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Abstract. A linear (q, δ, ε,m(n))-locally decodable code (LDC) C :
Fn → Fm(n) is a linear transformation from the vector space Fn to the
space Fm(n) for which each message symbol xi can be recovered with
probability at least 1

|F| + ε from C(x) by a randomized algorithm that

queries only q positions of C(x), even if up to δm(n) positions of C(x)
are corrupted. In a recent work of Dvir, the author shows that lower
bounds for linear LDCs can imply lower bounds for arithmetic circuits.
He suggests that proving lower bounds for LDCs over the complex or
real field is a good starting point for approaching one of his conjectures.

Our main result is an m(n) = Ω(n2) lower bound for linear 3-query
LDCs over any, possibly infinite, field. The constant in the Ω(·) depends
only on ε and δ. This is the first lower bound better than the trivial
m(n) = Ω(n) for arbitrary fields and more than two queries.
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1 Introduction

Classical error-correcting codes allow one to encode an n-bit message x into a
codeword C(x) such that even if a constant fraction of the bits in C(x) are
corrupted, x can still be recovered. It is known how to construct such codes
of length O(n) that can tolerate a constant fraction of errors, even in such a
way that allows decoding in linear time [1]. However, if one is only interested
in recovering a few bits of the message, then these codes have the disadvantage
that they require reading most of the codeword.

A locally decodable code (LDC) C : Fn → Fm(n) is an encoding from the
vector space Fn to the space Fm(n) such that each message symbol xi can be
recovered with probability at least 1

|F| + ε from C(x) by a randomized algorithm
that reads only q positions of C(x), even if up to δm(n) positions in C(x) are
corrupted (here 1

|F| is zero if F is infinite). If C is a linear transformation, then the
LDC is said to be linear. LDCs in their full generality were formally defined by
Katz and Trevisan [2]. Linear LDCs were first considered in work by Goldreich
et al [3]. There is a vast body of work on LDCs; we refer the reader to Trevisan’s
survey [4] or to Yekhanin’s thesis [5].
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While in general an LDC need not be linear, there is good motivation for
studying this case. On the practical front, it is easy to encode a message and
update a codeword given the generator matrix for a linear code. In applications
of error-correcting codes to compressed sensing [6–8], the encoding is defined
to be linear because of the physics of an optical lens. In large data streams,
sketches are linear because they can be updated efficiently. On the theoretical
front, lower bounds for linear 2-query LDCs are useful for polynomial identity
testing [9]. These applications consider fields F of large or infinite size, e.g., in
compressed sensing and streaming one has F = R.

In a surprising recent development, Dvir [10] shows that lower bounds for
linear locally self-correctable codes and linear locally decodable codes imply
lower bounds on the rigidity of a matrix, which in turn imply size/depth tradeoffs
for arithmetic circuits [11]. In Section 5.1 of [10], the author suggests that proving
lower bounds on linear locally correctable or linear locally decodable codes over
the complex or real field is a good starting point for approaching one of his
conjectures.

1.1 Results

Our main result is that for any (possibly infinite) field F, any 3-query linear
LDC requires m(n) = Ω(n2), where the constant in the Ω(·) notation depends
only on ε and δ.

The first reason previous work does not give a non-trivial lower bound over
arbitrary fields is that it uses a generic reduction from an adaptive decoder to
a non-adaptive decoder, which effectively reduces ε to ε/|F|q−1. For constant q,
if F is of polynomial size, one cannot beat the trivial m(n) = Ω(n) bound this
way. We give a better reduction to a non-adaptive decoder.

Given our reduction, it then seems possible to obtain a field-independent
Ω(n3/2) bound by turning the birthday paradox argument of Katz and Trevisan
[2] into a rank argument. This is still weaker than our bound by a factor of

√
n.

Also, by using a technique of Kerenidis and de Wolf [12], it seems possible to
obtain a bound of Ω(n2/(|F|2 log2 n)). This bound becomes trivial when F = R
or F = C, or even |F| = poly(n). Note that if taking |F| = poly(n) were to imply
3-query linear LDCs of linear size, then the encoding would need only a linear
number of machine words. Our result rules out this possibility.

While the parameters of the LDCs considered by Dvir [10] over R or C are
in a different regime than those considered here, e.g., he needs a bound for
q = log2+Ω(1)(n) queries, our result provides the first progress on this problem
for LDCs for more than two queries. We note that our results are not possible
for non-linear codes, as one can encode n real numbers into a single real number.

An earlier technical report [13] by the author contains some of the ideas used
here. That version of this paper has a weaker m(n) = Ω(n2/ log log n) bound
for 3-query linear LDCs over any field. It also shows an Ω(n2/ log n) bound for
non-linear 3-query LDCs over F2 using a similar argument to that given here
in Section 3.1. It contains polylogarithmic improvements over [12] for any odd
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q ≥ 3 number of queries. We do not know if for constant-sized fields, an Ω(n2)
bound holds for non-linear codes.

1.2 Techniques

In this section we give an overview of the techniques we use for our lower bound.
Let C : Fn → Fm be a linear 3-query LDC. Then each of its output co-

ordinates Ci(x) equals 〈vi, x〉, for a vector vi ∈ Fn. As observed by Katz and
Trevisan [2] for finite fields, since C can tolerate a large fraction of errors and
is locally decodable, for each i ∈ [n] def= {1, 2, . . . , n}, there is a large matching
(i.e., collection of disjoint sets) Mi of triples {va, vb, vc} for which ui, the i-th
standard unit vector, is in span{va, vb, vc}. We generalize this to infinite fields,
which requires some care since the matching sizes of Katz and Trevisan (and
subsequent work of [3] and [12]) degrade with the field size for general adaptive
decoders. For constant ε and δ (the setting we consider here), we show that for
any field, |Mi| = Ω(m).

Given the matchings, we work in the 3-uniform multi-hypergraph G on vertex
set {v1, . . . , vm} whose 3-edgeset is ∪nj=1Mj . The average degree of a vertex in
G is Ω(n), and by standard arguments (iteratively remove the minimum degree
vertex in the hypergraph and stop once the minimum degree is larger than the
original average degree), we can find an induced sub-multi-hypergraph G′ with
minimum degree βn for a constant β > 0. In particular, it is easy to show that
we can find a set T of αn linearly independent vertices of G′ collectively incident
to Ω(n2) distinct 3-edges, where α is a constant satisfying 0 < α < β.

We now provide a new way to project 3-query LDCs down to 2-query LDCs.
Suppose we extend T to a basis T ∪ U of Fn by greedily adding a set U of
standard unit vectors. Consider the linear projection P for which T is in the
kernel, but P restricted to U is the identity map. Suppose we apply P to every
vertex in G′. Let N(T ) denote the set of vertices incident to T via a 3-edge
{a, b, c} in G′, i.e., the neighborhood of T . Suppose {a, b, c} ∈ Mi. The key
point is that after application of P , either the projection of a, b, or c is equal
to 0, since one of these vertices is in the kernel of P . But if ui ∈ U , then
P (ui) = ui. Hence, either ui ∈ span(P (a), P (b)), ui ∈ span(P (a), P (c)), or
ui ∈ span(P (b), P (c)). We can thus obtain large matchings of edges (as opposed
to 3-edges), for which a standard unit vector is in the span of the endpoints.
Notice that since |U | ≥ n− αn, whereas the minimum degree of each vertex in
T is βn > αn, each vertex is still incident to at least (β−α)n edges for different
i ∈ U , which is already enough to prove an Ω(n2/ log n) lower bound by now
resorting to known techniques for lower bounding 2-query LDCs [9].

The next and harder part is improving the bound to a clean Ω(n2). Our
lower bound comes from bounding the cardinality of the neighborhood N(T )
of T . Suppose this cardinality really were Θ(n2/ log n). Then there are Ω(n2)
hyperedges from T to its neighborhood. This means that the average degree
of a vertex in N(T ) using the edges from T to N(T ) is Ω(log n). By standard
arguments we can find a set A of α′n vertices in N(T ) incident to a set B of
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Ω(n log n) vertices in N(T ) via the edges from T to N(T ). Now if we augment
the kernel of our projection to additionally include the vertices in A, as well
as more standard unit vectors, we can put most of B into the kernel of our
projection. We could not do this a priori, since putting a set B of more than n
vertices in the kernel of a projection could make the projection equal to zero.
Here, though, it is important that a constant fraction of standard unit vectors
are preserved under projection.

We assumed that N(T ) = Θ(n2/ log n), when it could have been anywhere
from ω(n2/ log n) to o(n2). However, we can iteratively apply the above proce-
dure, gradually enlarging the kernel while preserving a large number of standard
unit vectors under projection. After O(log log n) iterations, we show that the
neighborhood of our resulting kernel has size Ω(n2 log n). We can then use lower
bound techniques developed in the 2-query setting to deduce that m = Ω(n2).

1.3 Related Work

Katz and Trevisan [2] show that 1-query LDCs do not exist.
For linear 2-query LDCs, Dvir and Shpilka [9] show that m(n) ≥ exp(n) for1

any field F, and the Hadamard code shows this is optimal (see also [3], [14], [15]).
We note that for non-linear 2-query LDCs, if the field F has constant size, then
m(n) ≥ exp(n) is also known to hold [12].

For more than 2 queries, there is a large gap between upper and lower
bounds. This may, in part, be explained by the recent connections of Dvir [10].
The upper bounds for q-query LDCs are linear and have the form m(n) =
exp(exp(logc/ log q n log1−c/ log q log n)) for an absolute constant c > 0 ([16], [17],
[18]). While the initial constructions were over finite fields, recently it was shown
that similar upper bounds hold also over the real or complex numbers ([19], [20]).

The lower bounds are the aforementioned bounds of Katz and Trevisan [2]
and of Kerenidis and de Wolf [12].

2 Preliminaries

Definition 2.1. ([2]) Let δ, ε ∈ (0, 1), q an integer, and F a field. A linear
transformation C : Fn → Fm is a linear (q, δ, ε)-locally decodable code (LDC for
short) if there is a probabilistic oracle machine A such that:

– For every x ∈ Fn, for every y ∈ Fm with ∆(y, C(x)) ≤ δm, and for every
i ∈ [n], Pr[Ay(i) = xi] ≥ 1

|F| + ε, where the probability is taken over the
internal coin tosses of A. Here ∆(C(x), y) refers to the number of positions
in C(x) and y that differ.

– In every invocation, A makes at most q queries (possibly adaptively).

In Section 4, we prove the following.

1 Here exp(n) denotes 2Θ(n).
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Theorem 2.1. Let C : Fn → Fm be a linear (3, δ, ε)-LDC. Then C is also a
linear (3, δ/9, 2/3− 1/|F|)-LDC with a non-adaptive decoder.

This improves known reductions to non-adaptive codes since it holds for any F.
Thus, we may assume that we have a non-adaptive decoder by changing δ and
ε by constant factors.

By known results described in Appendix A, for every i ∈ [n] there is a
matching Mi of {v1, . . . , vm} of size Ω(m) (where the constant depends on ε, δ,
and q) such that, if e ∈ Mi, then ui ∈ span(v | v ∈ e), where ui denotes
the unit vector in direction i. Consider the multi-hypergraph G with vertex set
{v1, . . . , vm} and hyperedge set ]ni=1Mi, that is, a hyperedge e occurs in G once
for each Mi that it occurs in. For readability, we use the term hypergraph to
refer to a multi-hypergraph, that is, a hypergraph which may have repeated
hyperedges (which we sometimes just refer to as edges).

In Appendix A, we show there is a non-empty hypergraph G′ ⊆ G with
minimum degree βn, where β is such that the number of hyperedges in G is at
least βmn.

3 Lower Bounds for 3-Queries over Any Field

3.1 The basic projection

Assume we have a linear (3, δ, ε)-LDC C : Fn → Fm for an arbitrary (possibly
infinite) field F. Throughout this section we shall use the term edge to denote a
3-edge (i.e., there are 3 endpoints) for ease of notation.

Let G be the hypergraph on vertex set {v1, . . . , vm} and G′ the non-empty
sub-hypergraph of G with minimum degree βn defined in Section 2. Let v be an
arbitrary vertex in G′, and let T = {v} ∪ N(v), where N(v) denotes the set of
neighbors of v in G′ (i.e., the vertices in a 3-edge containing v). Remove vertices
from T so that we are left with a set T of exactly αn linearly independent vectors,
where α < β is a small enough constant specified by the analysis below. This is
always possible because {v} ∪N(v) spans βn linearly independent vectors.

We may assume, by increasing m by a factor of at most 3, that every edge
in Mi has size exactly 3, and moreover, for every such edge {vj1 , vj2 , vj3} ∈Mi,
we have ui = γ1vj1 + γ2vj2 + γ3vj3 , where γ1, γ2, γ3 are non-zero elements of F.
Indeed, we may append 2m constant functions which always output 0 to the end
of C. Then, if an edge in Mi either has size less than 3 or has size 3 and has the
form {vj1 , vj2 , vj3}, but satisfies ui = γ1vj1 + γ2vj2 + γ3vj3 for some γk = 0, we
can replace the γk with 1 and replace jk with an index corresponding to one of
the zero functions.

Let v1, . . . , vT denote the vectors in T . Extend {v1, . . . , vT } to a basis of Fn
by adding a set U of n− αn standard unit vectors. Define a linear projection L
as follows:

L(v) = 0 for all v ∈ T and L(v) = v for all v ∈ U.

Since L is specified on a basis, it is specified on all of Fn.
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Let M ′i denote the collection of edges in Mi that are incident to some
vertex in T . Let e = {vj1 , vj2 , vj3} be an edge in some M ′i . Then there are
non-zero γ1, γ2, γ3 ∈ F for which γ1vj1 + γ2vj2 + γ3vj3 = ui. By linearity,
L(ui) = L(γ1vj1 + γ2vj2 + γ3vj3) = γ1L(vj1) + γ2L(vj2) + γ3L(vj3). By defi-
nition of M ′i , |{vj1 , vj2 , vj3}∩T | > 0, so one of the following must be true: L(ui) ∈
span(L(vj1), L(vj2)), L(ui) ∈ span(L(vj1), L(vj3)), or L(ui) ∈ span(L(vj2), L(vj3)).

Thus, for each such edge e = {vj1 , vj2 , vj3}, by removing exactly one vec-
tor vj` ∈ {vj1 , vj2 , vj3} for which L(vj`) = 0, we may define matchings Wi of
disjoint pairs {vj , vk} of {v1, . . . , vm} such that if {vj , vk} ∈ Wi, then L(ui) ∈
span(L(vj), L(vk)). Moreover,

∑n
i=1 |Wi| =

∑n
i=1 |M ′i |.

Say an index i ∈ [n] survives if L(ui) = ui, and say an edge e survives if
e ∈M ′i for an i that survives. If i survives, then ui ∈ U , as otherwise we would
have ui =

∑
v∈T γvv +

∑
u∈U γuu for some coefficients γv, γu ∈ F. Applying L

to both sides we would obtain ui = L(ui) =
∑
u∈U γuL(u) =

∑
u∈U γuu, which

is impossible unless ui ∈ U .
Recall that each of the αn vertices v in T has degree at least βn in G′. For

any such v ∈ T , there are at least βn − αn edges e in the disjoint union of the
M ′i for the i the survive. Thus, since each edge that survives can be incident to
at most 3 elements of T , and since α < β,∑

i that survive

|Wi| ≥ αn(β − α)n/3 = Ω(n2).

For i that do not survive, we set Wi = ∅. We need a theorem due to Dvir and
Shpilka [9].

Theorem 3.1. ([9]) Let F be any field, and let a1, . . . , am ∈ Fn. For every
i ∈ [n], let Mi be a set of disjoint pairs {aj1 , aj2} such that ui ∈ span(aj1 , aj2).
Then,

∑n
i=1 |Mi| ≤ m logm+m.

Applying Theorem 3.1 to our setting, we have m vectors L(vj) ∈ Fn and match-
ings Wi with

∑
i |Wi| = Ω(n2). We conclude that,

Theorem 3.2. For δ, ε ∈ (0, 1), if C : Fn → Fm is a linear (3, δ, ε)-locally
decodable code, then m = Ωδ,ε(n2/ log n), independent of the field F.

3.2 Recursing to get the Ω(n2) bound

We assume that β > 2α and w.l.o.g., that (β − 2α)n is a power of 2 and αn is
an integer. For a set A ⊆ Fn, let ex(A) denote a maximal linearly independent
subset of A.

Base Case: As before, let G′ be the hypergraph on 3-edges with minimum
degree βn, and let T1 = T be the set of αn linearly independent vertices defined
in Section 3.1. We extend T1 to a basis of Fn by greedily adding a set U of n−αn
standard unit vectors to T1. Set B1 = U . Since each vertex in T1 has degree at
least βn, since |T1| = αn, and since each matching edge can be counted at most
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3 times, the set E of 3-edges labeled by a u ∈ B1 and incident to T1 has size at
least αn(β − α)n/3.

For each u ∈ B1, let fu denote the number of edges in E labeled by u, i.e.,
in the matching Mu. Order the unit vectors so that fu1 ≥ fu2 ≥ · · · ≥ fu|B1|

,
and let E1 ⊂ E be the subset of edges incident to T1 labeled by a unit vector in
the set U1 of the first (β−2α)n

2 unit vectors. Set V1 = T1.

Inductive Step: We construct sets Ti, Bi, Ui, Ei, and Vi, i ≥ 2, as follows.
The proof works provided i satisfies i ≤ min(blog2(αn/2i−1)c, log2(β − 2α)n),
which holds for i = O(log n). The intuition for the sets is as follows:
- Ti is the set of vertices that are projected to zero by the i-th projection Li that
we construct.
- Bi is a maximal set of standard unit vectors that have not been projected to
zero by the projection Li that we construct.
- Ui is a subset of Bi of the most frequent standard unit vectors, that is, many
of the 3-edges incident to a vertex in Ti are labeled by a vector in Ui.
- Ei is a subset of 3-edges incident to Ti that are labeled by a vector in Ui.
- Vi is a small set of vertices that when projected to zero, project Ti to zero.

Let N(Ti−1) be the neighborhood of vertices of Ti−1, that are not themselves
in Ti−1 (so N(Ti−1) and Ti−1 are disjoint). We define a multigraph Gi−1 on
vertex set N(Ti−1) where we connect two vertices by a 2-edge if and only if
they are included in a 3-edge in Ei−1. Let r[i − 1] be the number of connected
components of Gi−1. Let Ci−1,1, . . . , Ci−1,r[i−1] be the connected components
of Gi−1, where |Ci−1,1| ≥ |Ci−1,2| ≥ · · · ≥ |Ci−1,r[i−1]|. For each connected
component Ci−1,j , arbitrarily choose a vertex vi−1,j ∈ Ci−1,j .

Let Ti = ∪bαn/2
i−1c

j=1 Ci−1,j , where Ci−1,j = ∅ if j > r[i− 1], and let

Vi = Vi−1 ∪ {vi−1,1, . . . , vi−1,bαn/2i−1c} (recall that V1 = T1).

Extend ex(Vi ∪ (∪i−1
j=1Uj)) to a basis of Fn by greedily adding a subset Bi of

unit vectors in Bi−1. Let E be the set of 3-edges incident to some vertex in Ti,
labeled by a u ∈ Bi. We will inductively have that |Uj | = (β − 2α)n/2j for all
j ≤ i− 1. Notice that this holds for our above definition of U1. Notice that

|Bi| ≥ n− |Vi| − | ∪i−1
j=1 Uj | ≥ n−

i∑
j=1

⌊ αn
2j−1

⌋
−

i−1∑
j=1

(β − 2α)n
2j

≥ n− αn−
i−1∑
j=1

αn

2j
−

i−1∑
j=1

(β − 2α)n
2j

= n− αn−
i−1∑
j=1

βn− αn
2j

= n− αn− βn+ αn+
(β − α)n

2i−1

= n− βn+
(β − α)n

2i−1
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Each vertex in Ti has degree at least βn, since all vertices in G′ have degree at
least βn. It follows that each vertex in Ti is incident to at least βn− (n−|Bi|) ≥
(β−α)n

2i−1 edges in E, since a vertex cannot be incident to two different edges of the
same label. Since an edge can be counted at most 3 times, |E| ≥ |Ti| · (β−α)n

3·2i−1 . For
each u ∈ Bi, let fu denote the number of edges in E labeled by u, and order the
unit vectors so fu1 ≥ · · · ≥ fu|Bi|

. Let Ei ⊂ E be the subset of edges incident to

Ti labeled by a unit vector in the set Ui of the first (β−2α)n
2i unit vectors. Notice

that our earlier assumption that |Uj | = (β − 2α)n/2j for all j ≤ i − 1 holds by
this definition of Ui.

Recursive projection: |T1| = αn, and for i > 1, |Ti| =
∑bαn/2i−1c
j=1 |Ci−1,j |.

Also, for all i ≥ 1, |Ui| = (β−2α)n/2i. We turn to bounding |Ei|. Since we chose
the (β − 2α)n/2i most frequent unit vectors (in terms of the number of their
occurrences in E) to include in the set Ui, and since Ei is the set of edges in E
labeled by a unit vector in Ui, we have that |Ei| must be at least a (β − 2α)/2i

fraction of |E| (there are only n possible unit vectors). That is, we have

|Ei| ≥
(β − 2α)

2i
· |E| ≥ (β − 2α)

2i
· |Ti| ·

(β − α)n
3 · 2i−1

=
[

2(β − 2α)(β − α)
3

]
· |Ti|n

4i
.

We define a sequence of linear projections Li for i ≥ 1 as follows. We set
Li(ex(Vi ∪ (∪i−1

j=1Uj))) = 0, and Li(u) = u for all u ∈ Bi.

Claim. For any i ≥ 2, if j ≤ bαn/2i−1c, then all vertices b ∈ Ci−1,j satisfy
Li(b) = 0.

Proof. We prove this by induction on i ≥ 2. For the base case i = 2, consider
any vertex b in C1,j , and let v1,j = a0, a1, a2, . . . , ak = b be a path from v1,j to
b in C1,j . Since {a0, a1} is an edge in C1,j , we have a0, a1 ∈ N(T1) and so there
is a 3-edge e = {w, a0, a1} ∈ E1 with w ∈ T1 and labeled by a uj ∈ U1. But
then L2(w) = 0 since w ∈ T1 = V1. Moreover, L2(uj) = 0 since uj ∈ U1. But,
for non-zero γ1, γ2, γ3 ∈ F, γ1w+ γ2a0 + γ3a1 = uj . These conditions imply that
γ2L2(a0) + γ3L2(a1) = 0. Now, notice that v1,j ∈ V2 since j ≤ bαn/2i−1c, and
so L2(v1,j) = L2(a0) = 0. It follows that L2(a1) = 0. By repeated application
on the path from v1,j to ak = b, we get L2(b) = 0.

Inductively, suppose it is true for all values from 2 up to i−1. We prove it for
i. Consider any vertex b in Ci−1,j and let v1,j = a0, a1, . . . , ak = b be a path from
v1,j to b in Ci−1,j . Since {a0, a1} is an edge in Ci−1,j , we have a0, a1 ∈ N(Ti−1)
and so there is a 3-edge e = {w, a0, a1} ∈ Ei−1 with w ∈ Ti−1 and labeled by
a uj ∈ Ui−1. But then Li(w) = 0 since w ∈ Ti−1 and so w ∈ Ci−2,j for some
j ≤ bαn/2i−2c, which by the inductive hypothesis means Li−1(w) = 0, and
the kernel of Li−1 is contained in the kernel of Li. Now also Li(uj) = 0 since
uj ∈ Ui−1. For non-zero γ1, γ2, γ3 ∈ F, we have γ1w + γ2a0 + γ3a1 = uj , and
so γ2Li(a0) + γ3Li(a1) = 0. Notice that v1,j ∈ Vi since j ≤ bαn/2i−1c, and so
Li(v1,j) = Li(a0) = 0. Hence, Li(a1) = 0, and by repeated application on the
path from v1,j to ak = b, we get Li(b) = 0. This completes the induction.
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For each component Ci−1,j for any i and j, let ci−1,j denote |Ci−1,j | for notational
convenience.

Lemma 3.1. For any i ≥ 2, if j ≤ bαn/2i−1c, then the number of edges in
Ci−1,j is at most ci−1,j log ci−1,j + ci−1,j.

Proof. Let {a, b} be an edge in Ci−1,j . Then there is an edge e = {a, b, c} ∈ Ei−1

with c ∈ Ti−1. Then γ1a + γ2b + γ3c = uk for some uk ∈ Ui−1, for non-zero
γ1, γ2, γ3 in F. Since e ∈ Ei−1, we have uk ∈ Ui−1 ⊆ Bi−1, and so we have
Li−1(uk) = uk. Now, c ∈ Ti−1, and by Claim 3.2, Li−1 vanishes on all of Ti−1 In
particular, Li−1(c) = 0. By linearity, γ1Li−1(a) + γ2Li−1(b) = uk. Moreover, for
each k′ ∈ [n], each vertex in Ci−1,j can occur in at most one 3-edge labeled by
uk′ (by definition of the matchings in G′), so we obtain matchings Wk′ , where
an edge {a, b} in Ci−1,j is in Wk′ iff there is an e ∈ Ei−1 labeled by uk′ . By
Theorem 3.1,

∑
k′ |Wk′ | ≤ ci−1,j log ci−1,j + ci−1,j . But the number of edges in

Ci−1,j is at most the sum of matching sizes |Wk′ | for uk′ ∈ Ui−1.

Define the constant γ = 2(β−2α)(β−α)/3. It follows that for all i, we have the
constraints

1. γ|Ti−1|n
4i−1 ≤ |Ei−1| ≤

∑r[i−1]
j=1 (ci−1,j log ci−1,j + ci−1,j)

2. |Ti| =
∑bαn/2i−1c
j=1 ci−1,j

Lemma 3.2. Suppose for i = 1, 2, . . . , Θ(log log n), we have |Ti| > 8|Ti−1|.
Then m = Ω(n2).

Proof. By induction, |Ti| > 8i−1|T1| = 8i−1αn for i = 1, 2, . . . , Θ(log log n). We
thus have,

|Ei| ≥ γ ·
|Ti|n

4i
≥ γα

8
· 2in2.

Hence, for i = Θ(log log n), we have |Ei−1| = Ω(n2 log n). Using thatΩ(n2 log n) =
|Ei−1| ≤

∑r[i−1]
j=1 (ci−1,j log ci−1,j + ci−1,j), we have

m ≥
r[i−1]∑
j=1

ci−1,j = Ω(n2 log n/ log n) = Ω(n2),

where we have used that ci−1,j ≤ n2 for all i and j, as otherwise m ≥ ci−1,j = n2

for some i and j, and we would already be done. Hence, we can use log ci−1,j =
O(log n).

Lemma 3.3. Suppose for a value i = O(log log n), ci−1,1 = Ω(n2/ log n). Then
m = Ω(n2).

Proof. Notice that |Ti| ≥ ci−1,1 = Ω(n2/ log n), and also, |Ei| = Ω(|Ti|n/4i) =
Ω(n3/polylog(n)) = Ω(n2 log n). Using the constraint that m ≥

∑r[i−1]
j=1 ci−1,j =

Ω(|Ei|/ log n), it follows that m = Ω(n2). Here we have again upper bounded
log ci−1,j by O(log n), justified as in the proof of Lemma 3.2.
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Lemma 3.4. Suppose for a value i = O(log log n), |Ti| ≤ 8|Ti−1|. Then m =
Ω(n2).

Proof. Let i∗ be the smallest integer i for which |Ti| ≤ 8|Ti−1|. It follows
that |Ti∗−1| ≥ 8i

∗−2|T1| = 8i
∗−2αn. Note that |Ei∗−1| = Ω(|Ti∗−1|n/4i

∗−1) =
Ω(n22i

∗
). We attempt to maximize the RHS of constraint 1 defined above,

namely

r[i∗−1]∑
j=1

(ci∗−1,j log ci∗−1,j + ci∗−1,j), (1)

subject to a fixed value of |Ti∗ |, where recall |Ti∗ | =
∑bαn/2i∗−1c
j=1 ci∗−1,j . We can

assume that

ci∗−1,1 ≥ ci∗−1,2 = ci∗−1,3 = · · · = ci∗−1,bαn/2i∗−1c,

as otherwise we could increase ci∗−1,1 while replacing the other values with
ci∗−1,bαn/2i∗−1c, which would preserve the value of |Ti∗ | and only make constraint
1 defined above easier to satisfy (notice that since |Ti∗ | is fixed, the LHS of
constraint 1 remains fixed, as well as both sides of constraint 2). Moreover,
constraint 1 is only easier to satisfy if we make

ci∗−1,bαn/2i∗−1c = ci∗−1,bαn/2i∗−1c+1 = · · · = ci∗−1,r[i∗−1].

We can assume that ci∗−1,1 = o(n2/ log n), as otherwise Lemma 3.3 immediately
shows that m = Ω(n2). In this case, though, ci∗−1,1 does not contribute asymp-
totically to sum (1) since |Ei∗−1| = Ω(n22i

∗
) and so sum 1 must be at least this

large. It follows that we can replace constraint 1 with

Ω(|Ti∗−1|n/4i
∗
) ≤ rA(logA+ 1), (2)

where A is the common value ci∗−1,x, where r = r[i∗ − 1], and where x ∈
{2, . . . , r}. Using that i = O(log log n), so we can ignore the floor operation
in constraint 2, constraint 2 becomes An/2i

∗
= Θ(|Ti∗ |), or equivalently, A =

Θ(|Ti∗ |2i
∗
/n).

Using that |Ti∗ | ≤ 8|Ti∗−1|, it follows that A = O(|Ti∗−1|2i
∗
/n). Combining

this with our reformulation of constraint 1 in (2), we have

r(logA+ 1) = Ω(n2/8i
∗
),

or equivalently, r = Ω(n2/(8i
∗
(logA+ 1))). Now,

m = Ω(Ar) = Ω

(
n|Ti∗−1|

4i∗(log(|Ti∗−1|2i∗/n) + 1)

)
.

This is minimized when |Ti∗−1| is as small as possible, but |Ti∗−1| ≥ 8i
∗−2αn.

Hence, m = Ω
(

n22i∗

log 16i∗

)
, which is minimized for i∗ = Θ(1), in which case

m = Ω(n2), as desired.
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Combining Lemma 3.2 and Lemma 3.4, we conclude,

Theorem 3.3. For δ, ε ∈ (0, 1), if C : Fn → Fm is a linear (3, δ, ε)-locally
decodable code, then m = Ωδ,ε(n2), independent of the field F.

4 From adaptive decoders to non-adaptive decoders

Theorem 4.1. For given δ, ε ∈ (0, 1), if C : Fn → Fm is a linear (3, δ, ε)-LDC,
then C is a linear (3, δ/9, 2/3− 1/|F|)-LDC with a non-adaptive decoder.

Proof. Since C is a linear code, each of its coordinates can be identified with a
vector vj ∈ Fn, with the function for that coordinate computing 〈vj , x〉, where
the inner product is over F. Define the ordered list of vectors B = v1, . . . , vm.

Fix some i ∈ [n], and let Ci be the collection of all non-empty sets S ⊆
{v1, . . . , vm}, with |S| ≤ 3, for which ui ∈ span(vj | vj ∈ S), where ui denotes
the unit vector in direction i. Let Di ⊆ {v1, . . . , vm} be a smallest dominating
set of Ci, that is, a set for which for all S ∈ Ci, |S ∩Di| > 0.

Claim. |Di| > δm.

Proof. Suppose not. Consider the following adversarial strategy: given a code-
word C(x), replace all coordinates C(x)j for which vj ∈ Di with 0. Denote the
new string C̃(x). The coordinates of C̃(x) compute the functions 〈ṽj , x〉, where
ṽj = vj if vj /∈ Di, and ṽj = 0 otherwise. Let B̃ be the ordered list of vectors
ṽ1, . . . , ṽm.

Define 3-span(B̃) to be the (possibly infinite) list of all vectors in the span
of each subset of B̃ of size at most 3. We claim that ui /∈ 3-span(B̃). Indeed, if
not, then let S ⊆ {ṽ1, . . . , ṽm} be a smallest set for which ui ∈ span(S). Then
|S| ≤ 3. This is not possible if |S| = 0. It follows that S ∩Di 6= ∅. This implies
that 0 is a non-trivial linear combination of vectors in S. Indeed, there is an `
for which ṽ` ∈ S and v` ∈ Di, implying ṽ` = 0. Hence, ui ∈ span(S \ ṽ`). But
|S \ {ṽ`}| < |S|, which contradicts that S was smallest.

Let A be the decoder of C, where A computes Ay(i, r) on input index i ∈ [n]
and random string r. Here, for any x ∈ Fn, we let the string y = y(x) be defined
by the adversarial strategy given above. For any x ∈ Fn, Ay(i, r) first probes
coordinate j1 of y, learning the value 〈ṽj1 , x〉. Next, depending on the answer it
receives, it probes coordinate j2, learning the value 〈ṽj2x〉. Finally, depending
on the answer it receives, it probes coordinate j3, learning the value 〈ṽj3x〉.
Consider the affine subspace V of dimension d ≥ n− 2 of all x ∈ Fn which cause
Ay(i, r) to read positions j1, j2, and j3. Let V0 be the affine subspace of V of all
x for which Ay(i, r) outputs xi. Since the output of Ay(i, r) is fixed given that
it reads positions j1, j2, and j3, and since ui /∈ span(ṽj1 , ṽj2 , ṽj3), it follows that
the dimension of V0 is at most d− 1.

Suppose first that F is a finite field. Then for any fixed r, the above implies
Ay(i, r) is correct on at most a 1

|F| fraction of x ∈ Fn since |V0|
|V | ≤

1
|F| for any set

of three indices j1, j2, and j3 that A can read. Thus, by averaging, there exists
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an x ∈ Fn for which Pr[Ay(i) = xi] ≤ 1
|F| , where the probability is over the

random coins r of A. This contradicts the correctness of A.
Now suppose that F is an infinite field. We will show that there exists an

x ∈ Fn for which Pr[Ay(i) = xi] = 0, contradicting the correctness of the
decoder.

For each random string r, there is a finite non-empty set Gr of linear con-
straints over F that any x ∈ Fn must satisfy in order for Ay(i, r) = xi. Consider
the union ∪rGr of all such linear constraints. Since the number of different r is
finite, this union contains a finite number of linear constraints.

Since F is infinite, we claim that we can find an x ∈ Fn which violates
all constraints in ∪rGr. We prove this by induction on n. If n = 1, then the
constraints have the form x1 = c1, x1 = c2, . . . , x1 = cs for some finite s. Thus, by
choosing x1 /∈ {c1, c2, . . . , cs}, we are done. Suppose, inductively, that our claim
is true for n−1. Now consider Fn. Consider all constraints in ∪rGr that have the
form x1 = c for some c ∈ F. There are a finite number of such constraints, and
we can just choose x1 not to equal any of these values c, since F is infinite. Now,
substituting this value of x1 into the remaining constraints, we obtain constraints
(each depending on at least one variable) on n − 1 variables x2, . . . , xn. By
induction, we can choose the values to these n−1 variables so that all constraints
are violated. Since we haven’t changed x1, the constraints of the form x1 = c
are still violated. This completes the proof.

It follows that since |Di| > δm and Di is a smallest dominating set of Ci, we
can greedily construct a matching Mi of δm/3 disjoint triples {vj1 , vj2 , vj3} of
{v1, . . . , vm} for which ui ∈ span(vj1 , vj2 , vj3).

Consider the new behavior of the decoder: on input i ∈ [n], choose a random
triple {vj1 , vj2 , vj3} ∈Mi, and compute xi as γ1〈vj1 , x〉+ γ2〈vj2 , x〉+ γ3〈vj3 , x〉,
where ui = γ1vj1 + γ2vj2 + γ3vj3 . Since the adversary can now corrupt at most
δm/9 positions, it follows that with probability at least 2/3, the positions queried
by the decoder are not corrupt and it outputs xi. Note that the new decoder
also makes at most 3 queries.

This can be extended straightforwardly to any constant q > 3 number of queries:

Theorem 4.2. For given δ, ε ∈ (0, 1), if C : Fn → Fm is a linear (q, δ, ε)-LDC,
then C is a linear (q, δ/(3q), 2/3− 1/|F|)-LDC with a non-adaptive decoder.
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A Basic Reductions

Intuitively, a local-decoding algorithm A cannot query any particular location
of the (corrupted) codeword too often, as otherwise an adversary could ruin the
success probability of A by corrupting only a few positions. This motivates the
definition of a smooth code.
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Definition A.1. ([2]) For fixed c, ε, and integer q, a linear transformation C :
Fn → Fm is a linear (q, c, ε)-smooth code if there exists a probabilistic oracle
machine A such that for every x ∈ Fn,

– For every i ∈ [n] and j ∈ [m], Pr[AC(x)(i) reads index j] ≤ c
m .

– For every i ∈ [n], Pr[AC(x)(i) = xi] ≥ 1
|F| + ε.

– In every invocation A makes at most q queries.

The probabilities are taken over the coin tosses of A. An algorithm A satisfying
the above is called a (q, c, ε)-smooth decoding algorithm for C (a decoder for
short).

Unlike a local-decoding algorithm, a smooth decoding algorithm is required to
work only when given access to a valid codeword, rather than a possibly corrupt
one. The following reduction from LDCs to smooth codes was observed by Katz
and Trevisan.

Theorem A.1. ([2]) Let C : Fn → Fm be a linear (q, δ, ε)-LDC that makes
non-adaptive queries. Then C is also a linear (q, q/δ, ε)-smooth code.

We use a graph-theoretic interpretation of smooth codes given in [3] and [2]. Let
C : Fn → Fm be a linear (q, c, ε)-smooth code, and let algorithm A be a (q, c, ε)-
smooth decoding algorithm for C. Since C is linear, each of the m positions of C
computes 〈vi, x〉 for a vector vi ∈ Fn. We say that a given invocation of A reads
a set e ⊆ {v1, . . . , vm} if the set of inner prodcuts that A reads in that invocation
equals {〈vi, x〉 | vi ∈ e}. Since A is restricted to read at most q entries, |e| ≤ q.

We say that e is good for i if Pr[AC(x)(i) = xi | A reads e] ≥ 1
|F| + ε

2 , where
the probability is over the internal coin tosses of A. It follows that if e is good for
i, then the i-th standard unit vector ui is in the span of the |e| vectors. Indeed,
otherwise, one can find two different inputs x which agree on the inner products
that are read but differ in coordinate i.

Definition A.2. ([2]) Fixing a smooth code C : Fn → Fm and a q-query re-
covery algorithm A, the recovery hypergraphs for i ∈ [n], denoted Gi, consist of
the vertex set {v1, . . . , vm} and the hyperedge set Ci = {e ⊆ {v1, . . . , vm} | ui ∈
span(e)}.

Lemma A.1. ([2]) Let C be a (q, c, ε)-smooth code that is good on average, and
let {Gi}ni=1 be the set of recovery hypergraphs. Then, for every i, the hypergraph
Gi = ({v1, . . . , vm}, Ci) has a matching Mi of sets of size q with |Mi| ≥ εm

cq .

Consider the multi-hypergraph G with vertex set {v1, . . . , vm} and hyperedge
set ]ni=1Mi, that is, a hyperedge occurs in G once for each Mi that it occurs in.
For readability, we use the term hypergraph to refer to a multi-hypergraph, that
is, a hypergraph which may have repeated hyperedges (which we sometimes
just refer to as edges). We claim that we can find a non-empty induced sub-
hypergraph G′ of G with minimum degree βn for a constant β > 0. The proof
is a straightforward generalization of Proposition 1.2.2 in [21] to hypergraphs.
For a proof, see Lemma 27 in Appendix 6 of [13] (omitted here due to space
constraints).


