Adaptive Matrix Vector Product

Santosh Vempala

David P. Woodruff Georgia Tech IBM Research - Almaden

Problem

- Given m x n matrix A, want to preprocess it so that,
- Given the coordinates of an n-dimensional vector $x: x_1, ..., x_n$ in order, output the coordinates of $Ax: (Ax)_1, ..., (Ax)_m$ in order
- A and x have entries from a field F

Goals

- k passes over the coordinates $x_1, ..., x_n$
- Use as little working memory as possible
- Don't count the output tape containing $(Ax)_1, ..., (Ax)_m$ towards memory

Applications

• (Special purpose hardware) A is hardwired and special hardware built for efficient products with arbitrary vectors

• (Video streaming) Packet filtering or packet processing applied to video streaming. Input and output should be in correct order

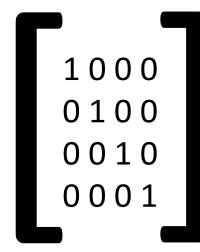
- (Human computation) Humans have a password *schema* represented by a matrix A, and given a *challenge* x (e.g., a website name), must output Ax in order as their password [Blocki], [Blum, Vempala]
 - Humans have small working memory (2-3 characters at a time)
 - Humans can memorize a procedure (how to process x given A)

Examples

- Store $\langle A_{i1}, x \rangle$, ..., $\langle A_{ir}, x \rangle$ where $A_{i1}, A_{i2}, \ldots, A_{ir}$ are rows of a basis for the row span of A
 - O(rank(A)) words of memory, and 1-pass

Can we do better?

• Identity matrix $A = I_{n \times n}$, so rank(A) = n



• Output $(Ax)_1, ..., (Ax)_n$ in order while reading $x_1, ..., x_n$ in order using O(1) words of memory, and 1-pass!

More Examples

- Anti-diagonal matrix A: $(Ax)_1, ..., (Ax)_n = x_n, x_{n-1}, x_{n-2}, ..., x_1$
- Have to wait until you see x_n before you can start outputting
- But you need to remember $x_1, x_2, x_3, \dots, x_{n-1}$ so $\Omega(n)$ words of memory for 1-pass algorithms
- Both identity and anti-diagonal matrix have rank n

Is there a parameter better than rank capturing the memory required?

Talk Outline

1. Streaming Rank

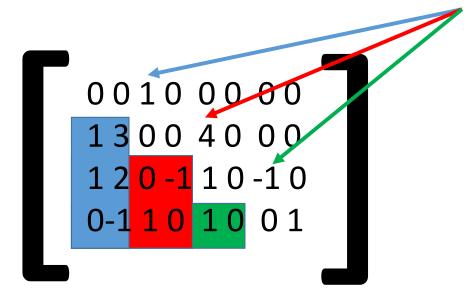
- 1. Streaming Rank 1-Pass Upper Bound
- 2. Streaming Rank 1-Pass Lower Bound

2. k-Pass Streaming Rank

- 1. Streaming Rank k-Pass Upper Bound
- 2. Streaming Rank k-Pass Lower Bound

3. Applications

Streaming Rank



Boundary point b(i) is the rightmost non-zero entry of row i

B_i is submatrix to the left and underneath b(i)

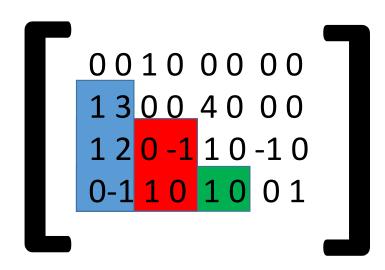
• Streaming rank $r = \max_{i} rank(B_i)$

• Theorem: the space complexity of computing $A \cdot x$ is $\Theta(r)$ words

Streaming Rank Upper Bound for 1-Pass

- Start with i = 0 and an empty basis B
- Initialize b(0) = 1
- Repeat:
 - If $b(i+1) \leq b(i)$,
 - B stays the same
 - Use inner products of B with x to output $(Ax)_{i+1}$
 - Otherwise b(i + 1) > b(i),
 - Extend B to a basis B' of B_{i+1} by extending r rows of B_i to rows of B_{i+1}
 - Use B to compute inner products of x with first b(i)-1 coordinates of each row of B', and compute remaining part of inner product of x with rows of B' by advancing along coordinates of x until b(i+1)
 - Output $(Ax)_{i+1}$ using a linear combination of the inner products
 - $i \leftarrow i + 1$

Streaming Rank Upper Bound for 1-Pass



Streaming rank r = 2

```
When reading x_1 and x_2,
store inner products: \langle x, (1, 3) \rangle and \langle x, (1, 2) \rangle
look at x_3 and output (Ax)_1 = x_3
```

```
When reading x_3 and x_4, use \langle x, (1, 3) \rangle and \langle x, (1, 2) \rangle to get \langle x, (0, -1) \rangle extend \langle x, (1, 2) \rangle to \langle x, (1, 2, 0, -1) \rangle extend \langle x, (0, -1) \rangle to \langle x, (0, -1, 1, 0) \rangle look at x_5 and output (Ax)_2 = \langle x, (1, 3) \rangle + 4x_5
```

```
When reading x_5 and x_6, extend <x, (0, -1, 1, 0)> to <x, (0, -1, 1, 0, 1, 0)> look at x_7 output (Ax)_3 = < x, (1, 2, 0, -1) > +x_5 - x_7
```

Streaming Rank Lower Bound for 1-Pass

- Never store more than r inner products, so O(r) word upper bound *Is this optimal?*
- By Yao's minimax principle suffices to give a distribution on x such that any deterministic algorithm succeeds with probability < 1/3 if using less than r words of memory
- Let streaming rank r = rank(B_i)
- If $x \in GF(q)^n$, let the first b(i) coordinates of x be uniform on $GF(q)^n$ and remaining n-b(i) coordinates equal 0
- For infinite fields, reduce problem to computing $A \cdot x$ over $GF(poly(mn))^n$
- Intuition: Upon reading $x_{b(i)}$, Alg must remember r inner products to output $(Ax)_j$ for j > i
- Formalize with information theory and Fano's Inequality

Talk Outline

- 1. Streaming Rank
 - 1. Streaming Rank 1-Pass Upper Bound
 - 2. Streaming Rank 1-Pass Lower Bound

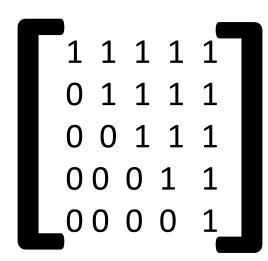
2. k-Pass Streaming Rank

- 1. Streaming Rank k-Pass Upper Bound
- 2. Streaming Rank k-Pass Lower Bound

3. Applications

k-pass streaming rank

- Upper triangular all 1's matrix
- 1-pass streaming rank is $\Omega(n)$

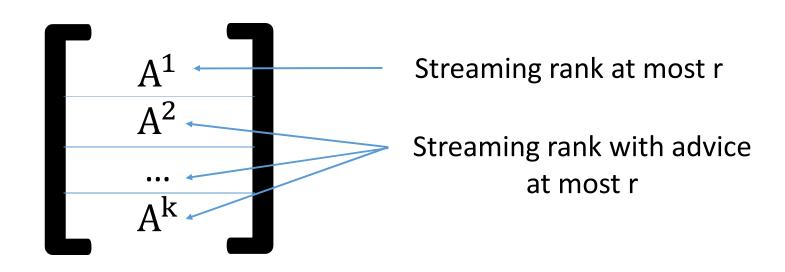


- But 2-pass streaming rank is O(1):
 - In first pass, sum all entries of x
 - In second pass, subtract next digit from running sum and output it
- How to characterize k-pass streaming rank?

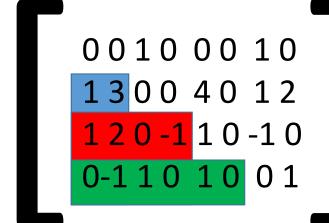
k-Pass Streaming Rank

- Streaming rank with advice
 - given r arbitrary words of advice that may depend on x, output $A \cdot x$ using the advice and r words of working memory
 - with no advice, this coincides with our earlier notion
- k-Pass streaming rank
 - smallest integer r so that one can partition A into k contiguous row submatrices $A^1, ..., A^k$ such that A^1 has streaming rank at most r, and A^j for j > 1 has streaming rank with advice at most r
- Theorem: the k-pass space complexity of computing $A \cdot x$ is $\Theta(r)$ words

k-Pass Streaming Rank Visualization



Intuition About Streaming Rank with Advice



- Streaming rank is a measure of complexity "below" a set of boundary points
- Advice captures the complexity "above" the boundary points

- 001<mark>00010</mark>
 13004<mark>012</mark>
 120-110-10
 0-1101001
- Let T_i be the vector to the right of b(i)
- Try to maintain inner products of x with T_i
 for each i as you process the stream
- As you move from one T_i to the next, update your inner products by reading x

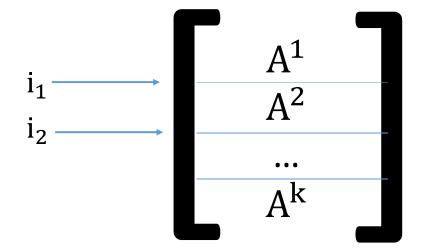
This motivates the following definition...

Adaptively Fitting the T_i

- A set S of vectors of F^n adaptively fits $T_1, ..., T_n$ if for each i, T_i is a linear combination of the (n-b(i))-length suffixes of vectors in S
- Inner products of x with each T_i can be generated in 1 pass using r words of memory, given inner products of x with vectors in S
 - Follows by subtracting prefix of inner products with vectors in S as you read x
- Find an S of minimal size, given b(1), ..., b(n), greedily

Streaming Rank Upper Bound for k Passes

- Preprocessing phase:
- Find "breakpoints" $i_1, ..., i_{k-1}$ to partition A into k contiguous matrices
- Choose breakpoints so that
 - 1. streaming rank of A¹ is at most r
 - 2. for A^j for j > 1, there are boundary points $b(1), ..., b(i_j i_{j-1} + 1)$ so that $\max_i \operatorname{rank}(B_i) \le r$ and there is a set S of r vectors which adaptively fits $T_1, ..., T_n$



A greedy algorithm works

Streaming Rank Lower Bound for k Passes

• Is there "better advice" than the kind we provide the algorithm with by an adaptively fitting set? Maybe non-linear advice?

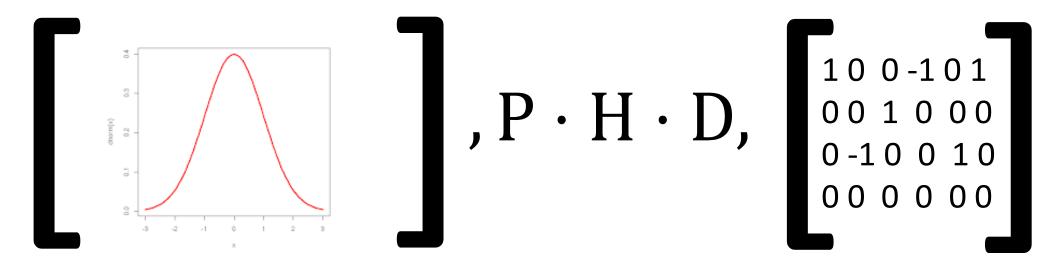
No!

- If for some A^j for j > 1 there are no boundary points with $\max_i rank(B_i) \le r$ and smallest size of an adaptively fitting set at most r, then the memory required is at least r
- Proof is information-theoretic
 - "Breakpoints" and "boundary points" are defined in terms of the ouput behavior, and are random variables depending on x
 - Lower bound holds even if small local deviations in output order are permitted

Talk Outline

- 1. Streaming Rank
 - 1. Streaming Rank 1-Pass Upper Bound
 - 2. Streaming Rank 1-Pass Lower Bound
- 2. k-Pass Streaming Rank
 - 1. Streaming Rank k-Pass Upper Bound
 - 2. Streaming Rank k-Pass Lower Bound
- 3. More Applications

Concrete Bounds for Matrices of Interest



• If A is m x n, m < n, and is a Gaussian, Fast Hadamard Transform, or a CountSketch matrix, its k-pass streaming rank is $\Theta\left(\frac{m}{k}\right)$

High Streaming Rank for JL Transforms

- JL Transform: an m x n matrix A such that for any fixed x, $|Ax|_2^2 = (1 \pm \epsilon)|x|_2^2$ with probability at least 1- δ
- Any JL transform with $m=O\left(\epsilon^{-2}\log\left(\frac{1}{\delta}\right)\right)$ rows has streaming rank $\Omega\left(\epsilon^{-2}\log\left(\frac{1}{\delta}\right)\right)$

Maximal Separation: k Passes vs. k+1 Passes

• There is an A for which one can compute $A \cdot x$ in k+1 passes using O(1) space, but any k pass algorithm requires $\Omega\left(\frac{n}{k}\right)$ space

Conclusion and Open Questions

- Gave tight per instance space bounds for computing $A \cdot x$ using k passes
- Question 1: generalize our results to approximate matrix product?
 Formalizing approximation is non-trivial
- Question 2: sometimes outputting $A \cdot x$ in a permuted order suffices. Can one efficiently find a permutation of rows of A to minimize its k-pass streaming rank?