖2F − ‖BP‖2F

≥ 2ck/ε+ k − (1 + 7
√
c)((2 + ζ)k −

k∑
i=1

‖uiT ‖2) using ‖B‖2F = 2ck/ε+ k

≥ 2ck/ε+ k − (1 + 7
√
c)(2 + ζ)k + (1 + 7

√
c)

k∑
i=1

‖uiT ‖2. (3)

We now argue that ‖B−BP‖2F cannot be too large if Alice and Bob succeed in solving f . First, we
need to upper bound ‖B−Bk‖2F . To do so, we create a matrix B̃k of rank-k and bound ‖B− B̃k‖2F .
Matrix B̃k will be 0 on the rows in B1. We can group the rows of B2 into k pairs so that each pair
has the form ei + vi, ei, where i ∈ [ck/ε] and vi is a unit vector supported on [d] \ [ck/ε]. We let
Yi be the optimal (in Frobenius norm) rank-1 approximation to the matrix [ei + vi; ei]. By direct
computation 1 the maximum squared singular value of this matrix is 2 + ζ. Our matrix B̃k then
consists of a single Yi for each pair in B2. Observe that B̃k has rank at most k and

‖B −Bk‖2F ≤ ‖B − B̃k‖2F ≤ 2ck/ε+ k − (2 + ζ)k,

1For an online SVD calculator, see http://www.bluebit.gr/matrix-calculator/

5

http://www.bluebit.gr/matrix-calculator/


Therefore, if Bob succeeds in solving f on input B, then,

‖B −BP‖2F ≤ (1 + ε)(2ck/ε+ k − (2 + ζ)k) ≤ 2ck/ε+ k − (2 + ζ)k + 2ck. (4)

Comparing (3) and (4), we arrive at, conditioned on E :
k∑
i=1

‖uiT ‖2 ≤
1

1 + 7
√
c
· (7√c(2 + ζ)k + 2ck) ≤ c1k, (5)

where c1 > 0 is a constant that can be made arbitrarily small by making c > 0 an arbitrarily small.

Since P is a projector, ‖BP‖F = ‖BU‖F . Write U = Û+ Ū , where the vectors in Û are supported
on T , and the vectors in Ū are supported on [d] \ T . We have,

‖BÛ‖2F ≤ ‖B‖22c1k ≤ (1 + 7
√
c)(2 + ζ)c1k ≤ c2k,

where the first inequality uses ‖BÛ‖F ≤ ‖B‖2‖Û‖F and (5), the second inequality uses that event
E occurs, and the third inequality holds for a constant c2 > 0 that can be made arbitrarily small by
making the constant c > 0 arbitrarily small.

Combining with (4) and using the triangle inequality,

‖BŪ‖F ≥ ‖BP‖F − ‖BÛ‖F using the triangle inequality

≥ ‖BP‖F −
√
c2k using our bound on ‖BÛ‖2F

=
√
‖B‖2F − ‖B −BP‖2F −

√
c2k by the matrix Pythagorean theorem

≥
√

(2 + ζ)k − 2ck −
√
c2k by (4)

≥
√

(2 + ζ)k − c3k, (6)

where c3 > 0 is a constant that can be made arbitrarily small for c > 0 an arbitrarily small constant
(note that c2 > 0 also becomes arbitrarily small as c > 0 becomes arbitrarily small). Hence,
‖BŪ‖2F ≥ (2 + ζ)k − c3k, and together with Corollary 8, that implies ‖Ū‖2F ≥ k − c4k for a
constant c4 that can be made arbitrarily small by making c > 0 arbitrarily small.

Our next goal is to show that ‖B2Ū‖2F is almost as large as ‖BŪ‖2F . Consider any column ū of Ū ,
and write it as ūS + ūR. Hence,

‖Bū‖2 = ‖RT ūR‖2 + ‖B2ū‖2 using B1ū = RT ūR

≤ ‖RT ūR‖2 + ‖ūS +RS ūR‖2 + ‖ūS‖2 by definition of the components

= ‖RūR‖2 + 2‖ūS‖2 + 2ūTSRS ūR using the Pythagorean theorem

≤ 1 + 7
√
c+ ‖ūS‖2 + 2‖ūS‖‖RS ūR‖

using ‖RūR‖2 ≤ (1 + 7
√
c)‖ūR‖2 and ‖ūR‖2 + ‖ūS‖2 ≤ 1

(also using Cauchy-Schwarz to bound the other term).

Suppose ‖RS ūR‖ = τ‖ūR‖ for a value 0 ≤ τ ≤ 1 + 7
√
c. Then

‖Bū‖2 ≤ 1 + 7
√
c+ ‖ūS‖2 + 2τ‖ūS‖

√
1− ‖ūS‖2.

We thus have,

‖Bū‖2 ≤ 1 + 7
√
c+ (1− τ)‖ūS‖2 + τ(‖ūS‖2 + 2‖ūS‖

√
1− ‖ūS‖2)

≤ 1 + 7
√
c+ (1− τ) + τ(1 + ζ) by Fact 7

≤ 2 + τζ + 7
√
c, (7)

and hence, letting τ1, . . . , τk denote the corresponding values of τ for the k columns of Ū , we have

‖BŪ‖2F ≤ (2 + 7
√
c)k + ζ

k∑
i=1

τi. (8)

Comparing the square of (6) with (8), we have
k∑
i=1

τi ≥ k − c5k, (9)
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where c5 > 0 is a constant that can be made arbitrarily small by making c > 0 an arbitrarily small
constant. Now, ‖Ū‖2F ≥ k − c4k as shown above, while since ‖RsūR‖ = τi‖ūR‖ if ūR is the i-th
column of Ū , by (9) we have

‖RSŪR‖2F ≥ (1− c6)k (10)

for a constant c6 that can be made arbitrarily small by making c > 0 an arbitarily small constant.

Now ‖RŪR‖2F ≤ (1 + 7
√
c)k since event E occurs, and ‖RŪR‖2F = ‖RT ŪR‖2F + ‖RSŪR‖2F since

the rows of R are the concatenation of rows of RS and RT , so combining with (10), we arrive at

‖RT ŪR‖2F ≤ c7k, (11)

for a constant c7 > 0 that can be made arbitrarily small by making c > 0 arbitrarily small.

Combining the square of (6) with (11), we thus have

‖B2Ū‖2F = ‖BŪ‖2F − ‖B1Ū‖2F = ‖BŪ‖2F − ‖RT ŪR‖2F ≥ (2 + ζ)k − c3k − c7k
≥ (2 + ζ)k − c8k, (12)

where the constant c8 > 0 can be made arbitrarily small by making c > 0 arbitrarily small.

By the triangle inequality,

‖B2U‖F ≥ ‖B2Ū‖F − ‖B2Û‖F ≥ ((2 + ζ)k − c8k)1/2 − (c2k)1/2. (13)

Hence,

‖B2 −B2P‖F =
√
‖B2‖2F − ‖B2U‖2F Matrix Pythagorean, ‖B2U‖F = ‖B2P‖F

≤
√
‖B2‖2F − (‖B2Ū‖F − ‖B2Û‖F )2 Triangle Inequality

≤
√

3k − (((2 + ζ)k − c8k)1/2 − (c2k)1/2)2 Using (13),‖B2‖2F = 3k,(14)

(15)

or equivalently, ‖B2 − B2P‖2F ≤ 3k − ((2 + ζ)k − c8k) − (c2k) + 2k(((2 + ζ) − c8)c2)1/2 ≤
(1− ζ)k+ c8k+ 2k(((2 + ζ)− c8)c2)1/2 ≤ (1− ζ)k+ c9k for a constant c9 > 0 that can be made
arbitrarily small by making the constant c > 0 small enough. This intuitively says that P provides a
good low rank approximation for the matrix B2. Notice that by (14),

‖B2P‖2F = ‖B2‖2F − ‖B2 −B2P‖2F ≥ 3k − (1− ζ)k − c9k ≥ (2 + ζ)k − c9k. (16)

Now B2 is a 2k × d matrix and we can partition its rows into k pairs of rows of the form Z` =
(ei` +Ri` , ei`), for ` = 1, . . . , k. Here we abuse notation and think ofRi` as a d-dimensional vector,
its first ck/ε coordinates set to 0. Each such pair of rows is a rank-2 matrix, which we abuse notation
and call ZT` . By direct computation2 ZT` has squared maximum singular value 2 + ζ. We would
like to argue that the projection of P onto the row span of most Z` has length very close to 1. To
this end, for each Z` consider the orthonormal basis V T` of right singular vectors for its row space
(which is span(ei` , Ri` )). We let vT`,1, v

T
`,2 be these two right singular vectors with corresponding

singular values σ1 and σ2 (which will be the same for all `, see below). We are interested in the
quantity ∆ =

∑k
`=1 ‖V T` P‖2F which intuitively measures how much of P gets projected onto the

row spaces of the ZT` . The following lemma and corollary are shown in the full version.

Lemma 9. Conditioned on event E , ∆ ∈ [k− c10k, k+ c10k], where c10 > 0 is a constant that can
be made arbitrarily small by making c > 0 arbitrarily small.

The following corollary is shown in the full version.

Corollary 10. Conditioned on event E , for a 1−√c9 + 2c10 fraction of ` ∈ [k], ‖V T` P‖2F ≤ 1+c11,
and for a 99/100 fraction of ` ∈ [k], we have ‖V T` P‖2F ≥ 1− c11, where c11 > 0 is a constant that
can be made arbitrarily small by making the constant c > 0 arbitrarily small.

2We again used the calculator at http://www.bluebit.gr/matrix-calculator/
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Recall that Bob holds i = i` for a random ` ∈ [k]. It follows (conditioned on E) by a union bound
that with probability at least 49/50, ‖V T` P‖2F ∈ [1 − c11, 1 + c11], which we call the event F and
condition on. We also condition on event G that ‖ZT` P‖2F ≥ (2+ζ)−c12, for a constant c12 > 0 that
can be made arbitrarily small by making c > 0 an arbitrarily small constant. Combining the first part
of Corollary 10 together with (16), event G holds with probability at least 99.5/100, provided c > 0
is a sufficiently small constant. By a union bound it follows that E , F , and G occur simultaneously
with probability at least 49/51.

As ‖ZT` P‖2F = σ2
1‖vT`,1P‖2 + σ2

2‖vT`,2P‖2, with σ2
1 = 2 + ζ and σ2

1 = 1 − ζ, events E ,F , and G
imply that ‖vT`,1P‖2 ≥ 1 − c13, where c13 > 0 is a constant that can be made arbitrarily small by
making the constant c > 0 arbitrarily small. Observe that ‖vT`,1P‖2 = 〈v`,1, z〉2, where z is a unit
vector in the direction of the projection of v`,1 onto P .

By the Pythagorean theorem, ‖v`,1 − 〈v`,1, z〉z‖2 = 1− 〈v`,1, z〉2, and so

‖v`,1 − 〈v`,1, z〉z‖2 ≤ c14, (17)

for a constant c14 > 0 that can be made arbitrarily small by making c > 0 arbitrarily small.

We thus have ZT` P = σ1〈v`,1, z〉u`,1zT + σ2〈v`,2, w〉u`,2wT , where w is a unit vector in the
direction of the projection of of v`,2 onto P , and u`,1, u`,2 are the left singular vectors of ZT` . Since
F occurs, we have that |〈v`,2, w〉| ≤ c11, where c11 > 0 is a constant that can be made arbitrarily
small by making the constant c > 0 arbitrarily small. It follows now by (17) that

‖ZT` P − σ1u`,1vt`,1‖2F ≤ c15, (18)

where c15 > 0 is a constant that can be made arbitrarily small by making the constant c > 0
arbitrarily small.

By direct calculation3 , u`,1 = −.851ei` − .526Ri` and v`,1 = −.851ei` − .526Ri` . It follows that
‖ZT` P − (2 + ζ)[.724ei` + .448Ri` ; .448ei` + .277Ri` ]‖2F ≤ c15. Since ei` is the second row of
ZT` , it follows that ‖eTi`P − (2 + ζ)(.448ei` + .277Ri`)‖2 ≤ c15.
Observe that Bob has ei` and P , and can therefore compute eTi`P . Moreover, as c15 > 0 can be made
arbitrarily small by making the constant c > 0 arbitrarily small, it follows that a 1− c16 fraction of
the signs of coordinates of eTi`P , restricted to coordinates in [d] \ [ck/ε], must agree with those of
(2 + ζ).277Ri` , which in turn agree with those of Ri` . Here c16 > 0 is a constant that can be made
arbitrarily small by making the constant c > 0 arbitrarily small. Hence, in particular, the sign of the
j-th coordinate of Ri` , which Bob needs to output, agrees with that of the j-th coordinate of eTi`P
with probability at least 1− c16. Call this eventH.

By a union bound over the occurrence of events E ,F , G, and H, and the streaming algorithm suc-
ceeding (which occurs with probability 3/4), it follows that Bob succeeds in solving Index with
probability at least 49/51− 1/4− c16 > 2/3, as required. This completes the proof.

3 Conclusion

We have shown an Ω(dk/ε) bit lower bound for streaming algorithms in the row-update model for
outputting a k × d matrix R with ‖A − AR†R‖F ≤ (1 + ε)‖A − Ak‖F , thus showing that the
algorithm of [10] is optimal up to the word size. The next natural goal would be to obtain multi-pass
lower bounds, which seem quite challenging. Such lower bound techniques may also be useful for
showing the optimality of a constant-round O(sdk/ε) + (sk/ε)O(1) communication protocol in [13]
for low-rank approximation in the distributed communication model.
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and detailed comments on this work (thanks to Jeff for the figure!). I would also like to thank
the XDATA program of the Defense Advanced Research Projects Agency (DARPA), administered
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3Using the online calculator in earlier footnotes.
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A Proof of Lemma 2

Let S be the set of k-dimensional subspaces over the vector space GF (2)d, where GF (2) denotes
the finite field of 2 elements with the usual modulo 2 arithmetic. The cardinality of S is known [18]
to be

(2d − 1)(2d − 1) · · · (2d−k+1 − 1)

(2k − 1)(2k−1 − 1) · · · 1 ≥ 2dk/2−k
2 ≥ 2dk/6,

where the inequalities assume that k ≤ d/3.

Now let A1 and A2 be two k × d matrices with entries in {0, 1} whose rows span two differ-
ent k-dimensional subspaces of GF (2)d. We first claim that the rows also span two different k-
dimensional subspaces of Rd. Indeed, consider a vector v ∈ GF (2)d which is in the span of the
rows of A1 but not in the span of the rows of A2. If A1 and A2 had the same row span over Rd, then
v =

∑
i wiA

2
i , where the wi ∈ R andA2

i denotes the i-th row ofA2. Since v has integer coordinates
and the A2

i have integer coordinates, we can assume the wi are rational, since the irrational parts
must cancel. By scaling by the least common multiple of the denominators of the wi, we obtain that

α · v =
∑
i

βiA
2
i , (19)

where α, β1, . . . , βk are integers. We can assume that the greatest common divisor (gcd) of
α, β1, . . . , βk is 1, otherwise the same conclusion holds after we divide α, β1, . . . , βk by the gcd.
Note that (19) implies that αv =

∑
i βiA

2
i mod 2, i.e., when we take each of the coordinates modulo

2. Since the βi cannot all be divisible by 2 (since α would then be odd and so by the gcd condition
the left hand side would contain a vector with at least one odd coordinate, contradicting that the right
hand side is a vector with even coordinates), and the rows of A2 form a basis over GF (2d), the right
hand side must be non-zero, which implies that α = 1 mod 2. This implies that v is in the span of
the rows of A2 over GF (2d), a contradiction.

It follows that there are at least 2dk/6 distinct k-dimensional subspaces of Rd spanned by the rows
of the set of binary k × d matrices A. For each such A, ‖A − Ak‖F = 0 and so the row span of R
must agree with the row span of A if the streaming algorithm succeeds. It follows that the output of
the streaming algorithm can be used to encode log2 2dk/6 = Ω(dk) bits of information. Indeed, if
A is chosen at random from this set of at least 2dk/6 binary matrices, and Z is a bit indicating if the
streaming algorithm succeeds, then

|R| ≥ H(R) ≥ I(R;A|Z) ≥ (2/3)I(R;A | Z = 1) ≥ (2/3)(dk/6) = Ω(dk),

where |R| denotes the expected length of the encoding of R, H is the entropy function, and I is the
mutual information. For background on information theory, see [7]. This completes the proof.

B Proof of Fact 7

Setting y2 = 1−x2, we can equivalently maximize f(y) = −1 + 2y
√

1− y2 + y2, or equivalently
g(y) = 2y

√
1− y2 + y2. Differentiating this expression and equating to 0, we have

2
√

1− y2 − 2y2√
1− y2

+ 2y = 0.

Multiplying both sides by
√

1− y2 one obtains the equation 4y2 − 2 = 2y
√

1− y2, and squaring
both sides, after some algebra one obtains 5y4 − 5y2 + 1 = 0. Using the quadratic formula, we get
that the maximizer satisfies y2 = 1/2 +

√
5/10, or x2 = 1/2−

√
5/10.
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C Deriviation of Inequality (2)

‖BP‖2F = ‖BU‖2F =

k∑
i=1

‖Bui‖2

≤ (1 + 7
√
c)

k∑
i=1

(2− ‖uiT ‖2 − ‖uiR‖2 + 2‖uiS + uiT ‖‖uiR‖)

= (1 + 7
√
c)(2k −

k∑
i=1

(‖uiT ‖2) +

k∑
i=1

(2‖uiS + uiT ‖‖uiR‖ − ‖uiR‖2))

= (1 + 7
√
c)(2k −

k∑
i=1

(‖uiT ‖2) +

k∑
i=1

(2
√

1− ‖uiR‖2‖uiR‖ − ‖uiR‖2))

≤ (1 + 7
√
c)(2k −

k∑
i=1

(‖uiT ‖2) + kζ)

= (1 + 7
√
c)((2 + ζ)k −

k∑
i=1

‖uiT ‖2).

D Proof of Lemma 9

For any unit vector u, consider
∑k
`=1 ‖V T` u‖2. This is equal to ‖uS‖2 + ‖RSuR‖2. Conditioned

on E , ‖RSuR‖2 ≤ (1 + 7
√
c)‖uR‖2. Hence,

∑k
`=1 ‖V T` u‖2 ≤ 1 + 7

√
c, and consequently, ∆ ≤

k(1 + 7
√
c).

On the other hand, ‖B2P‖2F =
∑k
`=1 ‖ZT` P‖2F . Since ‖ZT` ‖22 ≤ 2 + ζ, it follows by (16) that

∆ ≥ k − (c9/(2 + ζ))k, as otherwise ∆ would be too small in order for (16) to hold.

The lemma now follows since
√
c and c9 can be made arbitrarily small by making the constant c > 0

small enough.

E Proof of Corollary 10

For the first part of the corollary, observe that

‖ZT` P‖2F = σ2
1‖vT`,1P‖2 + σ2

2‖vT`,2P‖2,

where vT`,1 and vT`,2 are right singular vectors of V T` , and σ1, σ2 are its singular values, with σ2
1 =

2 + ζ and σ2
2 = 1− ζ. Since ∆ ≤ k + c10k by Lemma 9, we have

k∑
`=1

‖vT`,1P‖2 + ‖vT`,2P‖2 ≤ k + c10k.

If
∑k
`=1 ‖vT`,2P‖2 ≥ (c9 + 2c10)k, then

‖B2P‖2F ≤
∑
`

‖ZT` P‖2F

≤ (2 + ζ)(k + c10k − 2c10k − c9k) + (1− ζ)(2c10k + c9k)

≤ (2 + ζ)(k − c9k)− (2 + ζ)c10k + (1− ζ)(2c10k + c9k)

≤ (2 + ζ)k − 2c9k − ζc9k − 2c10k − ζc10k + 2c10k + c9k − 2ζc10k − ζc9k
≤ (2 + ζ)k − (1 + 2ζ)c9k +−3ζc10k

< (2 + ζ)k − c9k
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which is a contradiction to (16). Hence,
∑k
`=1 ‖vT`,2P‖2 ≤ (c9 + 2c10)k. This means by a Markov

bound that a 1 − √c9 + 2c10 fraction of ` satisfy ‖vT`,2P‖2 ≤
√
c9 + 2c10, which implies that for

this fraction that ‖V T` P‖2F ≤ 1 +
√
c9 + 2c10.

For the second part of the corollary, suppose at most 99k/100 different ` satisfy ‖V T` P‖2F > 1 −
200
√
c9 + 2c10. By the previous part of the corollary, at most

√
c9 + 2c10k of these ` can satisfy

‖V T` P‖2F > 1 +
√
c9 + 2c10. Hence, since ‖V T` P‖2F ≤ 2,

∆ < 2
√
c9 + 2c10k + (1 +

√
c9 + 2c10)(99/100−

√
c9 + 2c10)k + (1− 200

√
c9 + 2c10)k/100

≤ 2
√
c9 + 2c10k + 99k/100 + 99k

√
c9 + 2c10/100− k

√
c9 + 2c10 + k/100− 2

√
c9 + 2c10k

≤ k −
√
c9 + 2c10k/100

≤ k −
√

2c10k/100

< k − c10k,
where the final inequality follows for c10 > 0 a sufficiently small constant. This is a contradiction
to Lemma 9. Hence, at least 99k/100 different ` satisfy ‖V T` P‖2F > 1 − 200

√
c9 + 2c10. Letting

c11 = 200
√
c9 + 2c10, we see that c11 can be made an arbitrarily small constant by making the

constant c > 0 arbitrarily small. This completes the proof.
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