
Additive Spanners in Nearly Quadratic Time

David P. Woodruff

IBM Almaden

Abstract. We consider the problem of efficiently finding an additive
C-spanner of an undirected unweighted graph G, that is, a subgraph H
so that for all pairs of vertices u, v, δH(u, v) ≤ δG(u, v) + C, where δ
denotes shortest path distance. It is known that for every graph G, one
can find an additive 6-spanner with O(n4/3) edges in O(mn2/3) time.
It is unknown if there exists a constant C and an additive C-spanner
with o(n4/3) edges. Moreover, for C ≤ 5 all known constructions require
Ω(n3/2) edges.

We give a significantly more efficient construction of an additive
6-spanner. The number of edges in our spanner is n4/3polylog n, match-
ing what was previously known up to a polylogarithmic factor, but we
greatly improve the time for construction, from O(mn2/3) to n2polylog n.
Notice that mn2/3 ≤ n2 only if m ≤ n4/3, but in this case G itself is a
sparse spanner. We thus provide both the fastest and the sparsest (up
to logarithmic factors) known construction of a spanner with constant
additive distortion.

We give similar improvements in the construction time of additive
spanners under the assumption that the input graph has large girth, or
more generally, the input graph has few edges on short cycles.

1 Introduction

An additive C-spanner (often called a (1, C)-spanner) of an unweighted undi-
rected graph G is a subgraph H with the property that for all vertices u, v,
δH(u, v) ≤ δG(u, v) + C. Here C is known as the distortion.

Spanners have a variety of applications. They are used in space-efficient rout-
ing tables that guarantee almost shortest routes [1], [10], [11], [17], [20], methods
for simulating synchronized protocols in unsynchronized networks [16], parallel
and distributed algorithms for computing almost shortest paths [7], [8], [14], and
in labeling schemes and distance oracles for reporting approximate distances [4],
[6], [19], [21].

There is a tradeoff between the distortion and the sparsity of the spanner.
Studying what sparsity is possible for small constant C has received considerable
attention. For C = 2, Aingworth et al (see [2], and the followup work [5], [12],
[15], [18], [22]) show that O(n3/2) edges are necessary and sufficient; that is,
every graph G contains an additive 2-spanner with this many edges, and there
exist graphs for which any additive 2-spanner requires this many edges. Later,
Baswana et al [5] show that every graph G contains an additive 6-spanner with
O(n4/3) edges. Nothing better than O(n4/3) is known even if the distortion is

allowed to be any constant, though lower bounds that degrade with the distortion
are known [23].

Another important measure is the time complexity needed for constructing
such a spanner. As many graph algorithms for distance-approximation [2], [5],
[9], [12] have running time proportional to the number of edges, a key approach
is to first find a spanner of the input graph, and then run existing algorithms on
the spanner rather than the dense input. The value of this approach is diminished
if the time to find the spanner is already too large.

The additive 2-spanner of Aingworth et al has construction time O(mn1/2).
This was improved by Dor, Halpern, and Zwick [12] to Õ(n2) time1 and Õ(n3/2)
edges. The conference version of the additive 6-spanner construction of Baswana
et al [5] had O(mn) time, but was improved to O(mn2/3) in the journal version
[3], and the improvement is attributed to Elkin [13]. Notice that O(mn2/3) is
much larger than Õ(n2). Indeed, m > n4/3; otherwise G itself serves as a sparse
spanner. Hence, mn2/3 > n2.

It should be noted that prior to the work of Baswana et al [5], Dor, Halpern,
and Zwick [12] constructed what they called a 6-emulator of a graph with Õ(n4/3)
edges and Õ(n2) time. A 6-emulator H of a graph G = (V,E) is a weighted
graph on the same vertex set V with an arbitrary edge set E′, subject to the
constraint that dG(u, v) ≤ dH(u, v) ≤ dG(u, v) + 6. Emulators are often much
easier to construct than spanners. For instance, it is known that every graph
has a 4-emulator containing Õ(n4/3) edges [12], but the best known additive
4-spanner has size Θ(n3/2). It was not until the much later work of [5] that
an additive 6-spanner with O(n4/3) edges was constructed, albeit with a much
larger running time.

1.1 Results

Our main contribution is a new construction of an additive 6-spanner with
Õ(n4/3) edges in a significantly faster Õ(n2) time. We thus provide both the
fastest and the sparsest (up to logarithmic factors) known construction of a
spanner with constant additive distortion.

Our techniques also solve the following problem: given a subset S of O(n2/3)
vertices of a graph G, find a subgraph H of G containing Õ(n4/3) edges so that
for all u, v ∈ S, δH(u, v) ≤ δG(u, v)+2. Our method solves this problem in Õ(n2)
time. The best previous time was O(mn2/3), using a technique of [3], attributed
to Elkin.

In an attempt to achieve even sparser additive spanners, Baswana et al [5]
study the construction of spanners by parameterizing the number of edges ap-
pearing on any short cycle. Let Γk(G) be the number of edges in G that lie
on a cycle with length at most 2k. They show that for any integers k ≥ 1 and
` ∈ [0, k], there exists an additive (2k + 4`)-spanner with O(Γk(G) + n1+ 1

k+`+1)
edges that can be constructed in O(mn1− `

k+`+1) time. We show that an additive

1 Let Õ(f(n)) denote the class of functions that are bounded above by a function that
grows as f(n) · polylog(f(n)).

(2k+ 4`)-spanner with Õ(Γk(G) +n1+ 1
k+`+1) edges can be constructed in Õ(n2)

time. This gives a sizable improvement upon the previous time bound for a wide
range of k and `.

As an example setting of parameters, if the input graph has girth greater
than 4, we can construct an additive 4-spanner (resp. additive 8-spanner) with
Õ(n4/3) edges (resp. Õ(n5/4) edges) in Õ(n2) time, whereas the prior bound was
O(mn) time (resp. Õ(mn3/4)) time.

1.2 Techniques

Our method is based on a new path-hitting framework. This approach is quite
different than the path-purchasing methods used in [5] to construct an additive
6-spanner. Namely, our work is the first to look at hitting the neighborhood of
a path in the absence of high-degree vertices, provided there are enough vertices
of moderate degree along the path.

In more detail, as in [3], we initially include all edges incident on low-degree
(< n1/3) vertices in the spanner. We then find a dominating set D1 of size
Õ(n2/3) of all vertices of degree at least n1/3. Each vertex in D1 can be thought
of as a cluster center, as in [3], and for each vertex incident to at least one cluster
center, we include an edge to one such center in our spanner. Now our algorithm
deviates from that of [3]. That algorithm needs to compute a breadth-first search
(BFS) tree around each cluster center. It then uses these trees to iteratively
choose walks (i.e., paths with repeated vertices and edges) to include in the
spanner. The main problem is the BFS tree computations, taking O(mn2/3)
time, which is too costly. We now explain how to overcome this problem.

We first describe a new combinatorial way of looking at the problem. Suppose
each shortest path P has x edges missing from the spanner. Then there are
Ω(n1/3x) vertices which are at distance 1 from some vertex in P . This follows
from the fact that the neighborhoods of two vertices that are at a distance larger
than 2 on P cannot intersect, by the triangle inequality. Therefore, if we choose
a random sample D2 of Õ(n2/3/x) of the n vertices, we will hit the neighborhood
of each shortest path. If u ∈ D2 is in the neighborhood of P , and v1, vr ∈ D1 are
neighbors of the first and last missing edge in P , then there are almost shortest
walks from u to v1 and u to vr with a total of roughly x missing edges. If we
include the missing edges on these walks to the spanner for all pairs of vertices in
D1 and D2, the total number of edges added is Õ((n2/3/x) ·n2/3 · x) = Õ(n4/3).
Since x is not the same for all shortest paths, we need to repeat this procedure
for (a logarithmic number of) geometrically increasing intervals of x.

There are several technical hurdles we need to overcome to implement this
in Õ(n2) time. First, we need a procedure, which, given a subgraph of the input,
finds almost shortest walks between pairs of vertices with the smallest number
of missing edges efficiently. For this bicriteria problem, we design a procedure
FHEASW-Solver which runs in Õ(m′) time, where m′ is the number of edges in
the subgraph. This procedure is based on a BFS-like dynamic program. We can
then run FHEASW-Solver from each vertex in D2, provided for the given value
of x and the shortest paths P with x edges missing, we can find a subgraph

which contains P and that has Õ(n4/3x) edges. Indeed, in this case the time of
the invocations of FHEASW-Solver will be Õ(|D2|n4/3x) = Õ(n2). If we choose
the subgraph to be all edges with one endpoint of degree at most n1/3x, then it
has at most Õ(n4/3x) edges, as we need. Unfortunately this subgraph may not
contain P if P contains a vertex of degree larger than n1/3x.

This leads us to our final case. If P contains a vertex of degree larger than
n1/3x, then we can compute another dominating set D3 of all vertices of degree
at least d in G, where d is the largest degree of a vertex along P . This domi-
nating set has size Õ(n/d). We can then connect each vertex in this dominating
set to each of the vertices in D1 via an almost shortest walk missing at most
d/n1/3 edges. Indeed, by assumption d > n1/3x, or equivalently, the number x
of missing edges is at most d/n1/3. The total number of edges added is therefore
Õ(|D1|(n/d)(d/n1/3)) = Õ(n4/3). To find the edges to add in this step we need
to run yet another invocation of FHEASW-Solver. We run it on a subgraph of
O(nd) edges, once from each vertex in D3, therefore taking Õ(|D3|nd) = Õ(n2)
total time. Since d is not the same for all shortest paths, we need to vary it in
geometrically increasing intervals as well. This idea of varying the degree and
working in subgraphs is similar to ideas used for additive 2-spanners of Dor,
Halpern, and Zwick [12].

An analysis of the union of the edgesets from the two cases shows that for
any pair of vertices, there is a path in the spanner between them with distortion
at most 6. It turns out that achieving this guarantee requires running FHEASW-
Solver several times on the same subgraph with different parameters. We remark
that our algorithm is Monte Carlo, that is, with high probability an additive-6
spanner is returned. We do not know how to derandomize the algorithm in Õ(n2)
time due to the fact that we need to hit the neighborhood of many paths, but
can only implicitly represent the paths in the allotted Õ(n2) time.

2 Preliminaries

The input is an unweighted undirected graph G = (V,E) on a set V of n vertices
and a set E of m edges. W.l.o.g., n is a power of 8. Let deg(u) be the degree
of u ∈ V , and let N(u) be the set of neighbors of u. For a set S of vertices, let
N(S) be ∪u∈SN(u).

Suppose E′ is an arbitrary subset of E. For u ∈ V , let BFS(u, (V,E′)) denote
a shortest-path tree rooted at u in the graph (V,E′). The following theorem is
standard and stated here for reference. See, e.g., the discussion in [9] or [12].

Theorem 1. (BFS) Given an unweighted undirected graph G = (V,E) and a
vertex u ∈ V , there is an O(m + n)-time algorithm that finds distances, and a
tree of shortest paths, from u to all the vertices of V .

All logarithms, if unspecified, are to the base 2. We will classify all edges of
our input graph G according to their type: an edge e = {u, v} is of type i
if min(deg(u),deg(v)) ∈ [2i, 2i+1). An edge is light if it is of type i for an
i ≤ log n1/3. Otherwise, it is heavy. We assume the standard RAM model on
O(log n)-sized words in which arithmetic operations take O(1) time.

3 Constructing Additive 6-spanners

3.1 A Subroutine

In our main algorithm, we need a subroutine which solves the following problem.
Fix an unweighted undirected graph G = (V,E). Fix a root vertex u ∈ V . For
each vertex v ∈ V , suppose we know δG(u, v). We would like to find a walk from
u to v with the least number of heavy edges among all walks from u to v whose
distance is at most δG(u, v) +C for a constant C > 0. More precisely, for a walk
P let φ(P) be the number of heavy edges along P . We sometimes abuse notation
and let φ{u, v} = φ({u, v}).

Fewest Heavy Edges with Almost Shortest Walks (FHEASW): Given
G, a vertex u, and a constant C, output a data structure for which on input
v ∈ V and i ∈ {δG(u, v), δG(u, v) + 1, . . . , δG(u, v) + C}, there is an algorithm
that returns, in O(φ(P)) time, the heavy edges along a walk P from u to v in G
with δP (u, v) = i and φ(P) = minwalks P ′ | δP ′ (u,v) = i φ(P ′).

Note that we allow P to be a walk rather than just a path, that is, it is a
path that may contain repeated vertices and edges.

We can solve this problem as follows. For a v ∈ V and i ∈ {δG(u, v), δG(u, v)+
1, . . . , δG(u, v) + C}, let D(v, i) be the minimum number of heavy edges on a
walk to u with length δG(u, v)+i. If there is no such walk, we define D(v, i) =∞.
Let S(j) be the set of vertices w reachable by a walk from u of length exactly j,
and for which j ≤ δG(u,w) + C. Then,

D(v, i) = min
w∈S(δG(u,v)+i−1)∩N(v)

D(w, i− 1) + φ(w, v) (1)

We can build up the values D(v, i) as follows. We first obtain δG(u, v) for all
v by running the algorithm of Theorem 1. Then to create S(j) given S(j − 1),
we include each v ∈ N(S(j − 1)) for which j ≤ δG(u, v) + C. The time to do
this is O(|N(S(j − 1))|). When computing N(S(j − 1)), we can also update the
appropriate D(v, i) values by Equation (1). Hence, the total time is, up to a
constant factor,

∑
j |N(S(j − 1))|, where S(0) = {u}. The key point is that,

since C is constant, any given vertex can occur in at most C + 1 different sets
S(j). It follows that the total time is O(Cm) = O(m).

While we have shown how to calculate the costsD(v, i), to solve the FHEASW
problem we must also return all heavy edges along a walk from u to v with length
δG(u, v)+i and containing at most D(v, i) heavy edges. One can do this by keep-
ing side information in the algorithm above. Namely, each time D(v, i) increases,
we can append the heavy edge to a running list of heavy edges along the walk.
This does not affect the overall time complexity by more than a constant factor.
Due to space constraints, we defer further details to the full version of this paper.

3.2 Main Algorithm

Spanner Construction(G = (V,E)):

1. Compute the type of each edge and store these values.
2. Initialize F to the set of light edges.
3. Repeat the following steps 3 log n times:

(a) Let R be a random sample of 2n2/3 vertices. For each vertex in [n]\R,
if there is an edge to a vertex in R, add one such edge to F .

(b) For i = log n, (log n)− 1, (log n)− 2, . . . , (log n1/3) + 1,
i. Let E′ be the subset of E of edges of type at most i.
ii. For j = 0, 1, 2, . . . , dlog 3n/2ie,

A. Let Si,j be a random subset of d3n/2i+je vertices.
B. For u ∈ Si,j , Du = FHEASW-Solver((V,E′), u, 4).
C. For u ∈ Si,j , v ∈ R, z ∈ {δ(V,E′)(u, v), δ(V,E′)(u, v) +

1, . . . , δ(V,E′)(u, v) + 4}, add to F the heavy edges on the
walk from u to v given by Du with query input z, provided
the number of heavy edges on the walk is ≤ 2i+j+1/n1/3 + 2.

4. Output H = (V, F).

Theorem 2. |F | = O(n4/3 log3 n).

Proof. The number of light edges added to F is O(n4/3). The number of edges
added in step 3a, over all 3 log n iterations of step 3, is O(n log n).

For each iteration i of step 3b, at most
∑
j |R||Si,j |(2i+j+1/n1/3 + 2) =∑

j O(n2/3) ·O(n/2i+j) · (2i+j+1/n1/3 + 2) = O(n4/3 log n) +
∑
j O(n5/3)/2i+j =

O(n4/3 log n) edges are added to F , where the last inequality follows from the
fact that 2i+j ≥ n1/3. The number of iterations of step 3b is O(log n), and step
3 is invoked 3 log n times, resulting in |F | = O(n4/3 log3 n).

Theorem 3. Spanner Construction can be implemented in O(n2 log2 n) time.

Proof. In step 1 we classify each edge as light or heavy, and assign the corre-
sponding weight. This can be done in O(m) time.

A single iteration of step 3a takes at most O(m) time. Hence, over all O(log n)
iterations, step 3a takes O(m log n) = O(n2 log n) time.

For a single iteration of step 3biiB, for a fixed value of i, j, and u ∈ Si,j ,
FHEASW-Solver takes time O(n2i) , since there are at most O(n2i) edges in
the subgraph. As there are O(n/2i+j) different u ∈ Si,j , it follows that step 3biiB
takes O(n2/2j) time. Hence, summing over all iterations and i and j, step 3biiB
takes O(n2 log2 n) time.

A single iteration of step 3biiC takes at most O(|Si,j ||R|(2i+j+1/n1/3 +2)) =
O(n/2i+j) ·O(n2/3)(2i+j+1/n1/3 + 2) = O(n4/3) time. Summing over iterations,
step 3biiC takes Õ(n4/3) time.

Hence, the total time of the algorithm is O(n2 log2 n).

It remains to argue the algorithm’s correctness. We start with a lemma. If P =
(v1, . . . , vs) is a shortest path from vertex v1 to vs, we define N(P) = ∪si=1N(vi).

Lemma 1. In the graph (V,E′) for any E′ ⊆ E, if there is a shortest path P
from u to v containing ` vertices of degree at least 2n1/3, then |N(P)| ≥ 2`n1/3/3.

Proof. Let w1, w2, . . . , w` be the sequence of vertices of degree at least 2n1/3

along P (possibly with other vertices in between). Observe that for each j,
N(wj) must be disjoint from ∪j′≥j+3N(wj′). Otherwise one could go from wj to
a vertex x ∈ N(wj)∩ (∪j′≥j+3N(wj′)), then to a vertex wj′ for some j′ ≥ j+ 3,
in two steps. As δP (wj , wj′) ≥ 3, this contradicts P being a shortest path, since
each of its sub-paths must be shortest. As |N(wj)| ≥ 2n1/3 for all j, it follows
that

∣∣∪`j=1N(wj)
∣∣ ≥ 2`n1/3/3.

Theorem 4. With probability at least 1− 1/n, H is an additive 6-spanner.

Proof. Fix a pair {a, b} of vertices in G, and fix any shortest path P from a to
b in G with the fewest heavy edges. We assume that there is at least one heavy
edge on P , as otherwise the path P will be added to F in step 2. So there are
at least two vertices of degree at least 2n1/3 on P . Let w1, w2, . . . , wr be the
ordered sequence of vertices on P of degree at least 2n1/3, where w1 is closest
to a and wr is closest to b.

Consider one iteration of step 3. We show that with probability at least 3/8,
using only the edges added to F in step 2 and the current iteration of step 3,
there is a path of length at most δG(a, b) + 6 from a to b. It will follow that the
probability that there is some iteration for which there is a path of length at
most δG(a, b) + 6 is at least 1 − (3/8)3 logn = 1 − 1/n3. By a union bound, it
will follow that for every pair of vertices, there is such a path with probability
at least 1− 1/n, that is, H is an additive 6-spanner.

Let i∗ be such that all edges along P have type at most i∗, and there is
at least one edge e∗ of type i∗. Observe that i∗ ∈ {log n, (log n) − 1, (log n) −
2, . . . , (log n1/3)+1}. We shall only consider the i∗-th iteration of step 3b. Notice
that the entire path P is included in the edgeset E′. We do a case analysis.
Case 1: The path P contains at most 2i

∗
/n1/3 heavy edges.

In this case we shall only consider the iteration in which j = 0 of step 3bii.
Now, e∗ is of type i∗, which means that at least one of its endpoints y has degree
in the range [2i

∗
, 2i
∗+1). It follows that all edges incident to y have type at most

i∗, and in particular, are included in the graph (V,E′). Consider the following
event E : Si∗,0 ∩N(y) 6= ∅. Then,

Pr[E] ≥ 1−
(

1− |N(y)|
n

)|Si∗,0|

≥ 1−
(

1− 2i
∗

n

)3n/2i∗

≥ 1− 1
e
.

Conditioned on E , let u ∈ Si∗,0 ∩N(y). Let E∗ be the set of edges added in step
3a, and consider the event F : ∃v1 ∈ R for which {w1, v1} ∈ E∗ and ∃vr ∈ R
for which {wr, vr} ∈ E∗. Since degree(w1),degree(wr) ≥ 2n1/3, Pr[F] ≥ 1 −

2
(

1− 2n1/3

n

)2n2/3

≥ 1− 2e−4. By a union bound, Pr[E ∧ F] ≥ 1− 1
e −

2
e4 >

3
8 .

Conditioned on E ∧ F , let v1 be a vertex in R for which {w1, v1} ∈ E∗, and
vr be a vertex in R for which {wr, vr} ∈ E∗. Consider the walk Q from u to v1
which first traverses edge {u, y}, then agrees with path P from y to w1, then
traverses edge {w1, v1}. Observe that the number of heavy edges along Q is at
most 2i

∗
/n1/3 + 2, since P contains at most 2i

∗
/n1/3 heavy edges. Moreover,

by the triangle inequality, the walk Q is of length at most δG(u, v1) + 4 ≤
δ(V,E′)(u, v1) + 4. It follows that in step 3biiC, there will be a walk Q′ added to
F from v1 to u of length at most δ(V,E′)(w1, y) + 2. Similarly, there will be a
walk Q′′ added to F from u to vr of length at most δ(V,E′)(y, wr) + 2.

Hence, the walk P ′ from a to b which agrees with P from a until w1,
then goes to v1, then takes the walk Q′ to u, then the walk Q′′ from u to
vr, then goes to wr, then agrees with P from wr to b, is of length at most
|P ′| ≤ δG(a,w1)+1+ |Q′|+ |Q′′|+1+δG(wr, b), which is at most δG(a,w1)+1+
δ(V,E′)(w1, y)+2+δ(V,E′)(y, wr)+2+1+δG(wr, b), which is at most δG(a, b)+6.

Case 2: The path P contains more than 2i
∗
/n1/3 heavy edges. Let j∗ be such

that the number of heavy edges on P is in the interval [2i
∗+j∗/n1/3, 2i

∗+j∗+1/n1/3).
Each heavy edge on P is of type at most i∗, and so one of the two endpoints must
have degree in the range [2n1/3, 2i

∗+1). It follows that all of the edges incident
to this endpoint in G are included in the graph (V,E′). It follows that there are
at least 2i

∗+j∗−1/n1/3 vertices of degree at least 2n1/3 on P in the graph (V,E′).
By Lemma 1, |N(P)| is therefore at least 2i

∗+j∗/3. Notice that this is also at
most n, and therefore 2j

∗ ≤ 3n/2i
∗
. Hence there is an iteration of step 3bii for

which j = j∗. We only consider this iteration.
By Lemma 1, |N(P)| ≥ 2i

∗+j∗/3. Consider the following event E : Si∗,j∗ ∩

N(P) 6= ∅. Then, Pr[E] ≥ 1−
(

1− |N(P)|
n

)|Si∗,j∗ |
≥ 1−

(
1− 2i∗+j∗

3n

)3n/2i∗+j∗

≥
1 − 1

e . Conditioned on E , let u ∈ Si∗j∗ ∩ N(P) and let y ∈ P be such that
{u, y} ∈ E′. As in case 1, letting E∗ be the set of edges added in step 3a, we
have that with probablity at least 3/8 event E occurs and there is a vertex v1 ∈ R
for which {w1, v1} ∈ E∗, and a vertex vr ∈ R for which {wr, vr} ∈ E∗.

As in case 1, consider the walk Q from u to v1, traversing edge {u, y}, agreeing
with P from y to w1, then traversing edge {w1, v1}. This walk contains at most
2i
∗+j∗+1/n1/3 + 2 heavy edges and has length at most δ(V,E′)(u, v1) + 4, so in

step 3biiC there will be a walk Q′ added to F from v1 to u of length at most
δ(V,E′)(w1, y) + 2. And as before, there will be a walk Q′′ added to F from u
to vr of length at most δ(V,E′)(y, wr) + 2. It follows that as in case 1 that there
is a walk P ′ from a to b in the spanner with length at most δG(a, b) + 6. This
completes the proof.

4 Construction for Inputs with Large Girth

Given a graph G with m edges and n vertices, let Γk(G) be the number of
edges in G that lie on a cycle with length at most 2k. Choose ε so that nε =
(k2n)1/(k+`+1). We need the following lemma of Baswana et al.

Lemma 2. ([5]) There are clusterings C` and Ck of vertices of G with the fol-
lowing properties: (1) for i ∈ {`, k}, each cluster C ∈ Ci is a rooted spanning
tree with radius at most i, and (2) the number of clusters in Ci is n1−iε. The
subgraph Hk,` containing all such spanning trees as well as every edge incident
to a vertex that does not appear in both clusterings C` and Ck can be constructed
in O(m) time and satisfies E[|Hk,`|] = O(Γk(G) + n1+ε).

Now we define a heavy edge to be an edge that does not appear in Hk,`. It is easy
to see that Theorem FHEASW-Solver continues to work with this new definition
of a heavy edge, that is, FHEASW-Solver solves the FHEASW problem (with
respect to this new definition of heavy) in O(m+ n) time, for constant k and `.

We let Base-Edges denote the algorithm guaranteed by Lemma 2. The fol-
lowing is our main algorithm.

InterClusterSpanner (G = (V,E)):

1. Initialize F to the output of Base-Edges(G). For i ∈ {k, `}, let Vi denote
the set of centers of vertices in clusters in Ci.

2. Repeat the following steps 3 log n times:
(a) For i = log n, (log n)− 1, (log n)− 2, . . . , 1,

i. Let Si be a random sample of 2n/2i vertices. For each vertex in
[n] \ Si, if there is an edge to a vertex in Si, add one edge to F .

ii. Put q = blog n−kε2i/(2k)c. For j = q, q+ 1, . . . , dlog n1−kεe, sam-
ple a set Si,j ⊆ Vk of dn1−kε2−je vertices.

iii. Let E′ ⊆ E be the set of edges of type at most i.
iv. For each u ∈ Si ∪ (∪ all j Si,j),

A. Compute Du = FHEASW-Solver((V,E′), u, `+ k).
B. For v ∈ V`, z ∈ {δ(V,E′)(u, v), δ(V,E′)(u, v) + 1, . . .,

δ(V,E′)(u, v) + 2` + 2k}, add to F the heavy edges along the
walk from u to v given by Du with query input z, provided it
has at most 2in−kε+`+1 heavy edges if u ∈ Si and 2i ≥ nkε,
or at most 4k2j + `+ k heavy edges if u ∈ Si,j for some j.

3. Output H = (V, F).

Our analysis will assume that the output of Base-Edges in step 1 has O(Γk(G) +
n1+ε) edges. This can be done with probability 1−1/n3 by running the algorithm
of Lemma 2 O(log n) times and taking the output with the least number of edges.

Theorem 5. |F | = O(Γk(G) + n1+ 1
k+`+1 log3 n).

Proof. The number of edges added in step 1 is O(Γk(G) +n1+ 1
k+`+1) by Lemma

2 and the definition of ε.
The number of edges added in step 2(a)i is O(n) per iteration, and thus

O(n log2 n) over all 3 log n iterations of step 2 and all choices of i.
The number of edges added in step 2(a)ivB due to u ∈ Si is at most |Si| · |V`| ·(

2in−kε + `+ 1
)

= O(n2−i)n1−`ε(2in−kε + ` + 1) = O(n2−(k+`)ε + n2−`ε2−i).
Notice that paths are only added if 2i ≥ nkε, and so this expression is bounded

by O(n2−(k+`)ε). Hence, over all 3 log n iterations of step 2 and all choices of i,
this is bounded by O(n2−(k+`)ε log2 n).

The number of edges added in step 2(a)ivB due to u ∈ Si,j for a fixed j is at
most |Si,j |·|V`|·(4k2j+`+k) = O(n1−kε2−j)·n1−`ε·(4k2j+`+k) = O(n2−(k+`)ε),
and so as we range over all j it is bounded by O(n2−(k+`)ε log n). Since step
2(a)ivB is invoked O(log2 n) times, using the definition of ε we see that the total
number of edges in H meets the claimed bound.

Theorem 6. InterClusterSpanner can be implemented in O(n2 log2 n) time.

Proof. Step 1 can be implemented in O(m) time by Lemma 2. Fix some iteration
of step 2a. Then steps 2ai, 2aii, and 2aiii can be implemented in O(n+m) time.
Step 2aivA runs in time O((|Si| + | ∪ all j Si,j |)n2i) = O(n2) + O(|Si,q|n2i).
Here we used that (1) n1−kε2−j is geometrically decreasing in j, (2) |Si,j | =
dn1−kε2−je, and (3) j is bounded above by dlog n1−kεe. Therefore, |∪ all j Si,j | =
O(|Si,q|). Now, |Si,q| = O(n1−kε/(n−kε2i)) = O(n/2i). Hence, step 2a(iv)A runs
in time O(n2). Over all iterations of step 2 and choices of i in step 2a, this gives
O(n2 log2 n) time.

By definition of FHEASW, step 2aivB runs in time O(|V`|(|Si|2in−kε +∑
j |Si,j |(4k2j))) = Õ(n1−`ε(n2−i · 2in−kε +

∑
j n

1−kε2−j(4k2j))), which equals
O(n2−(k+`)ε log n). Here we used the relation 2in−kε + `+ 1 = Θ(2in−kε), which
does not hold in general, but if we add the heavy edges along a path for u ∈ Si
in step 2aivB we require that 2i ≥ nkε, so in this case the relation holds. Over all
invocations of step 2 and choices of i in step 2a, this results in O(n2−(k+`)ε log3 n)
time, and thus is dominated by the time for iterations of step 2aivA.

Theorem 7. With probability ≥ 1− 1/n, H is an additive (2k + 4`)-spanner.

Proof. Fix a pair {a, b} of vertices in G and a shortest path P between them. We
assume there is at least one heavy edge along P (recall that we have modified
the definition of heavy), otherwise P will be added to F in step 1. Let w1, . . . , wr
be the ordered sequence of vertices in P (w1 is closest to a, and wr is closest to
b) that appear in both C` and Ck (note that r ≥ 2 since there is a heavy edge
along P). Let v1, . . . , vr be the centers of the clusters in C` containing w1, . . . , wr,
respectively.

Consider one iteration of step 2. We show that with probability at least 3/8,
using only the edges added to F in step 1 and the current iteration of step
2, there is a path of length at most δG(a, b) + 2k + 4` from a to b. Hence the
probability that there is some iteration for which there is a path of length at
most δG(a, b) + 2k+ 4` is at least 1− (3/8)3 logn ≥ 1− 1/n3. By a union bound,
it will follow that for every pair of vertices, there is such a path with probability
at least 1− 1/n, that is, H is an additive (2k + 4`)-spanner.

Recall that an edge {u, v} is of type i if min(deg(u),deg(v)) ∈ [2i, 2i+1). We
let i∗ be such that all edges along P have type at most i∗, and there is at least
one edge e∗ of type i∗. We shall only consider the i∗-th iteration of step 2a.
Notice that the entire path P is included in the edgeset E′.

Case 1: P contains at most n−kε2i
∗

heavy edges. Since e∗ is of type i∗, one
of its endpoints y has degree in the range [2i

∗
, 2i
∗+1). Hence, all edges incident

to y have type at most i∗, and are included in the graph (V,E′). Since Si∗ is a

randomly chosen set of size 2n/2i
∗
, with probability at least 1−

(
1− 2∗

n

)2n/2i∗

≥
3/8, there is a vertex u ∈ Si∗ ∩N(y). We condition on this event.

Consider the walk Q from u to v1 which first traverses edge {u, y}, then
agrees with path P from y to w1, then traverses at most ` edges along the span-
ning tree from w1 to v1 in the cluster centered at v1. Observe that the number
of heavy edges along this walk is at most n−kε2i

∗
+ `+ 1. Also, since P contains

at most n−kε2i
∗

heavy edges and at least 1 heavy edge, 2i
∗ ≥ n−kε, as needed

by step 2aivB. Moreover, by the triangle inequality, the walk Q is of length at
most δG(w1, y) + `+ 1 ≤ δG(u, y) + 2`+ 2 ≤ δG(u, y) + 2`+ 2k. It follows that in
step 2aivB, there will be a walk Q′ added to F from v1 to u of length at most
δ(V,E′)(w1, y) + `+ 1. Similarly, there will be a walk Q′′ added to F from u to vr
of length at most δ(V,E′)(y, wr) + `+ 1. Hence, the walk from a to b which agrees
with P from a until w1, then goes to v1, then takes the walk Q′ to u, then the
walk Q′′ from u to vr, then goes to wr, then agrees with P from wr to b, is of
length at most δG(a, b) + 2 + 4` ≤ δG(a, b) + 2k + 4`.

Case 2: P contains more than n−kε2i
∗

heavy edges. Let h denote the num-
ber of heavy edges along P . Since P is a shortest path, all vertices along P are
distinct, and so there are at least h of them that appear in a cluster in Ck. We
need the slightly stronger property that there is a set T of t ≥ dh/(2k)e distinct
vertices v ∈ Vk for which some vertex in the cluster centered at v appears along
P . Indeed, otherwise there would exist two vertices along P in the same cluster
in Ck at a distance larger than 2k from each other, contradicting that P is a
shortest path. Observe that t ≤ h+ 1, the number of heavy edges. Let j∗ ≥ 0 be
such that t ∈ [2j

∗
, 2j
∗+1). Since 2j ranges from n−kε2i

∗
/(2k) to at least n1−kε,

we can consider j = j∗ in step 2(a)ii.
Consider the following event E : Si∗,j∗ ∩ T 6= ∅. Then, Pr[E] is at least

1 −
(
1− t

n1−kε

)|Si∗,j∗ | ≥ 1 −
(

1− 2j∗

n1−kε

)dn1−kε2−j∗e
> 3

8 . Conditioned on E , let
v ∈ Si∗,j∗ ∩ T , and let u be the vertex in the cluster centered at v in Ck that
lies along P . Consider the walk Q which first traverses the at most k edges on
the spanning tree from v to u, then agrees with path P from u to w1, then
traverses the at most ` edges along the spanning tree from w1 to v1 in the
cluster centered at v1. The number of heavy edges along this walk is at most
h+ `+ k ≤ 2kt+ `+ k ≤ 4k2j

∗
+ `+ k. By the triangle inequality, the walk Q

is of length at most δG(u,w1) + k + ` ≤ δG(v, v1) + 2k + 2`. It follows that in
step 4aiiC, there will be a walk Q′ added to F from v1 to v of length at most
δ(V,E′)(u,w1) + ` + k. Similarly, there will be a walk Q′′ added to F from v to
vr of length at most δ(V,E′)(u,wr) + ` + k. Hence, the walk from a to b which
agrees with P from a until w1, then goes to v1, then takes the walk Q′ to v, then
the walk Q′′ from v to vr, then goes to wr, then agrees with P until b will have
length at most δG(a, b) + `+ 2(`+ k) + ` = δG(a, b) + 2k + 4`, as needed.

Acknowledgment: The author would like to thank Michael Elkin, Vitaly Feldman,
Mihai Pǎtraşcu, Seth Pettie, and Anastasios Sidiropoulos.

References

1. Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs:
upper bounds. In SPAA, pages 217–224, 2006.

2. Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast
estimation of diameter and shortest paths (without matrix multiplication). SIAM
J. Comput., 28(4):1167–1181, 1999.

3. S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and (α, β)-
spanners. ACM Transactions on Algorithms, 2009.

4. Surender Baswana and Telikepalli Kavitha. Faster algorithms for approximate
distance oracles and all-pairs small stretch paths. In FOCS, pages 591–602, 2006.

5. Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New
constructions of (alpha, beta)-spanners and purely additive spanners. In SODA,
pages 672–681, 2005.

6. Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted

graphs in õ(n2) time. In SODA, pages 271–280, 2004.
7. Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch

t. SIAM J. Comput., 28(1):210–236, 1998.
8. Edith Cohen. Polylog-time and near-linear work approximation scheme for undi-

rected shortest paths. J. ACM, 47(1):132–166, 2000.
9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill
Book Company, 2001.

10. Lenore Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170–
183, 2001.

11. Lenore Cowen and Christopher G. Wagner. Compact roundtrip routing in directed
networks. J. Algorithms, 50(1):79–95, 2004.

12. Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM
J. Comput., 29(5):1740–1759, 2000.

13. M. Elkin. Personal communication, 2009.
14. Michael Elkin. Computing almost shortest paths. ACM Transactions on Algo-

rithms, 1(2):283–323, 2005.
15. Michael Elkin and David Peleg. (1+epsilon, beta)-spanner constructions for general

graphs. SIAM J. Comput., 33(3):608–631, 2004.
16. David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube.

SIAM J. Comput., 18(4):740–747, 1989.
17. David Peleg and Eli Upfal. A trade-off between space and efficiency for routing

tables. J. ACM, 36(3):510–530, 1989.
18. Seth Pettie. Low distortion spanners. In ICALP, pages 78–89, 2007.
19. Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of ap-

proximate distance oracles and spanners. In ICALP, pages 261–272, 2005.
20. Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA, 2001.
21. Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24,

2005.
22. Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance

errors. In SODA, pages 802–809, 2006.
23. David P. Woodruff. Lower bounds for additive spanners, emulators, and more. In

FOCS, pages 389–398, 2006.

