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ABSTRACT

We consider the estimation of aggregates over a data stream
of multidimensional axis-aligned rectangles. Rectangles are
a basic primitive object in spatial databases, and efficient
aggregation of rectangles is a fundamental task. The data
stream model has emerged as a de facto model for process-
ing massive databases in which the data resides in external
memory or the cloud and is streamed through main mem-
ory. For a point p, let n(p) denote the sum of the weights
of all rectangles in the stream that contain p. We give near-
optimal solutions for basic problems, including (1) the k-th
frequency moment F, = 37 . i In(p)|*, (2) the counting
version of stabbing queries, which seeks an estimate of n(p)
given p, and (3) identification of heavy-hitters, i.e., points
p for which n(p) is large. An important special case of Fj
is Fp, which corresponds to the volume of the union of the
rectangles. This is a celebrated problem in computational
geometry known as “Klee’s measure problem”; and our work
yields the first solution in the streaming model for dimen-
sions greater than one.

Categories and Subject Descriptors

F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Algorithms, Theory

Keywords

rectangle efficiency, distinct elements, frequency moments,
streaming, spatial databases, data mining

1. INTRODUCTION

Spatial and temporal data arise in diverse domains such
as geographic information systems, astronomy, VLSI design,
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and animation. Quoting Guting [28], a spatial database such
as OpenGIS [1] “needs to deal with large collections of rel-
atively simple geometric objects”. Perhaps the most basic
type of object in spatial and spatiotemporal databases is
the multidimensional rectangle. For instance, [11] proposes
modeling of coordinates of objects in space and time through
“parametric rectangles”, which are multi-dimensional axis-
aligned rectangles, formed through a cross product of inter-
vals. In the constraint database model [34] each object is
itself formed by the intersection of constraints and is often
an axis-aligned rectangle, and query processing in a con-
straint database can be viewed as a computation over this
set of geometric objects; for example, as studied in [6, 46].
Aggregation of axis-aligned rectangles is also considered in
the context of Online Analytical Processing (OLAP) [35, 42,
48, 51].

We consider aggregation of multi dimensional rectangles
in the standard one-pass data stream model using limited
workspace. In addition to online aggregation of a massive
stream that cannot be physically stored, a data stream al-
gorithm is useful for processing queries on a large database
stored in external memory because it can be implemented
using a memory-efficient sequential scan through the data.
When new items arrive, the algorithm can update its state
without having to rescan the entire dataset. While the data
stream model has been widely studied over the past decade
or so, there has been little work on aggregating high dimen-
sional geometric objects.

1.1 Problem Definition

We consider a discrete d-dimensional universe
[A]Y = {1,2,..., A} where A is the maximum coordinate
along any dimension. While assuming the universe is dis-
crete is not very common in computational geometry, where
typically the coordinates are assumed to be real, finite preci-
sion is a common assumption in the data stream literature.
Without such an assumption, storage is not well-defined,
since, e.g., many real numbers can be encoded into a single
real number. Geometric problems in the data stream liter-
ature are thus often studied with finite precision, see [30].
Also, by imposing a sufficiently fine grid and snapping the
input points to grid points, it is easy to adapt our algorithms
to the case when the minimum inter-point distance is 1 and
the diameter is bounded by A.

The input is a stream Y of m items, where each item
is a rectangle and an integer (positive or negative) weight
associated with it:

T = {(Tlvwl)v (7‘2,’[1]2), T 7(Tm7wm)}7



where 7; C [A]¢ and w; € Z. For a point p, its frequency
n(p) is defined as the sum of the weights >, ., ey e, Wi
of all rectangles that contain p.

We consider the problem of estimating the kth frequency
moment Fi(T), defined as Fy(T) = Zpoints ) In(p)|*. When
each input rectangle is a single point, this definition reduces
to the classical definition of the kth frequency moment of a
stream, which has been very well studied in the literature
starting from the work of Alon, Matias, and Szegedy [2] *
(see for example the references in the recent papers [3, 9]).
As shown by Braverman and Ostrovsky [10], techniques for
understanding the frequency moments were used to charac-
terize the class of all sketchable functions. Note that Fo(T)
is the volume of the union of all rectangles in the input
stream, and is a celebrated problem in computational geom-
etry, known as Klee’s measure problem [33].

We also consider one of the most famous problems in spa-
tial databases - the stabbing problem (see, e.g., [46]). Given
a point p and an aggregation function F', a query reports the
aggregate of the weights of the rectangles in Y containing p.
Typically F' is MAX or SUM. See [35, 42, 48, 51] for numer-
ous applications of such queries in spatial databases. Note
that a data structure for stabbing queries when F' is SUM
can also be used to compute the maximum depth max, n(p).
The points p for which n(p) is large are often called “heavy
hitters” or “iceberg queries”.

Despite the large body of work on streaming algorithms,
the streaming complexity of aggregates on spatial data is not
well understood. Classical streaming algorithms can be used
to process rectangles by considering the points in the rectan-
gle one at a time. Such solutions, while space-efficient, have
prohibitively high time complexity since the time taken to
process a rectangle is proportional to its volume. The first
works to try to overcome this were for 1-dimensional rect-
angles, i.e., line segments. The notion of a range-efficient
sketch was introduced in [5] for Fj-estimation, and further
refined for Fy estimation in [43, 47], allowing one to process
a segment in time only logarithmic in its length. Many other
problems have been reduced to range-efficient Fj-estimation,
for k > 0, such as distinct summation problem [18, 43|, du-
plicate insensitive sketches [38], maximum-dominance norm
[19], self-join size of the symmetric difference of relations
[44], and counting triangles in graphs [5]. Attempts at gener-
alizing this to larger dimensions fall short of what is desired.
One generalization is in [5], where statistics of d-dimensional
points were estimated by designing range-efficient algorithms
in every coordinate. However, this is still essentially a one-
dimensional object, since the coordinates in the object are
allowed to have a range of values along one dimension, but
fixed along the other dimensions. If we were to use a range-
efficient algorithm to process a two dimensional rectangle,
the time taken would still be proportional to the length of
the smaller side.

1.2 Our Results

We give the first rectangle-efficient algorithms for com-
puting frequency moments and identifying heavy hitters in
the data stream model. By rectangle-efficient, we mean that
our algorithms process each rectangle in the stream in time
significantly sublinear in the volume of the rectangle.

1See Google Scholar for a list of the 900+ citations of their
paper on frequency moments.

We say that a random variable z is an (e, §)-approximation
to a number y if Pr[jz —y| < ey] > 1 —45. We let O*(f)
denote a function of the form f - (¢~ 'dlog(mA/§))° M.

1.2.1 Frequency Moments
We present the following results for Fy,k > 0.

e For Fp, i.e., the Klee’s measure problem, we give an
algorithm that returns an (e, §)-approximation to the
volume of the union of rectangles in T using space as
well as update time O*(1). This is the first efficient
solution to Klee’s measure problem in the streaming
model for d > 2. In the turnstile model (which allows
negatively-weighted rectangles [37]), this is the first
algorithm for Fp even for d = 1.

e For Fi,,0 < k < 2, we give (¢, d)-approximation al-
gorithms using space and time O*(1) in the turnstile
model. This is most interesting for F1 with deletions,
which, e.g., can be used to measure variation distance
of distributions on multi-dimensional data approximated
by box histograms [49]. We note that in the special
case of d = 1 and k = 2, a range-efficient algorithm for
F> was previously known [25].

e For F), k > 2, our space bound is polynomial in A%,
namely, it is O*(Ad(lﬂ/k))7 while our update time is
also O* (A1 =2/%)) The dependence on A in the space
complexity is the best possible, due to known lower
bounds even when the input consists only of points
[4]. That is, a special case of our problem is when all
of the input rectangles are points. Given a universe
of m possible items, the known space lower bound [4]
is Q(mlfz/k), and plugging in m = A? establishes an
Q(A?=2/0)) hound. We note this is first algorithm to
achieve optimal space (up to O*(1) factors) with less
than the trivial A? running time, even for d = 1.

For the insertion only model, we present an alternate
algorithm for F,, k > 2 that uses O* (A1 ~1/%)).0(log A)?
space, which is slightly more (for small d) but still sub-
linear, but reduces the time per rectangle to O*(1) -
O(log A).

Rectangle-efficient algorithms were not known for any
Fi,k > 2, for d > 1. Even for d = 1 algorithms
for Fj,k > 2 were known only in the insertion only
model [5], and used space and time O*(A'~'/*). Our
algorithms improve space or time, work in the general
turnstile model, and handle d > 1.

1.2.2  Stabbing Queries, Maximum Depth, and Heavy
Hitters

We present a data structure that uses O*(1) space and
O*(1) time to process each rectangle, and can return for
any p € [A]¢, an estimator of n'(p) of n(p) (the “stab-
bing number” of p) such that with high probability n’(p) €
[n(p) +0 (5 > atp n(q)z)} . It is well-known that in gen-
eral it is impossible to get a better additive approximation
to n(p) in O*(1) streaming space (see, e.g., [4]).

e Maximum Depth. Clearly such a data structure
gives an additive O(e/>_, ., 1(g)?) approximation to



maxp, n(p), also known the mazimum depth [14] of a
set of axis-aligned rectangles.

e Heavy Hitters. The heavy-hitters problem asks to

return all points p for which n(p) is at least ay />, n(q)?,

but not return any point p for which n(p) is less than
(a—e)y/22,n(@)? (note that this is a stronger guaran-

tee than returning those p for which n(p) > a, /3>, n(q)?).

Given any algorithm for estimating n(p), there is a
generic procedure which, with an additional O*(1) fac-
tor in space and time, converts it into an algorithm
for finding the heavy hitters. The idea is to build a
quadtree of the input grid, obtaining log A levels, and
in each region in each level, the weight of all points in
the region is aggregated into a single “meta-point”. In
each level we estimate n(q) with additive error, where
q is a meta-point, and we recurse on those ¢ for which
n(q) is large. See, e.g., section 5.2 “Turnstile Case” in
[20]. V}/'e thus find all heavy hitters in space and time
O*(e™).

We note that many of our results have space and time
complexity polynomial in the dimension d. While many of
our applications are for constant d, this is an important fea-
ture for large values of d.

Extensions: As mentioned, many of our results allow for
arbitrary positive or negative weights on the input rectan-
gles, and thus allow us to estimate Fj of the difference of
two data streams. Thus, for example, we can rectangle-
efficiently approximate the volume of the difference of two
collections of rectangles, and find the heavy hitters in the
presence of negative weights. The main application of neg-
ative weights is to analyzing the difference of two streams.
This cannot be done using random sampling, for example.
Our method can be applied to streams of other objects that
can be approximated by a union of O*(1) axis-aligned rect-
angles. Rectangles are commonly used as bounding boxes
for approximating other objects. See, e.g, [22] for ways of
approximating a convex polygon this way.

1.3 Our Techniques

Many problems in the data stream literature can be solved
by a combination of three techniques: (1) sub-sampling the
items into a logarithmic number ¢ of levels, where in the
j-th level, roughly a 277 fraction of items are included, (2)
multiplying item weights by random signs, and (3) for each
level of sub-sampling, hashing the included items into buck-
ets and maintaining the sum of item weights in each bucket.
Let us associate the points z in the input grid [A]* with vec-
tors in the vector space {GF(A)}%, where we assume A is a
power of 2, and GF(A) denotes the finite field containing A
elements. In the rest of this paper, we use GF(A)d to denote
{GF(A)}*. Each of these three operations can be thought
of as applying a hash function to z. For (1), z is included in
the j-th substream if g(x) < A%/27~! for a random function
g : GF(A) — GF(AY), and an arbitrary mapping from
GF(A)? to the integers {1,2,...,A%}. For (2), the sign of
z is equal to s(z), where s : GF(A)* — {—1,1} is a random
function. For (3), the bucket z is assigned to is f(x) for
a random function f : GF(A)Y — GF(B), where B is the
total number of buckets (w.l.o.g., B is a power of 2).

Our first insight is that if we were lucky enough that
each of g,s, and f could be implemented by a pairwise-
independent hash function for the problem we are trying to
solve, then we would be in great shape. Indeed, it is well-
known that the function mapping x to Az + b, for a random
matrix A and vector b with entries in GF(A) is pairwise-
independent. Hence, the set of input points x which map
to the j-th level of sub-sampling, have a positive sign, and
map to a particular bucket k € GF(B) is just the intersec-
tion of three equations: Az + b' = 0, A%z + % = 0, and
A3z +b% =k, for appropriately chosen A, A2, A% b! b2, and
b%. By using Gaussian elimination, which is efficient for d-
dimensional x, we can equivalently describe such z as the
solutions to a single equation Cz = d for a certain matrix C'
and vector x. We thus obtain ¢ -2 - B systems of equations,
one for each combination of level of subsampling, positive or
negative sign, and bucket k. Typically ¢ and B are O*(1),
and so we can afford to spend time solving each such system.

To solve each system given an input rectangle, there are
several approaches possible. One is to decompose the rectan-
gle into dyadic intervals along each dimension, and note that
the cross product of dyadic intervals over the d dimensions
forms a partition of the input rectangle into smaller rect-
angles of a special kind. Importantly, for each such smaller
rectangle, it corresponds to a set of vectors x for which some
number of coordinates take on fixed values, while the re-
maining coordinates range over all possible bitstrings as x
ranges over the rectangle. This property allows us to count
the number of solutions = using Gaussian elimination, and
since the number of rectangles in the partition is not too
large (for small d), we can sum up the number of solutions
over the rectangles in the partition.

While multi-dimensional dyadic decomposition is possible,
it leads to bounds that are exponential in d. Although many
of the applications are for constant d, it is still useful to have
bounds which are polynomial in d. To achieve this, one can
use a technique of Pagh [41] instead of multidimensional
dyadic decomposition. In this case, s and f must have a
special form, namely if = (x1,...,24) € GF(A)? then
s(z) = si(z1)---sa(za) and f(z) = f(z1) + -+ + f(za)
mod B, for independent functions s; : GF(A) — {-1,1}
and f; : GF(A) — GF(B), with an arbitrary mapping of
elements of GF(B) to elements of {0,1,2,...,B —1}. Here
each s; and f; is drawn from a pairwise-independent family
of functions. Then, if the rectangle R has the form [a1,b1] X
[az,b2] X - - - X [ag, bg], then using the Fast Fourier Transform
we can efficiently compute for each k € GF(A), the quantity
2aer | fay=k S(@); given only 3. cro by g (asy=k 53 (5)
for each j € [d]. The latter d quantities can be found using
1-dimensional dyadic decomposition and solving systems of
linear equations, as described above.

One problem with this overall approach is that while it was
recently discovered that g and f can be implemented with
pairwise-independent hash functions [3, 9] for estimating F,
it was not known that s can also be implemented with a
pairwise-independent hash function. For example, the sem-
inal work of Alon, Matias, and Szegedy [2] requires 4-wise
independence for estimating F> to within a constant fac-
tor. Intuitively, this is because the algorithm takes the sum
of squares of counters as its expectation, which requires 2-
wise independence for sign-cancellation, and then takes the
square of this to bound the variance, which requires 4-wise
independence for sign-cancellation. The previous algorithm



for Fj with the smallest independence known which followed
this three-step process (sub-sampling, random signs, buck-
eting) was 4-wise independence [9], and this is because their
algorithm effectively estimates F» inside of a routine for es-
timating the heavy hitters (the so-called CountSketch algo-
rithm) so as to make sure that all heavy hitters returned
have relative-error estimates. We observe that if we relax
the guarantee of the estimates to the heavy hitters to give
total additive error, rather than a per heavy hitter relative
error guarantee, then we can slightly tweak the analysis of
[9] to show that correctness is maintained. Now we do not
need to implicitly estimate F3, and since CountSketch only
requires pairwise independence, there is an algorithm for es-
timating Fj using this three step process, for any k£ > 0,
with only pairwise independence.

It is also likely to be possible to use our ideas to rectangle-
efficiently implement a recent Fj-estimation algorithm of [3],
which achieves pairwise-independence (they do not achieve
range or rectangle-efficiency). There the authors skip the
sub-sampling phase by multiplying the items by appropriate
weights (so-called “precisions”). We would need to discretize
their weights and enumerate them (as we are enumerating
levels of sub-sampling above) and apply our procedure for
counting the number of items in an input rectangle with a
given weight. This may be less efficient, depending on the
discretization required. We choose to follow the exposition
of [9] both for simplicity and due to its extreme generality: as
we shall see in Section 3.1, we can obtain a rectangle-efficient
algorithm for any problem for which there is a rectangle-
efficient heavy hitters algorithm.

1.4 Other Approaches

One could ask why 4-wise independence for s would not
suffice for our purposes. The difficulty is that it does not
seem easy to compose with the 2-wise independent functions
f and g. An example 4-wise independent function would be
s(z) = &7 Az + Bz +c for certain random matrices A, B, and
¢ from a special family of second-order Reed-Muller codes
[26]. We do not know how to quickly count the number of
solutions z to the equation s(z) = d for general matrices
A, B and vector ¢, while we can count such z for heavily-
structured A, B, and ¢ coming from a special family based on
Reed-Muller codes. This is problematic when composing it
with the linear constraints imposed by f and g, since the new
matrices obtained after substitution no longer correspond
to a function s in the special family. There is some work
on range-summable functions for higher-order Reed-Muller
codes [12], but as far as we are aware the problem for order
three and above is #P-complete [36].

Another completely different approach, often used in com-
putational geometry, would be to treat multidimensional
rectangles as points in a higher dimension (typically twice
the original dimension), and to convert operations on rect-
angles to corresponding operations on higher dimensional
points. This works for certain types of operations on rectan-
gles. For example, given a collection R of line segments (i.e.
one dimensional rectangles) and a query segment r*, suppose
we want to find all segments » € R such that r completely
contains r*. For segment [a, b] the function P() yields a point
in two dimensions, defined as P([a,b]) = (—a,b). It is easy
to see that segment r1 contains segment 72 iff P(r1) domi-
nates P(r2), i.e., each coordinate of P(r1) is greater than or
equal to the corresponding coordinate of P(rz). Thus, the

problem of finding all 1-dimensional rectangles that contain
a query (1-dimensional) rectangle can be posed as the prob-
lem of finding all 2-dimensional points that dominate a given
2-dimensional point. This reduction can be easily general-
ized to higher dimensions. While the above reduction works
for certain relationships among a pair of rectangles, it does
not seem to work for the aggregate functions that we con-
sider. For example, it is not clear how the computation of
the size of the union of rectangles can be reduced to a com-
putation over a set of higher dimensional points, and if such
a reduction can be easily used.

1.5 Related Work

Das, Gehrke, and Riedewald [21] consider approximation
techniques for spatial data streams, and present algorithms
for estimating aggregates on data, using an extension of
the linear AMS sketches (Alon, Matias, Szegedy [2]) for F.
Their algorithm is for rectangle intersection, and does not
give sublinear space guarantees in the worst case. Hersh-
berger, Shrivastava, and Suri [29] consider the sketching of
a stream of points in 2 dimensions, to maintain its geometric
shapes through a collection of convex hulls. Note that their
input is a stream of (multidimensional) points, while our in-
put is a stream of rectangles. There has been a long line of
work on Klee’s measure problem [33, 23, 7, 40, 13, 16, 17,
24, 50], but none of these works seem relevant for computa-
tion in the streaming model. There is a previous attempt at
a solution to Klee’s measure problem on a data stream [45].
This was found to have an error, and was withdrawn from
arXiv. This work uses a different technique than was used in
[45]. The algorithm in [45] was based on sampling, along the
lines of [43], while our algorithm is based on sub-sampling
and linear sketches with special properties.

Klee [33] introduced the one-dimensional version of the
problem now known as Klee’s measure problem (KMP) in
the RAM model, and gave an O(mlogm) time algorithm
for computing the size of the union of m line segments in
one dimension. This was shown to be time-optimal (for
a class of algorithms) by Fredman and Weide [23]. Bent-
ley [7] presented an O(mlogm) time and O(m) space so-
lution for KMP on m two dimensional rectangles. Bent-
ley’s algorithm can be extended to d dimensions, but takes
time O(m? !logm) time. Overmars and Yap [40] gave
an algorithm that improved the time for d dimensions to
O(m??1logm). More recent work includes [13, 16, 17, 24,
50]. Recent work has focused on the space complexity of the
algorithm. Chen and Chan [16] gave an algorithm for KMP
in two dimensions that uses O(m®/? log m) time with O(y/m)
extra space, which is in addition to the space needed for rep-
resenting the input rectangles (so this does not apply to the
data stream model). Note that the time taken by this algo-
rithm is worse than the optimal time achieved by Bentley,
but the (additional) space required is small. Vahrenhold [50]
improved the (additional) space to O(1), while maintaining
the same running time. In the model used by [16, 50], there
was no constraint on the number of passes of the processor.

Paper Overview: We present our main primitive data
structure RectangleCountSketch in Section 2. We show how
to use this to estimate Fj rectangle-efficiently for any k > 0
in Section 3. In Section 4, we present the rectangle-efficient
algorithm for Fj, for insertion-only streams.



2. RECTANGLE-COUNTSKETCH

We define RectangleCountSketch(«y) for an input parame-
ter v € (0,1). We assume all points in the input grid [A]?
are identified with the vector space GF(A)?, where GF(A)
denotes the finite field with A elements, where we assume
A is a power of 2.

Notice that since A is a power of 2, we can also think of
elements of GF(A) as length-(log A) bitstrings where addi-
tion of z,y € GF(A) corresponds to component-wise XOR
of the corresponding bitstrings. Similarly, we can think of
elements in the vector space GF(A)? as length-(dlog A) bit-
strings where addition of z,y € GF(A)d corresponds to
component-wise XOR of the corresponding bitstrings.

The goal of the algorithm is to provide an estimate ®(z) to
vy for each z € GF(A)?, where v, is the current sum of the
weights of the rectangles in the input stream which contain
z. Our estimate ®(x) will be correct up to an additive error
that can be reduced by increasing the memory requirements
of the scheme.

The algorithm is the same as CountSketch [15] except that
it is also rectangle-efficient. Let B > 3772 be a power of 2.
We assume B < A.

Fact 1. ([27]) Let f : GF(2)F — GF(2)" be defined as
f(x) = Ax+b, where A is a uniformly random k X r matriz
and b is a uniformly random column vector of length r. Then
f is a pairwise-independent function, that is, for any x #
' € GF(2)* and y,y' € GF(2)",

Prf(@) =y A fG) =] = 5y

Notice that pairwise-independence also implies that for any
fized x € GF(2)*, f(x) is uniformly random over the choice
of f.

In fact, it is known that f is pairwise independent even if
A is chosen to be a uniformly random Toeplitz matriz and
b is a uniformly random vector. This latter property can be
used to reduce the time complexity of computing Az by using
the Fast Fourier Transform (FFT) to perform the matriz-
vector multiplication. Moreover, the memory required to
represent A is smaller since a random Toeplitz matriz re-
quires less randomness to specify. Since these optimizations
are relatively minor in our setting, as k and r will be quite
small, we omit them in our analysis.

PROOF. See page 8 of [27] for the construction with Toeplitz
matrices. See Appendix 2 of [27] for the proof for both ran-
dom matrices A and Toeplitz matrices A. |

REMARK 2. The fact that A can be a uniformly random
Toeplitz matrix and b a uniformly random vector can be used
to reduce the time complexity of computing Az by using
the Fast Fourier Transform (FFT) to perform the matrix-
vector multiplication. It can also be used to reduce the
space complexity since a random Toeplitz matrix requires
less randomness to generate. Since we will use matrices A
with only a logarithmic number of rows and columns, such
improvements are relatively minor and we omit them in our
algorithm and analysis below.

Define pairwise-independent functions:
e For each j € [d], independently choose f; : GF(A) —

GF(B), fi(z) = Aj - x + b; for a random (log A) x
(log B) matrix A; with entries in GF(2), and random

b; € GF(B). Here z is interpreted as a length-(log A)
bitstring and b; is interpreted as a length-(log B) bit-
string.

e For each j € [d], independently choose s; : GF(A) —
{=1,1}, s;(z) = (—1)%7®*75  for random vector o; €
GF(A) and 7; € GF(2). Here z and o; are interpreted
as length-(log A) bitstrings, and (oj,x) denotes their
inner product.

Now let = (21,...,z4) € GF(A)? and define the following

functions:
o f(x) = fi(z1) + fa(x2) +--- + fa(xa) mod B.
o s(z) = s1(z1) - sa(z2) - - sa(xa).

It is easy to verify that f : GF(A)Y — GF(B) and s :
GF(A)* — {—1,1} are pairwise independent functions since
fi,..., fd, s1,..., 84 are each pairwise independent, and in-
dependent of each other.

The basic data structure maps an input vector v € AN
to a vector ¢ € Z{®12B=1} of “counters”, where for each

“bucket” k € {0,1,2,..., B — 1}, we have counter

= 3

{z | f(z)=k}

Here and throughout, we often arbitrarily associate the buck-
ets, indexed by elements of GF(B), with the integers 0, 1,2, ..., B—
1. Observe that this data structure maintains a linear func-
tion of v, which allows us to process updates to the co-
ordinates of v. We will show how to process updates to
rectangles of coordinates of v very efficiently.

For each z € GF(A)?, we estimate v, as:

s(z) - vg.

®(z) = s() - c(a)
LEMMA 3. For any n > 0,
1
Pr[|®(z) — ve| > < —
tl8(z) = ol > nlole] <
Proor. For the expectation, we use pairwise-independence
of s and that E[s(y)] = 0 for any vector y:

E[®(z)] = E |s(z) s(y)vy
y | f(=)=Ff(y)

= v+ E[s(z)s(y)] - vy
ylf(x)=Ff(y), z#y

= Ve

For the second moment, we additionally use the pairwise-
independence of f:

E[cj)] = >

vy’ | f@)=Ff)=F(y")
2 2 1 2
S gty
y | f(@)=F(y) T#yY

[

B

E[®(z)?] = E[s(y)s(y)]vyvy

IN

2
vy +

2
2

Hence, Var[®(z)] < I

5~ - By Chebyshev’s inequality,

Var[e(n)] _ |03 1

Pr[|®(z) — vz| > n|v||2] < < = .
(@) = val >mllvlle] < Z51002™ < 2B = 2B




By Lemma 3, for B > 73—2, we have Pr[|®(z) —vg| < v|v]]2] >
2. Hence, if we take r = O(dlog(A/§)) independent copies
of the basic data structure, obtaining ®'(z),...,®"(z) for
each z € GF(A)?, and set ®(x) = medianj_, ®*(z), then by
a Chernoff and union bound, with probability at least 1 — 4,
for all z € GF(A)Y, |®(x) — vz| < 7|jv|l2. The total space
complexity of the scheme for B = O(y™?), ignoring the cost
to represent the hash functions, is O(y~2?-dlog(A/§)) words,
since this is the number of counters maintained. Notice that
each f; and s; requires only O(log A -log B) bits to store in
each of the O(dlog(A/§)) basic data structures, giving a
space bound of O(d?log(A/§)log Alog B) to represent all
of the hash functions.

Rectangle-Efficiency: Given a rectangle R = [a1,bi1] X
[az,b2] X -+ X [aq,bq], we show how to efficiently update
our data structure. We show how to do this independently
for each basic data structure, and multiply the time by
O(dlog(A/d)). To implement our basic data structure, we
show how to update our counters given R.

Since our data structure is linear, it suffices to show how to
perform updates of the form (R, 1), i.e., a rectangle update
with weight 1. Indeed, if we show how to compute a vector
Cchange Of changes to the counters, i.e., a vector for which
¢ < ¢+ Cchange t0 process an update of the form (R, 1), then
to process an update of the form (R, w) for a general weight
w, it suffices to set ¢ <= ¢+ w - cchange-

For each j € [d], we recursively partition [a;,b;] into ¢; =
O(log A) intervals:

[aj.1,b5,1], [az,2,052], - - -, [ag,e;5 bjes ]

We first find the largest integer ¢ so that there is an integer
uw with [u2?, (u + 1)27) C [aj,b;]. The important property
of an interval of the form [u2?, (u + 1)279) is that all ¢ €
[a;,b;] have the same length-(IN — gq) prefix « in their binary
representation, while the suffix ranges over all 2¢ possible
bit strings. We then recursively divide [a;,u2? — 1] and
[(u+1)29,b;]. This is a standard decomposition into dyadic
intervals (see, e.g., [5]), and the recursion produces t; =
O(log A) disjoint intervals.

For each j € [d], each dyadic interval [aj¢,bj ] for an
¢ € [t;], and each bucket k € {0,1,..., B— 1}, we show how
to find the number of = € [aje,bj ] for which f;(z) = k
and s;(z) = 1, and the number of x € [a,,¢, bj¢] for which
fi(z) =k and s;(z) = —1.

If z € [aj,,bj,] satisfies f;(z) = k and s;(z) = 1, then
Ajx +b; = k and (oj,z) + 75 = 0. For x € GF(A), we
break each x into the concatenation of 2™ and z°*/ as
follows. Suppose [a;,¢;,bj,¢,] is a dyadic interval of the form
[u2?, (u + 1)27) for integers uw and q. We let zP"® be the
common length (logA) — ¢ prefix of all x € [aj,e;,bj.;],
and we let z°*/ be the suffix of z, which ranges over all
24 bitstrings as & ranges over the interval [a;¢;,bj.e,]. We
append ¢ 0s to zP"° and we prepend (log A) — ¢ Os to z°%/,
and so we have x = x?"¢ + "/,

We break the matrix A; into two contiguous groups
AP and A‘;.“f of its columns, so that

Ajw = APegpre 4 qsud gl

and similarly break ¢ into two contiguous groups

oP"¢ and o**f of its columns so that

<0’j, CL’) _ <O_§7re,xpre> + <O_;_uf7 xsuf>

pre

Using that =
Ajx+b; =k as

is a fixed vector, we can write the constraint

bj + k,

A;ufxsuf _ _Ag)rempre _

where the right hand side is a fixed vector, and the vector
z°%f is unconstrained. Similarly, we can write the constraint
(0j,2) =75 as

(05 3"y = (o) 4

where the right hand side is a fixed bit, and the vector z°*f

is unconstrained.

We can thus write the conjunction of these linear systems
as another linear system, and use Gaussian elimination to
diagonalize the system to count the number of solutions z**/
to the conjunction of these linear systems in O*(d*) = O*(1)
time. We solve such a linear system for each £ € [t;], each
k€{0,1,...,B—1}, and for both s;(z) = 1 and s;(z) = —1.
Since the [aj.¢,bj¢] partition [aj,b;], we have thus found,
for each k € {0,1,...,B — 1}, the total number e; 1 of
z € [aj,b;] for which f;(z) = k and s;(z) = 1, as well as
the total number e; 1 of z € [a;,b;] for which f;(z) =k
and s;(z) = —1. We do this for each j € [d]. The total time
spent is therefore B - poly(d) = v~ 2 - O*(1).

We now leverage a technique due to Pagh [41]. Pagh shows
how to efficiently combine a 1-dimensional CountSketch ap-
plied to a set S7 with a 1-dimensional CountSketch applied
to a set Sz, to obtain a 2-dimensional CountSketch applied
to the set S1 x S2. We can this technique with our technique
of computing a 1-dimensional CountSketch, described above.

Pagh’s idea is to associate the B counters of CountS-
ketch with the coefficients of a univariate polynomial with
formal variable z. If the current state of the counters is
co,C1,...,CB—1, then a polynomial that represents this state
is Zkz_ol cxz®. Given the counters, this polynomial can be
constructed in O(k) time, and given this polynomial, all of
the counters can be extracted in O(k) time.

In our setting, for each j € [d] we create a corresponding
univariate degree-(B — 1) polynomial p;(z). The coefficient
of 2 is equal to e; k1 — €;,—1. That is,

pi(z) = 3 s;(x) - 2"

k=0 z€laj,b;] such that f;(z)=k

sy
—-



We would like to compute the following polynomial ¢(z):

q(2)

s(x) -z
ke{0,...,.B—1}
zER|f(x)=k

= S s(@)--es(aa) - S EVEH GO med B

ke{0,...,.B—1}
zER|f(x)=k

- Z s(z1) - s(xq) - 2@Vl @)

ke{0,...,B—1}
zER|f(x)=k

mod(z” — 1)

d
= H Z s(x;)2" @) mod (2% — 1)
j=1

zj€laj,bj]
d
= Hpj(z) mod (27 — 1),
j=1

where for univariate polynomials p(z) and ¢(z) with rational
coeflicients, the notation p(z) mod ¢(z) indicates the unique
polynomial (the “remainder”) r(z) for which p(z) = m(z) -
q(z) + r(z), where r(z) has degree strictly less than that of
q(2)-

LEMMA 4. For any two polynomials p1(z) and p2(z), we
have (p1(2) - pa(2)) mod (= — 1) = ((p1(2) mod (2 — 1)) -
(p2(z) mod (2% —1))) mod (2% — 1)

PROOF. Let r(z) be the remainder of division of pi(z) -
p2(2) by 28 — 1, so that p1(2)p2(z) = m(2)(z% — 1) + r(2)
with the degree of r(z) less than B, for some polynomial
m(z). Let r1(2) be the remainder of division of pi(z) by
2B — 1, s0 p1(z) = mi(2)(2® — 1) + r1(2) with the degree
of r1(2) less than B, for some polynomial mi(z). Similarly
define 72(z) and ma(z). Then pi(z)p2(z) mod (2% — 1) =
(ma(2)ma(2) (=7 = 1)* + ma(2) (27 = 1)ra(2) + ma(2)(z” —
Dr1(z) +71(2)r2(2)) mod (2% —1) = r1(2) -ra(z) mod (2% —
1), which completes the proof. |

It follows by Lemma 4 that to compute g(z) we can first
compute p;(z) - p2(z) mod (2% — 1), then compute the prod-
uct of this polynomial with p3(z), and then take this modulo
2B — 1, etc. In this way, the computation of ¢(z) is that of d
multiplications of polynomials of degree B—1. Each polyno-
mial multiplication can be done in O(B log B) time using the
FFT, provided that B is a power of 2. It is also trivial to re-
duce the polynomial modulo zZ — 1, since this just involves
replacing a monomial z* with z* ™°¢ B Hence, the total
time to compute ¢(z) given p1(z),...,pa(z) is O(dBlog B).

Given ¢(z), we can read off its coefficients to update each
of the counters ¢ in O(B) time. Hence, the total update
time is y~2 - O*(1). We summarize our findings in the fol-
lowing theorem.

THEOREM 5. The data structure RectangleCountSketch(vy)
can be updated rectangle-efficiently in time y~2-O*(1). The
total space is v~ 2 - O*(1) words. The data structure can be
used to answer any query x € GF(A)?, returning a number
O(z) with |P(x) — vz| < 7l|v||2. The algorithm succeeds on
all queries simultaneously with probability > 1 — 9.

3. RECTANGLE-EFFICIENT Fx

In this section we consider rectangle-efficient estimation of
F},, for constant k > 0. Here, F}, of a vector v € [A]? is de-
fined as 3 c(p)a v} = ||v||¥, which is equal to the k-th power
of the k-norm 2. Note that 0° is interpreted as 0 in case of Fy.
On page 8 of [9], Braverman and Ostrovsky provide an algo-
rithm RecursiveSum[0](D, €) which takes in a stream D, an
error parameter €, and provides an (e, 3/10)-approximation
to the k-th frequency moment Fy, for constant k > 2. The
success probability can be amplified to 1 —§ by independent
repetition. We will build on this work in several ways. Their
algorithm is in turn a simplification of earlier work [8, 32].

We choose to follow [9] since it provides a simpler exposi-
tion and has several properties we will exploit. First, we will
show that it works for any constant real £ > 0 instead of just
k > 2. This first part is a simple, yet very useful observa-
tion. Indeed, most algorithms in the literature for estimating
Fy, k < 2, rely on k-stable random variables [31], and we
do not know how to make them rectangle-efficient. Next,
and importantly, we relax a requirement of their analysis in
Lemma 6 below, which is needed in order for us to combine
their algorithm with our RectangleCountSketch algorithm.

Let ¢ = O(dlogA). The algorithm of Braverman and
Ostrovsky (in our language) chooses a pairwise-independent
hash function g : GF(A)? — GF(A?) and defines ¢ sub-
streams D1, ..., Dy, where the j-th substream D; consists
of the input stream D restricted to those items i € GF(A)?
for which g(i) < A?/27~!, where we arbitrarily map the el-
ements of GF(A?) to the elements of the set {1,2,...,A%}.
For each substream, the algorithm runs the CountSketch al-
gorithm of Charikar, Chen, and Farach-Colton [15]. The
CountSketch algorithm of [15] is identical to our Rectangle-
CountSketch algorithm when all stream updates are single
points, rather than rectangles, and additionally requires that
d = 1. From this data structure, at the end of the stream
Braverman and Ostrovsky produce an estimate to Fy, k > 2.
This is described in more detail in Figure 1 in the next sub-
section.

In our implementation we simply replace CountSketch with
RectangleCountSketch. This completely specifies the algo-
rithm up to the parameter v we choose in RectangleCountS-
ketch, and how we process the data structure to output an
estimate to Fj after seeing the data stream.

The following lemma is a relaxed version of Corollary 5.3
in [9], and yields a procedure to return the heavy hitters
in a specific substream D; from our RectangleCountSketch
data structure after processing the stream. We return a set
P of items together with approximations to their frequen-
cies. The difference between this Lemma and [9] is that we
bound the total additive error of the approximations while
[9] guarantees that the frequency of each item in P has a
small relative error. The reason for this is that we do not
know how to achieve a small relative error for each item by
using only pairwise independence, which is in turn crucial
for making our algorithm rectangle-efficient.

LEMMA 6. Fiz a value j € [¢]. Let v € ZA" e the fre-
quency vector of items i € [A]? in substream D;, that is (i)
is the number of occurrences of i in D if g(i) < A?/297!

*Technically, for k < 1, ||v|| is not a norm since it doesn’t
satisfy the triangle inequality, but it is still a well-defined
quantity.



(under an arbitrary mapping of GF(A)? to {1,2,...,A%Y}),
and is 0 otherwise. For any constant real number k € (0, 00),
there is an algorithm which uses RectangleCountSketch(v)
with v = (e *a/*) if k € (0,2], and

v = Otk R AV2=A/RY for k> 2, so that with proba-
bility at least 1 — 6, it outputs a set P of O(1/«) pairs (i,v;)
for which Z(i,vg)ep [l0i]* — |vi|*| < el|v||¥, and such that all

elements i with |vi|* > o|[v||F appear as the first element of
some pair in P. The algorithm uses O*(y™2) words of space.

ProoOF. By Theorem 5, with probability at least 1—4, for
all i we have |® (i) —v;| < v|Jv||2 if we use O(y~2-dlog(A/6))
words of space in RectangleCountSketch. We assume this
event occurs and add § to the error probability. Our al-
gorithm uses the output of RectangleCountSketch(~y) to find
the set P of the pairs (¢, ®(i)) corresponding to the 7 with
the largest 2/« values ®(i).

We will call an i for which |v;| > (ea/4)*|Jv||x heavy.
Otherwise, we will say i is light.

The following fact is well-known and follows from basic
inequalities on norms.

FACT 7. If k > 2, then |[v|l2 < AY2Y*||y||y, while if
k <2, then ||v||k > ||v]|2-
Since k is an absolute constant, for any (i, ®(i)) € P for

which |vi| > (ea/4)Y*||v||x we have that (for appropriately
chosen constants in the ©(-) notation defining v above):

. d/2—d/k
(1= o) bl < el = LB AT
10k (ea/4)1/k
03] — - max(1, AY274E) ||y

<
< |’Uz‘ _’YHU”2 < |CI)(Z)|7

where we have used Fact 7. We also have that, using Fact
7,

@@ < fuil +lolls
< foil 4 - max(L, AY2F) o
< Juil(1 47 - max(L, AV %) f(ea/4) /)
< (14¢€/(10k))|vs].

Hence, for such i, we have
(1—¢/3)vil* < |2)]" < (1+¢/3)[vsl".

Next, for any (i, ®(i)) € P for which |v;| < (ea/4)Y*||v||x,
we have, using Fact 7,

0 < [2@)" < (Joil + 7llvll2)*
< ollE(ea/a)* +Alollz/lo]lk)*
< llE(a/a)* + 0T b))
< ollf - ea/3.

Hence,

Y @ — vl

(i,®(4))eP
= > @ —luil*l+ Y [12@)]" — fuil"|
heavy i light ¢

IN

€ 2 eal|v||f eallv|k
: 5 Wua,m{ ol <l Hk}gaﬂvnz,

heavy 1

Finally, let T be the set of ¢ for which |v:|* > a|jv||¥. It
remains to show each 7 € T occurs in some pair in P. As
shown above, for such i, we have |®(i)|® > (1 —¢/3)|v;|". If
i is not in a pair in P, then there are at least 2/« different
j for which

20 > |@(0)]" > (1 —¢/3)|oil* > (1 —&/3)alollk.

It follows that j cannot be light, since for such j we have
|®(5)|F < (ea/3)||v||F. On the other hand, for a heavy j, we
have |®(5)|" < (1 +¢/3)|v;|¥, and so there would need to
be at least 2/a different heavy j for which |v;|F > —2

1+e/3 °
(1—e¢)a[v]|¥, which is a contradiction, as the sum of v} over
such j would be larger than ||v||F. |

We next prove the analogue of Lemma 6 in the case that
k=0.

LEMMA 8. Fiz a value j € [¢]. Let v € 721" be the fre-
quency vector of items i € [A]% in substream Dj, that is v;
is the number of occurrences of i in D if g(i) < A4/2971
(under an arbitrary mapping of GF(A)? to {1,2,...,A%}),
and is 0 otherwise. There is an algorithm which uses
RectangleCountSketch(y) with v = ©(ae) so that with prob-
ability at least 1 -9, it outputs a set P of O(1/a) items i for
which >, p |1 —[vi|°| < e|lv]lo, and such that all elements i
with |vi| > a|lv|lo occur in P. The algorithm uses O (y~2)
words of space.

PrROOF. The algorithm is to run RectangleCountSketch
with parameter v = ae/3. Then, find the set P of items
¢ for which ®(¢) > 2/3. If |P| < 1/a, then output P. Oth-
erwise, output 0.

First suppose that |v|o < 1/(ec). Then by Theorem 5,
with probability at least 1 — §, for v = as/3 and for all i,
we have |®(¢) — v;| < 1/3. This implies that the output of
RectangleCountSketch(y) can be used to find the set of at
most 1/(ea) non-zero values v;. Hence, it can output this
set as P if |P| < 1/« and incur zero additive error. If the set
|P| it finds satisfies | P| > 1/«, then it outputs @), and incurs
zero additive error. In both cases, all ¢ with |v;| > aljv]o
are output, as desired.

Now suppose that ||v]o > 1/(ec). Since |P| < 1/a and
ellvllo > 1/«, and since there is no i with |v;| > «||v||o, the
lemma is trivially satisfied.

The key is that our Lemma 6 and Lemma 8 can be used in-
stead of Corollary 5.3 of [9] in the remaining analysis of
[9], replacing various steps that require that each |vj| =
(1 £¢€)|vs| for ¢ occurring as a first coordinate of a pair in P
with the weaker condition of Lemma 6 that instead bounds
the total additive error (and similarly for Lemma 8). We
give the details of the tweaked analysis in Section 3.1.

Rectangle-Efficiency: Given a rectangle R = [a1,b1] X
[az, b2] X -+ X [aq, ba], we show how to efficiently update the
data structure used in RecursiveSum[0](D, ¢).

The idea is the same as in our RectangleCountSketch al-
gorithm. Namely, for each substream Dj, for each bucket
k € [B] in a basic data structure of RectangleCountSketch, we
need to find the number of ¢ € R which are placed in bucket
k with a sign of —1, and the number of ¢ with a sign of +1.
Since ¢ is a pairwise-independent hash function, it can be
expressed as Ai+b, where A € GF(A)?* x GF(A)? and bis a
vector of length A?. Then an element i is in D; if and only



if A7+ b has a prefix of at least j — 1 zeros. Equivalently,
by removing all but j — 1 rows of A and b, obtaining matrix
A’ and vector b, we require that A’i + b = 0. As in the
RectangleCountSketch algorithm, we can count the number
of solutions to the intersection of this linear equation and the
linear equations imposed by the pairwise-independent hash
functions h and s used in RectangleCountSketch in the pre-
vious section. We thus obtain the following theorem, whose
proof is given in Subsection 3.1.

THEOREM 9. For constant k € [0, 00), there is a rectangle-
efficient single-pass streaming algorithm which we call
RecursiveSum[0](D, ) which outputs an (e, §)-approzimation
to Fy. Fork € 0,2], it uses O* (1) words of space and O* (1)
time to process each rectangle in the stream. For k > 2, it
uses O* (A2Y*) words of space and O* (A?~2Y*) time to
process each rectangle in the stream.

3.1 Finishing the Analysis for 7,.-Estimation

We show how to use our Lemma 6 and Lemma 8 in place
of Corollary 5 in the analysis of [9] to produce an estimate
to Fi, k > 0, thereby filling in the details of the proof of
Theorem 9. We point out where our relaxation to total
additive error is used. The analysis closely follows that of
[9].

We recall the following definitions of [9]. Let V be an
N-dimensional vector of non-negative values V; (we note
our notation is slightly different than that of [9], who use
lower-case v; to denote the coordinate values) and ||V|1 =
2?21 V; be its 1-norm. An element V; is a-major with re-
spect to V if V; > a|V]]1. A set S C [N] is an a-core with
respect to V' if ¢ € S for any c-major V;.

Here we relax the definition of («, €)-cover in [9]. The first
bullet below is where we incorporate our total additive error
guarantee. In [9], the first bullet below instead states that
for all j € [t], (1 —¢)Vi; <w; < (14¢)V;.

A non-empty set @ of the form {(i1,w1),..., (iz,w:)} for
some t € [n] and distinct 41,. .., is a relaxed (a, €)-cover
with respect to V' if the following hold:

L. Z]’E[t] Vi, —wj| <el[V].

2. Vi € [n], if V; is a-major then there exists a j € [t]
such that i; = .

For a distribution D on sets @ of the form { (i1, w1),. .., (¢, we)},

we say that D is d-good if
QP&[Q is a relaxed (o, &) — cover] > 1 — 4.

We sometimes define a randomized mapping g from vec-
tors V to sets @ and say that g is d-good with respect
to V if its output distribution is é-good. For a set Q =
{(i1,w1), ..., (i, w:)} of the above form, let

Ind(Q) = {il, ST ,’it}.
For i € Ind(Q), let wg (i) be such that (i, wg(i)) € Q.
LEMMA 10. (Corollary 3.6 of [9]) Let g be a 6-good map-
ping for a vector V and let Q@ ~ g(V). Let H be a ran-

dom N-dimensional vector independent of V and Q with
pairwise-independent zero-one entries H;. Define

Z Vi+2 Z H;V;.

i€Ind(Q) i¢Ind(Q)

X' =

Then Pr[|X" — V]| > ellV|1] £ %. (we note there is a
typo in their paper, they write 5 instead of the correct %.)
Let H',...,H® be iid. random vectors with pairwise-
independent zero-one entries. For two vectors U and V of
dimension N, let Had(V, U) be a vector of dimension N with
entries U; - Vi. Define: V° =V and V7 = Had(Vi™*, HY)
for j € [¢] (again, our notation is slightly different than that
of [10], who use V; to indicate what we are calling V7). Let
Q ~ V2 Q' ~ V! ...,Q% ~ V? Define w;(i) = wei (4)-
Define the sequence:

X= ¥ Wer X omW
i€Ind(QJ) i¢Ind(QJ)
for j=0,1,2,...,¢—1, and X, = |[V?|.

FACT 11. (Fact 3.7 of [9].) Pr[US_o| X;— V||| > ||V 1]
(¢+1)(&F+9).

Define Yd; to be any random variable depending on V¢ for
which Pr[|Y,—[|[V?|1| > ¢||[V?|1] <6.Forj =0,1,2,...,¢—
1, define

Vel X -2l
i€Ind(Q9)

In the next lemma we use our relaxed (a,€)-covers instead
of the (a, €)-covers in [9].

LEMMA 12. For any ¢,v, and V, for a = ©(y*/$*) and
6 =0(1/¢), Pr(|Ys — [[V[1| = 7[[VI:] < 1/5.

PrOOF. The proof is almost identical to that of Lemma
3.8 of [9]. The only difference is that our Q7 are relaxed
(a,€)-covers, while their @’ are (a,¢)-covers. The only
place that changes is that in the end of the proof they
argue Pr[Uj-’:O(\Errﬂ > g||[V71)] € (¢ + 1), using that
Err = >icrnacqiy lwi(i) — V7| and their @’ is an (o, ¢)-
cover. However, this bound also holds by definition for Q7 a
relaxed (a, &)-cover, and so their proof remains unchanged.

The next theorem follows from Lemma, 12.

<

THEOREM 13. (Theorem 4.2 of [9]) Algorithm RecursiveSum

computes a (1 £ €)-approzimation of |V and errs with
probability at most 3/10. The space complexity is O(logn)
times that of finding a relazed (o, €)-cover with error proba-
bility O(1/logn), where o is set to 2/ log® n.

To conclude the analysis, we simply plug in our Lemma 6
and Lemma 8 for computing a relaxed (o, €)-cover for k > 0
and k = 0, respectively, into step 2 of RecursiveSum.

Proof (: of Theorem 9) We set the dimension N in the
vectors V7 in RecursiveSum to equal A%, and identify the
coordinates with elements of GF(A)?. We define the vector
VO as follows: V) = |v.|¥, where v is the input vector and
we are trying to estimate |[v||¥. We need to show how to
efficiently obtain a relaxed («,¢)-cover for each V7, where
a = £?/logn. This is exactly what is given by Lemma 6
and Lemma 8. The time and space bounds follow by these
lemmas, and the correctness follows from Theorem 13. W



1. Generate ¢ = O(logn) pairwise-independent zero one-vectors H1,..., H?, and let D; be the substream re-
stricted to those inputs ¢ with H} - HZ ... H] = 1.

. Let Q7 be a relaxed (a, €)-cover for the vector V7 underlying Dj.

. Output Yp.

(a,€)-covers.

2
3. If Fy(V®) > 1019, then output 0 and stop. Otherwise compute Y, = [|[V¢||;.
4. For each j = ¢ —1,...,0, compute Y; =2Y; 1 — Zielnd(Qj)(l — QHZ)wZ
5

Figure 1: The RecursiveSum[0](D,¢) algorithm of [9], with our relaxation in step 2 to relaxed

4. RECTANGLE-EFFICIENT Fx,x > 2, IN
POLYLOGARITHMIC TIME IN THE
INSERTION-ONLY MODEL

In [5] it was shown how to range-efficiently implement the
algorithm of [2] in one dimension in the insertion-only model,
retaining O*(Alfl/’“) bits of space, but reducing the time
per range from O*(A) to O*(A'~'/*). Here we will consid-
erably strengthen this for small values of d, improving the
time per range from O*(A'='/*) to O*(1) - O(log A)¢, while
retaining O*(A'~'/*) . O(log A)? bits of space. Also, our
algorithm generalizes to yield a rectangle-efficient algorithm
for d > 1:

THEOREM 14. There is a rectangle-efficient algorithm for
positively-weighted input rectangles which (g, §)-approzimates
Fy., k > 2, using O* (A=Y . O(log A)? bits of space and
0*(1) - O(log A)? time to process each rectangle.

PROOF. We use the Fj-estimation algorithm of [2]. On
a stream of points, the algorithm of [2] works by sampling
r = O*(AY*=Y/R)Y random positions i1, ...,%, in the data
stream, obtaining a list of points p;,,...,p;. occurring at
these positions in the stream. Then for j = 1,2,...,r, the
algorithm counts the number f(pi;) of occurrences of point
pi; in the stream after position i;. Note that if the points are
weighted (positively) instead of just occurring with weight 1,
and if W is the sum of their weights, then i1, ..., i, would be
chosen randomly from the set {1,2,3, ..., W}, and p;; would
equal the point in the stream for which the sum of weights
of points seen so far is equal to 4;. A natural implementa-
tion of this algorithm would be, for each input rectangle, to
check how many points p;,,...,pi, occur in the rectangle,
and update the counts f(p;;). This takes O(r) time, and
corresponds to the algorithm of [5].

We first show how to achieve amortized O*(1) - O(log A)¢
time. The idea is to batch updates of r rectangles together
and build a data structure for the d-dimensional stabbing
counting query problem on these r rectangles. More pre-
cisely, we partition the input stream into contiguous blocks
of r rectangles, except for the last block which may contain
fewer than r rectangles. To process a rectangle which does
not occur at the end of a block, we simply store the end-
points of the rectangle. At the end of each block, we need to
update the f(pi;) values (some of these may previously be
0). The naive implementation would take O*(r?) time. In-
stead, we use the following, which boils down to computing
segment trees inside internal nodes of segment trees, nested
d levels deep.

THEOREM 15. (See Theorem 4.2 in [39] for the result for
d = 1. The extension to d > 1 is implied by the first two
paragraphs of Section 4.2 of [39].) Given a set of n rect-
angles in [A}d, they can be stored in a multi-dimensional
segment tree using O(nlog®n) words of space, which can be
constructed in O(n log? n) time, and such that for any point
p € [A]%, we can determine the sum of the weights of rect-
angles containing point p in O(log?n) time.

Using Theorem 15, we can build a multi-dimensional seg-
ment tree in O(r log? r) time. Then, for each of the at most
points p;,, ..., pi,., we can determine its weight with a query
which takes only O(log? ) time, giving total time O(r log® r)
time for updating the f (pi].) values. The total space com-
plexity of the scheme is O* (rlog?r).

Finally, the algorithm can be de-amortized in the following
way. Namely, since we spend O(r log? r) time at the end
of each block, we can instead spread the work required of
one block over the updates of the next block. Hence, the
time we take per input rectangle is O*(1) - O(log A)? in the
worst-case. At the end of the stream, to return an answer
we take O*(rlog?r) time, both to combine the estimates
f(pi;) for j =1,...,r, and to process the second to last and
last blocks, whose work has been pushed to the end of the
stream. |
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