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Abstract—On a stream of two dimensional data items (x, y)
where x is an item identifier, and y is a numerical attribute, a
correlated aggregate query requires us to first apply a selection
predicate along the second (y) dimension, followed by an aggrega-
tion along the first (x) dimension. For selection predicates of the
form (y < c) or (y > c), where parameter c is provided at query
time, we present new streaming algorithms and lower bounds for
estimating statistics of the resulting substream of elements that
satisfy the predicate.

We provide the first sublinear space algorithms for a large
family of statistics in this model, including frequency moments.
We experimentally validate our algorithms, showing that their
memory requirements are significantly smaller than existing
linear storage schemes for large datasets, while simultaneously
achieving fast per-record processing time.

We also study the problem when the items have weights.
Allowing negative weights allows for analyzing values which
occur in the symmetric difference of two datasets. We give a
strong space lower bound which holds even if the algorithm
is allowed up to a logarithmic number of passes over the data
(before the query is presented). We complement this with a small
space algorithm which uses a logarithmic number of passes.

I. INTRODUCTION

We consider the construction of a small-space summary
of a massive data stream that enables the user to query for
correlated aggregates over the stream. Consider a stream of
tuples S = (xi, yi), i = 1 . . . n, where xi is an item identifier,
and yi is a numerical attribute. A correlated aggregate query
C(σ,AGG,S) specifies two functions, a selection predicate
σ along the y dimension, and an aggregation function AGG
along the x dimension. It requires that the selection be applied
first on stream S, followed by the aggregation. More formally,

C(σ,AGG,S) = AGG{xi|σ(yi) is true}

Importantly, the selection predicate σ is completely specified
only at query time, and is not known when the stream is being
observed.

A traditional data stream summary (see, e.g., [1], [2], [3],
[4]) provides an accurate answer to an aggregate query, such
as frequency moments, quantiles, and heavy-hitters, over the
entire data stream. In contrast, a summary for a correlated
aggregate provides accurate answers to a family of queries
that can be posed on the stream, where different queries in
the family specify the same aggregation function, but over
different subsets of the input stream. These subsets are selected
by the predicate along the primary dimension. Correlated

aggregates arise naturally in analytics on multi-dimensional
streaming data, and space-efficient methods for implementing
such aggregates are useful in streaming analytics systems such
as in the IBM System S [5].

Our summaries for correlated aggregates allow more flexible
interrogation on the data stream than is possible with a tradi-
tional stream summary. For example, consider a data stream
of IP flow records, such as those output by network routers
equipped with Cisco’s Netflow [6]. Suppose that we were
interested in only two attributes per flow record, the destination
address of the flow, and the size (number of bytes) of the flow.
Using a summary for correlated aggregate AGG, along with a
quantile summary for the y dimension (any of the well known
stream quantile summaries can be used here, including [2],
[7]), it is possible for a network administrator to execute the
following sequence of queries on the stream: (1) First, the
quantile summary can be queried to find the median size of a
flow. (2) Next, using the summary for correlated aggregates,
the administrator can query the aggregate AGG of all those
flow records whose flow size was more than the median flow
size. (3) If the answer to query (2) was “abnormal” in the
administrator’s opinion, and the administrator needed to find
the properties of the very high volume flows, this can be
accomplished by similarly querying for the aggregate of all
those flow records whose flow size is in the 95 percent quantile
or above (the 95 percent quantile can be found using the
quantile summary).

Thus, a summary that can allow such queries for correlated
aggregates can be used for deeper investigation of large data
streams. Crucial to this is the flexibility that the parameter c
for the selection predicate (y < c) can be specified at query
time, which allows the user to iteratively “adapt” his/her query
based on the results of previous queries. For data-intensive
analytics systems, such as network management systems and
sensor data management, this can be a very powerful tool.

A. Contributions

In this work, we study both algorithms and lower bounds for
summarizing data streams for correlated aggregate queries. We
consider selection predicates of the form (y ≤ y0), or (y ≥ y0)
where y0 is specified at query time.

a) General Scheme for Correlated Aggregation: We
present a general scheme for constructing a summary for
correlated aggregation for any aggregation function that sat-



isfies a certain set of properties. For any such aggregation
function, we show how to reduce the construction of a sketch
for correlated aggregation to the construction of a sketch for
aggregation over the entire stream. This reduction allows us to
use previously known stream summaries for aggregation over
streams in constructing summaries for correlated aggregation.

We use this scheme to construct small space summaries for
estimating correlated frequency moments over a data stream.
For k > 0, the k-th frequency moment of a stream of
identifiers, each assumed to be an integer from {1, . . . ,m},
is defined as Fk =

∑m
i=1 f

k
i , where fi is the number of

occurrences of the i-th item. The estimation of frequency
moments over a data stream has been the subject of much
study over the past decade or so, starting with the work of
Alon et al. [1]. See, e.g., the references in [8]. Our algorithms
are the first small-space (in fact, the first sub-linear in m space)
algorithms for estimating the correlated frequency moments
with provable guarantees on the relative error. Our memory
requirements are optimal up to small factors, namely, factors
that are logarithmic in m and the error probability δ, and
factors polynomial in the relative error parameter ε.

Our technique for general correlated aggregation builds
on the algorithm due to Busch and Tirthapura [9] for the
correlated estimation of the basic count. While the basic data
structure used in [9] is an exact counter, the data structure
used in our algorithm is a “sketch” (such as the sketch for
F2 from [1]) which can accurately estimate an aggregate on
a stream, and provide a (possibly) probabilistic guarantee on
the correctness. We analyze the error due to the randomized
sketches, and the combination of different sketches. A central
new issue is that of dependency between random variables.

We also present the first space-efficient algorithms for
correlated aggregates of the number of distinct elements (F0),
and other aggregates related to frequency moments, such as the
Fk-heavy hitters and rarity. We give a technique for achieving
low amortized update time. For correlated F2, the update time
is Õ(log n) per stream update.

b) General Streaming Models and Lower Bounds: We
next consider the case of streams where items can have an
associated positive or negative integer weight. Allowing neg-
ative weights is useful for analyzing the symmetric difference
of two datasets, since the items in the first data set can be
inserted into the stream with positive weights, while the items
from the second data set can be inserted into the stream with
negative weights.

In this model, each stream element is a 3-tuple (xi, yi, zi)
where zi specifies the weight of the item. We show that
even if zi ∈ {−1, 1} for all i, then for a general class of
functions that includes the frequency moments, any summary
that can estimate correlated aggregates accurately and that is
constructed in a single pass must use memory that is linear
in the size of the stream. This is to be contrasted with the
estimation of frequency moments over a stream in the non-
correlated case, where it is known how to estimate these
aggregates in sublinear space even in the presence of positive
and negative weights [10].

We then consider the model with arbitrary positive and
negative weights in which we allow multiple passes over the
stream. This more general model allows the algorithm to make
a small (but more than one) number of passes over the stream
and store a small-space summary of what it has seen. At a later
time a query is made and must be answered using only the
summary. Such a setting arises if data is collected and stored
from previous days for the purpose of creating a summary, but
is then deleted or archived while only the summary is retained.

In this case, we show a smooth pass-space tradeoff for
these problems, showing that with a logarithmic number of
passes there are space-efficient algorithms for a large class
of correlated aggregates even with negative weights, but with
fewer passes no such space-efficient algorithms can exist.

c) Aggregation Over Asynchronous Streams: A closely
related problem is that of computing aggregates over a sliding
window on an asynchronous stream. In this scenario, we are
given a stream of (v, t) tuples, where v is a data item, and t is
the timestamp at which it was generated. Due to asynchrony
in the transmission medium, it is possible that the stream
elements do not arrive in order of timestamps. In other words,
it is possible that t1 < t2, but (v1, t1) is received later than
(v2, t2). This was not possible in the traditional definition of
count-based or time-based sliding windows [11]. There is a
straightforward reduction from the problem of aggregating
over asynchronous streams to that of computing correlated
aggregates, and vice versa [12], [9]. Hence, all of our results
for correlated aggregates apply also to aggregation over a
sliding window on an asynchronous stream with essentially
the same space and time bounds. We thus achieve the first low-
space algorithms for asynchronous streams for a wide class of
statistics.

d) Experimental Results: We present experimental re-
sults showing the practical performance of our algorithms for
correlated estimation of the second frequency moment (F2)
and the number of distinct elements (F0). Our experiments
show that the sketches for correlated aggregation are useful in
practice, and provide significant space savings when compared
with storing the entire dataset. Moreover, for a given accuracy
requirement, the size of the sketch remains nearly the same,
and does not increase significantly as the stream size increases.
Hence, these sketches are a very effective way to summarize
extremely large data sets and streams.

B. Related Work

Correlated aggregates arise naturally when forming SQL
queries on data. Their use in online analytical processing
(OLAP) has been investigated in the work of Chatziantoniou
et al. [13], [14], [15]. Single pass computation of summaries
for correlated aggregates on streams was first considered in
the work of Gehrke et al. [16], who provided heuristics for
approximating the correlated sum of elements, but these did
not come with a provable bound on the quality of the answers.
Subsequent work of Ananthakrishna et al. [17] presented a
summary that allowed the estimation of the correlated sum



over streams with a provable bound on the additive error of
the estimates.

Xu et al. [12] considered the computation of sum and
median over a sliding window of an asynchronous stream, and
presented summaries that allowed the estimation of aggregates
within a small relative error with high probability. The space
taken by the summary for sum in [12] is O( log2N

ε2 log(1/δ))
bits, where ε is the relative error, and δ is the failure probabil-
ity. The above results also yield summaries for correlated sum
with relative error guarantees, and using the same space. Cor-
mode et al. [18] presented algorithms for correlated quantiles
and heavy hitters (frequent elements). The space complexity
of these was subsequently improved by Chan et al. [19].

Significant prior work (for example, [11], [20], [21]) has
focused on sketching a synchronous stream (where elements
arrive in order of timestamps) to answer aggregate queries
over a sliding window. The problem of aggregation over a
sliding window on a synchronous stream is a special case of
the asynchronous streams – note that a sliding window over a
synchronous stream is always a suffix of the entire stream.

Roadmap: In Section II, we present the algorithm for
general correlated aggregates, and for the frequency moments.
Deletions, Lower bounds, and multipass algorithms are con-
sidered in Section III, and experimental results in Section IV.
Due to space constraints, some of the proofs are presented in
the appendix.

II. CORRELATED ESTIMATION OF A CLASS OF STATISTICS

We consider the estimation of correlated aggregates for any
aggregation function that satisfies a set of properties. Consider
an aggregation function f that takes as input a multi-set of real
numbers R and returns a real number f(R). In the following,
we use the term “set of real numbers” to mean a “multi-set of
real numbers”. Also, union of sets implies a multi-set union,
when the context is clear.

For any set of tuples of real numbers T = {(xi, yi)|1 ≤
i ≤ n} and real number y, let f(T, c) denote the correlated
aggregate f({xi|((xi, yi) ∈ T )∧ (yi ≤ c)}). For any function
f satisfying the following properties, we show a reduction
from the problem of space-efficient estimation of correlated
aggregate f(T, c) to the problem of space-efficient estimation
of f in an uncorrelated manner on the entire set R.

We use the following definition of an (ε, δ) estimator.
Definition 1: Given parameters ε, δ, where 0 < ε < 1,

and 0 < δ < 1, an (ε, δ) estimator for a number Y is a
random variable X such that with probability at least 1 − δ,
the following is true.

(1− ε)Y ≤ X ≤ (1 + ε)Y

In the following description, we use the term “sketching
function” to denote a compression of the input set with certain
properties. More precisely, we say that f has a sketching
function skf (υ, γ,R) if

a Using skf (υ, γ,R) it is possible to get an (υ, γ)-
estimator of f(R).

b For two sets R1 and R2, given sk(υ, γ,R1) and
sk(υ, γ,R2), it is possible to compute
sk(υ, γ,R1 ∪R2).

Many functions f have sketching functions. For instance,
the second frequency moment F2 has a sketch due to Alon,
Matias, and Szegedy [1], while the k-th frequency moment
Fk has a sketch due to Indyk and Woodruff [10]. In these two
examples, the sketching function is obtained by taking random
linear combinations of the input.

We require the following conditions from f in order to
construct a sketch for estimating correlated aggregates. These
conditions intuitively correspond to “smoothness” conditions
of the function f , bounding how much f can change when
new elements are inserted or deleted from the input multi-set.
Informally, the less the function value is sensitive to small
changes, the easier it is to apply to estimating correlated
aggregates.

I. f(R) is bounded by a polynomial in |R|.
II. For sets R1 and R2, f(R1 ∪R2) ≥ f(R1) + f(R2)

III. There exists a function cf1 (·) such that for sets
R1, . . . Rj , if f(Ri) ≤ α for all i = 1 . . . j, then:
f(∪ji=1Ri) ≤ c

f
1 (j) · α.

IV. For ε < 1, there exists a function cf2 (ε) with the follow-
ing properties. For two sets A and B such that B ⊆ A,
if f(B) ≤ cf2 (ε) · f(A), then f(A−B) ≥ (1− ε)f(A).

V. f has a sketching function skf (γ, υ,R) where γ ∈ (0, 1)
and υ ∈ (0, 1).

For any function f with a sketch skf with the above prop-
erties, we show how to construct a sketch skcorf (ε, δ, T ) for
estimating the correlated aggregate f(T, c) with the following
properties:

A. Using skcorf (ε, δ, T ), it is possible to get an (ε, δ)-
estimator of f(T, c) for any real c > 0.

B. For any tuple (x, y), using skcorf (γ, ε, T ), it is possible
to construct skcorf (γ, ε, T ∪ {(x, y)}).

A. Algorithm Description

Let fmax denote an upper bound on the vaue of f(·, ·) over
all input streams that we consider. The algorithm uses a set of
levels ` = 0, 1, 2, . . . , `max, where `max is such that 2`max >
fmax for any input stream T and real number c. From Property
I, it follows that `max is logarithmic in the stream size.

Choose parameters α, γ, υ as follows:

α =
64cf1 (log ymax)

cf2 (ε/2)
, υ =

ε

2
, γ =

δ

4ymax(`max + 1)
,

where ymax is the largest possible y value.
Without loss of generality, assume that ymax is of the form

2β−1 for some integer β. The dyadic intervals within [0, ymax]
are defined inductively as follows. (1) [0, ymax] is a dyadic
interval (2) If [a, b] is a dyadic interval and a 6= b, then [a, (a+
b− 1)/2] and [(a+ b+ 1)/2, b] are also dyadic intervals.

Within each level `, from 0 to `max, there is a “bucket”
for each dyadic interval within [0, ymax]. Thus, there are
2ymax − 1 buckets in a single level. Each bucket b is a



triple 〈k(b), l(b), r(b)〉, where [l(b), r(b)] is a dyadic interval
that corresponds to a range of y values that this bucket is
responsible for, and k(b) is defined below.

When a stream element (x, y) arrives, it is inserted into
each level ` = 0, . . . , `max. Within level `, it is inserted into
exactly one bucket, as described in Algorithm 2. For a bucket
b in level `, let S(b) denote the (multi-)set of stream items
that were inserted into b. Then, k(b) = skf (υ, γ, S(b)) is a
sketch of S(b).

Within each level, no more than α of the 2ymax−1 buckets
are actually stored. In the algorithm, S` denotes the buckets
that are stored in level `. The level S0 is a special level
which just consists of singletons. Among the buckets that
are not stored, there are two types of buckets, those that
were discarded in Algorithm 2 (see the “Check for overflow”
comment), and those that were never used by the algorithm.
We call the above three types of buckets ‘stored”, “discarded”,
and “empty” respectively. Note that S(b) is defined for each
of these three types of buckets (if b is an empty bucket, then
S(b) is defined as the null set φ).

The buckets in S` are organized into a tree, induced by
the relation between the dyadic intervals that these buckets
correspond to.

The initialization for the algorithm for a general function
is described in Algorithm 1. The update and query processing
are described in Algorithms 2 and 3 respectively.

Algorithm 1: General Function: Initialization

S0 ← null set φ; Y0 ←∞;1

for ` from 1 to `max do2

S` is a set with a single element3

〈skf (·, ·, φ), 0, ymax〉;
Y` ←∞;4

end5

Theorem 1 (Space Complexity): The space complexity of
the sketch for correlated estimation is

O

(
cf1 (log ymax) · (log fmax)

cf2
(
ε
2

) · len

)
,

where

len =

∣∣∣∣skf ( ε2 , δ

4ymax(2 + log fmax)
, S

)∣∣∣∣
is the number of bits needed to store the sketch.

Proof: There are no more than 2+log fmax levels and in
each level `, S` stores no more than α buckets. Each bucket
b contains skf (υ, γ, S(b)). The space complexity is α(2 +
log fmax) times the space complexity of sketch skf . Here we
assume that the space taken by skf is larger than the space
required to store l(b) and r(b).

B. Algorithm Correctness

Let S denote the stream of tuples observed up to a given
point. Suppose the required correlated aggregate is f(S, c).

Algorithm 2: When an element (x, y) arrives

if There is a bucket b in S0 such that y ∈ span(b)1

then
Update k(b) by inserting x.2

end3

else4

Initialize a bucket b = 〈skf (υ, γ, {x}), y, y〉, and5

insert b into S0 ;
if |S0| > α then6

Discard the bucket b ∈ S0 with the largest7

value of l(b), say b∗, and update
Y0 ← min{Y0, l(b

∗)}.
end8

end9

// levels i > 0
for i from 1 to `max do10

if Yi ≤ y then11

return12

end13

Let b be the bucket in Si such that b is a leaf and14

y ∈ span(b);
if b is open then15

Insert x into k(b);16

if (est(k(b)) ≥ 2i+1) and (l(b) 6= r(b)) then17

close bucket b18

end19

end20

else21

Store two buckets b1, b2 in Si, where b1 is the22

left child of b and b2 is the right child of b.
Initialize k(b1) = k(b2) = skf (ν, γ, φ).
If y ∈ span(b1) then insert x into k(b1).23

Otherwise insert x into k(b2);
/* Check for overflow */
if |Si| ≥ α then24

Let b′ be the bucket in Si with the largest25

value of attribute l().;
Discard b′ from Si;26

Update Yi ← l(b′).27

end28

end29

end30

Let A be the set {xi|((xi, yi) ∈ S) ∧ (yi ≤ c)}. We have
f(S, c) = f(A).

For level `, 0 ≤ ` ≤ `max, we define B`1 and B`2 as follows.
• Let B`1 denote the set of buckets b in level ` such that
span(b) ⊆ [0, c].

• Let B`2 denote the set of buckets b in level ` such
that span(b) 6⊂ [0, c], but span(b) has a non-empty
intersection with [0, c].

Note that for each level `, B`1 and B`2 are uniquely deter-
mined once the query f(S, c) is fixed. These do not depend on
the actions of the algorithm. This is a critical property that we



Algorithm 3: When there is a query for f(S, c)

Let ` ∈ [0, . . . , `max] be the smallest level such that1

Y` > c. If no such level exists, output FAIL.
if ` is 0 then2

Answer the query using S0 by summing over3

appropriate singletons
end4

else5

Let B`1 be the set of all buckets b in level ` such6

that span(b) ⊆ [0, c];
// Compose the Sketches
Let K be the composition of all sketches in7

{k(b)|b ∈ B`1}
Return est(K), the estimate of f(B`1) gotten8

using the sketch K.
end9

use, which allows the choice of which buckets to use during
estimation to be independent of the randomness in our data
structures. Further, note that only a subset of B`1 and B`2 is
actually stored in S`.

Consider any level `, 0 ≤ ` ≤ `max. For bucket b, recall
that S(b) denotes the set of stream items inserted into the
bucket until the time of the query. For bucket b ∈ S`, let
f(b) denote f(S(b)). Let estf (b) denote the estimate of f(b)
obtained using the sketch k(b). If S(b) = φ, then f(b) = 0
and estf (b) = 0. Thus note that f(b) and estf (b) are defined
no matter whether b is a stored, discarded, or an empty bucket.

Further, for a set of buckets B in the same level, let
S(B) = ∪b∈BS(b), and let f(B) = f(S(B)). Let estf (B)
be the estimate for f(B) obtained through the composition
of all sketches in ∪b∈Bk(b) (by property V, sketches can be
composed with each other).

Definition 2: Bucket b is defined to be “good” if (1 −
υ)f(b) ≤ estf (b) ≤ (1 + υ)f(b). Otherwise, b is defined
to be “bad”.

Let G denote the following event: each bucket b in each
level 0 . . . `max is good.

Lemma 1:
Pr[G] ≥ 1− δ

2

Proof: For each bucket b, note that estf (b) is a (υ, γ)-
estimator for f(b). Thus, the probability that b is bad is no
more than γ. Noting that there are less than 2ymax buckets in
each level, and `max + 1 levels in total, and applying a union
bound, we get:

Pr[Ḡ] ≤ 2ymax(`max + 1)γ =
δ

2

Lemma 2: For any level `, S(B`1) ⊆ A ⊆ S(B`1 ∪B`2)
Proof: Every bucket b ∈ B`1 must satisfy span(b) ∈ [0, c].

Thus every element inserted into B`1 must belong in A. Hence
S(B`1) ⊆ A. Each element in A has been inserted into some

bucket in level ` (it is possible that some of these buckets have
been discarded). By the definitions of B`1 and B`2, an element
in A cannot be inserted into any bucket outside of B`1 ∪ B`2.
Thus A ⊆ S(B`1 ∪B`2).

Using Lemma 2 and Condition II on f , we get the following
for any level `:

f(B`1) ≤ f(A) ≤ f(B`1 ∪B`2) (1)

We claim that Algorithm 3 does not output FAIL in step 1.
Lemma 3: Conditioned on event G, Algorithm 3 does not

output FAIL in step 1.
Proof: Consider `max. We claim that Y`max

> c if event
G occurs. Observe that Y`max

is initialized to∞ in Algorithm
1. Its value can only change if the root b of S`max closes.
For this to happen, we must have est(k(b)) ≥ 2`max+1.
But 2`max+1 > 2fmax, which means that est(k(b)) does
not provide a (1 + ε)-approximation. This contradicts the
occurrence of event G. Hence, Y`max

> c and so Algorithm 3
does not output FAIL in step 1.

Let `∗ denote the level used by Algorithm 3 to answer the
query f(S, c).

Lemma 4: If `∗ ≥ 1 and G is true, then

f(B`
∗

2 ) ≤ cf1 (log ymax)2`
∗+2

Proof: First, we note that there can be no singleton
buckets in B`

∗

2 by definition of B`2 for a level `. Thus, for
each bucket b ∈ B`∗2 , estf (b) ≤ 2`

∗+1 Because G is true, for
every bucket b ∈ B`∗2 , b is good, so that f(b) ≤ 2`∗+1

1−υ .
Next, note that there are no more than log ymax buckets in

B`
∗

2 , since there can be only one dyadic interval of a given
size that intersects [0, c] but is not completely contained within
[0, c].

From Property III. we have:

f(B`
∗

2 ) = f(∪b∈B`∗
2
S(b)) ≤ cf1 (log ymax) · 2`

∗+1

1− υ

Since υ ≤ 1/2, we get the desired result.
Lemma 5: If `∗ ≥ 1 and G is true, then:

f(A) ≥ α2`
∗−4

Proof: Since the algorithm used level `∗ for answering the
query, it must be the case that there are buckets in S`∗−1 that
had an intersection with [0, c] but were discarded from the data
structure. It follows that there are at most log ymax buckets b ∈
S`∗−1 such that span(b) 6⊂ [0, c]. For the remaining buckets
b ∈ S`∗−1, it must be true that span(b) ⊂ [0, c]. If we view
S`∗−1 as a binary tree with α nodes, according to the ordering
between the different dyadic intervals, then S`∗−1 must have
(α− 1)/2 internal nodes.

Suppose I denoted the set of buckets in b ∈ S`∗−1 such
that b is an internal node, and span(b) ⊂ [0, c]. Thus |I| ≥
(α − 1)/2 − log ymax. Since G is true, we have that for any
bucket b ∈ I , f(b) ≥ 2`∗−1

1+υ ,



Using property II repeatedly, we get:

f(A) ≥ f(I) ≥ |I|2
`∗−1

1 + υ

Using υ < 1, and for an appropriately large value of α, we
have ((α − 1)/2 − log ymax) ≥ α/4. Combining the above,
we get the following:

f(A) ≥ α2`
∗

2 · 4 · 2
= 2`

∗−4α

Theorem 2: When presented with a query for f(S, c), let
est denote the estimate returned by the algorithm. Then, with
probability at least 1− δ:

(1− ε)f(S, c) ≤ est ≤ (1 + ε)f(S, c)

Proof: If `∗ = 0, then all elements (x, y) ∈ S such that
y ≤ c are stored in S0. In this case, the theorem follows by
the definition of event G and Lemma 1.

Otherwise, we have est = estf (B`
∗

1 ), and f(S, c) = f(A).
First, note that in level `∗, none of the buckets in B`

∗

1 have
been discarded. Thus each bucket b ∈ B`∗1 is either empty or
is stored. Thus, it is possible to execute line 7 in Algorithm 3
correctly to construct a sketch of S(B`

∗

1 ). From property (b)
of sketching functions, we get a sketch sk(υ, γ, S(B`

∗

1 )).
Let E1 denote the event (1 − υ)f(B`

∗

1 ) ≤ estf (B`
∗

1 ) ≤
(1 + υ)f(B`

∗

1 )
Thus, we have:

Pr[E1] ≥ 1− γ (2)

In the following, we condition on both E1 and G occurring.
From Equation 1, we have:

f(A) ≤ f(B`
∗

1 ∪B`
∗

2 ) (3)

From Lemmas 4 and 5:

f(B`
∗

2 )

f(A)
≤ cf1 (log ymax)2`

∗+2

α2`∗−4
≤ cf1 (log ymax)26

α
≤ cf2

( ε
2

)
(4)

where we have substituted the value of α.
Since (A−B`∗1 ) ⊆ B`∗2 , we have the following:

f(A−B`∗1 )

f(A)
≤ cf2

( ε
2

)
(5)

Using Property IV, we get the following:

f(B`
∗

1 ) = f(A− (A−B`
∗

1 )) ≥
(

1− ε

2

)
f(A) (6)

Conditioned on E1 and G both being true, we have:

estf (B`
∗

1 ) ≥ (1− ε/2)(1− υ)f(A) ≥ (1− ε)f(A) (7)

This proves that conditioned on G and E1, the estimate
returned is never too small. For the other direction, we note
that conditioned on E1 being true:
estf (B`

∗

1 ) ≤ (1 + υ)f(B`
∗

1 ) ≤ (1 + υ)f(A) ≤ (1 + ε)f(A)
where we have used f(B`

∗

1 ) ≤ f(A), and υ < ε.

To complete the proof of the theorem, note that

Pr[G ∧ E1] = 1− Pr[Ḡ ∨ Ē1]

≥ 1− Pr[Ḡ]− Pr[Ē1]

≥ 1− δ

2
− γ using Lemma 1 and Eqn 2

≥ 1− δ using γ < δ/2

C. Frequency Moments Fk
In this section, we show how the general technique that

we presented can yield a data structure for the correlated
estimation of the frequency moments Fk, k ≥ 2.

Fact 1: (Hölder’s Inequality) For vectors a and b of the
same dimension, and any integer k ≥ 1, 〈a, b〉 ≤ ‖a‖k ·
‖b‖k/(k−1).

Lemma 6: For sets Si, i = 1 . . . j, if Fk(Si) ≤ β for each
i = 1 . . . j, then Fk(∪ji=1Si) ≤ jkβ.

Proof: Fact 1 on j-dimensional vectors a and b implies
that |〈a, b〉|k ≤ ‖a‖kk · ‖b‖kk/(k−1). Setting b = (1, 1, . . . , 1), it
follows that (a1 + · · ·+ aj)

k ≤ jk−1(ak1 + · · ·+ akj ). Hence,
it follows that Fk(∪ji=1 ∪Si) ≤ jk−1

∑j
i=1 Fk(Si) ≤ jkβ.

Lemma 7: If Fk(B) ≤ (ε/(3k))kFk(A), then Fk(A∪B) ≤
(1 + ε)Fk(A).

Proof: Suppose A and B have support on {1, 2, . . . , n}.
Let a and b be the characteristic vectors of sets A and B,
respectively. Using Fact 1, we have

Fk(A ∪B)

=

n∑
i=1

(ai + bi)
k

= Fk(A) + Fk(B) +

n∑
i=1

k−1∑
j=1

(
k

j

)
aji b

k−j
i

= Fk(A) + Fk(B) +

k−1∑
j=1

(
k

j

) n∑
i=1

aji b
k−j
i

≤ Fk(A) + Fk(B) +

j−1∑
j=1(

k

j

)( n∑
i=1

(aji )
k/j

) j
k
(

n∑
i=1

(bk−ji )k/(k−j)

) k−j
k

= Fk(A) + Fk(B) +

k−1∑
j=1

(
k

j

)
Fk(A)

j
kFk(B)

k−j
k

≤ Fk(A) + Fk(B) +

k−1∑
j=1

(
k

j

)
Fk(A)

( ε

3k

)k−j
≤ (1 + ε/3)Fk(A) + Fk(A)

k−1∑
j=1

(
k

j

)
(ε/(3k))k−j



≤ (1 + ε/3)Fk(A) + Fk(A)(1 + ε/(3k))k − Fk(A)

≤ (1 + ε/3)Fk(A) + Fk(A)(1 + 2ε/3)− Fk(A)

≤ (1 + ε)Fk(A),

where we used that (1 + x)y ≤ exy for all x and y, and
ez ≤ 1 + 2z for z ≤ 1/2. This completes the proof.

Lemma 8: If C ⊂ D, and Fk(C) ≤ (ε/(9k))kFk(D), then
Fk(D − C) ≥ Fk(D).

Proof: We know that for any two sets A and B, Fk(A∪
B) ≤ 2k(Fk(A) + Fk(B)).

Fk(D) = Fk((D − C) ∪ (C)

≤ 2k(Fk(D − C) + Fk(C))

which leads to

Fk(D − C) ≥ Fk(D)/2k − Fk(C)

≥ ((9k/ε)k(1/2k)k − 1)Fk(C)

≥ (3k/ε)kFk(C)

Thus, Fk(C) ≤ (ε/3k)kFk(D−C). Applying Lemma 7, we
get Fk(C∪(D−C)) ≤ (1+ε)Fk(D−C). Thus, Fk(D−C) ≥
Fk(D)/(1 + ε) ≥ (1− ε)Fk(D).

Theorem 3: For parameters 0 < ε < 1 and 0 < δ < 1,
there is a sketch for an (ε, δ)-estimation of the correlated
aggregate Fk on a stream of tuples of total length n, using
space n1−2/kpoly(ε−1 log(n/δ)).

Proof: From Lemma 6, we have cFk
1 (j) = jk. From

Lemma 8, we have cFk
2 (ε) = (ε/(9k))k. Using these in The-

orem 1, we get cFk
1 (log ymax) = (log ymax)k, and cf2 (ε/2) =

(ε/(18k))k. Using the sketches for F2 from [1] and for
Fk, k > 2 from [10], we get the above result.

Remark 4: The space can be improved to
r1−2/kpoly(ε−1 log(n/δ)), where r is the number of
distinct xi-values in the stream [10]. In the worst-case,
though, r could be Θ(n).

We make the dependence more explicit for the case of F2.
Lemma 9: For parameters 0 < ε < 1 and 0 < δ < 1,

there is a sketch for (ε, δ) error correlated estimation of
F2 on a stream of tuples of total length n, using space
O(ε−4(log(1/δ) + log ymax)(log2 ymax)(log2 fmax)) bits.

The amortized update time is O(log fmax · log ymax).
Proof: The space taken by a sketch for an (ε, δ) estimator

for F2 on a stream is O((log fmax)(1/ε2) log(1/δ)) bits [1].
From the proof of Theorem 3, we have cF2

1 (j) = j2, and
cF2
2 (ε) = (ε/18)2.

Using the above in Theorem 1, we get the space to be
O(ε−4 log2 fmax log2 ymax(log 1/δ + log ymax)) bits.

To get O(log fmax(log 1/δ+log ymax)) amortized process-
ing time, observe that there are O(log fmax) data structures
Si, each containing O(ε−2 log2 ymax) buckets, each holding a
sketch of O(ε−2 log fmax(log 1/δ + log ymax)) bits.

We process a batch of O(ε−2 log2 ymax) updates at once.
We first sort the batch in order of non-decreasing y-coordinate.
This can be done in O(ε−2 log2 ymax(log 1/ε+ log log ymax))
time. Then we do the following for each Si. We perform a

pre-order traversal of the buckets in Si and we update the
appropriate buckets. Importantly, each bucket maintains an
update-efficient AMS sketch due to Thorup and Zhang [22],
which can be updated in time O(log 1/δ + log ymax). Since
our updates are sorted in increasing y-value and the list is
represented as a pre-order traversal, the total time to update Si
is O(ε−2 log2 ymax(log 1/δ + log ymax)). The time to update
all the Si is O(log fmax) times this. So the amortized time is
O(log fmax(log 1/δ + log ymax)).

D. Other Useful Statistics

While many aggregation function satisfy the properties de-
scribed above, some important ones do not. However, in many
important remaining cases, these aggregation functions are
related to aggregation functions that do satisfy these properties,
and the mere fact that they are related in the appropriate way
enables efficient estimation of the corresponding correlated
aggregate. The idea is similar in spirit to work by Braverman,
Gelles and Ostrovsky [23].

We can compute the correlated F2-heavy hitters, as well as
the rarity (defined below) by relating these quantities to F2

and F0, respectively.
For example, in the correlated F2-heavy hitters problem

with y-bound of c and parameters ε, φ, 0 < ε < φ < 1,
letting F2(c) denote the correlated F2-aggregate with y-bound
of c, then we wish to return all x for which |{(xi, yi) |
xi = x ∧ yi ≤ c}|2 ≥ φF2(c), and no x for which
|{(xi, yi) | xi = x ∧ yi ≤ c}|2 ≤ (φ − ε)F2(c). To do this,
we use the same data structures Si as used for estimating the
correlated aggregate F2. However, for each Si and each bucket
in Si we additionally maintain an algorithm for estimating the
squared frequency of each item inserted into the bucket up to
an additive (ε/10) ·2i. See, e.g., the COUNTSKETCH algorithm
of [24] for such an algorithm. To estimate the correlated F2-
heavy hitters, for each item we obtain an additive (ε/10)·F2(c)
approximation to its squared frequency by summing up the
estimates provided for it over the different buckets contained
in [0, c] in the data structure Si used for estimating F2(c).
Since only an ε/10 fraction of F2(c) does not occur in such
buckets, we obtain the list of all heavy hitters this way, and
no spurious ones.

In the rarity problem, the problem is to estimate the fraction
of distinct items which occur exactly once in the multi-set. The
ideas for estimating rarity are similar, where we maintain the
same data structures Si for estimating the correlated aggregate
F0, but in each bucket maintain data structures for estimating
the rarity of items inserted into that bucket. This is similar to
ideas of [23]; we omit the details.

E. Number of Distinct Elements

The number of distinct elements in a stream, also known as
the zeroth frequency moment F0, is a fundamental and widely
studied statistic of the stream. In this section, we consider
the correlated estimation of the number of distinct elements
in a stream. Consider a stream of (x, y) tuples, where x ∈
{1, . . . ,m} and y ∈ {1, ymax}. The goal is to estimate, given



a parameter c at query time, the value |{x|((x, y) ∈ S)∧ (y ≤
c)}|

Our algorithm is an adaptation of the algorithm for estimat-
ing the number of distinct elements within a sliding window of
a data stream, due to Gibbons and Tirthapura [25]. Similar to
their algorithm, our algorithm for correlated estimation of F0

is based on “distinct sampling”, or sampling based on the hash
values of the item identifiers. We maintain multiple samples,
S0, S1, . . . , Sk, where k = logm. Suppose that for simplicity,
we have a hash function h that maps elements in {1, . . . ,m}
to the real interval [0, 1]. This assumption of needing such a
powerful hash function can be removed, as shown in [25].

The algorithm in [25] proceeds as follows. Stream items are
placed in these samples Si in the following manner. (A)Each
item (x, y) is placed in S0. (B)For i > 0, an item (x, y) is
placed in level i iff h(x) <= 1

2i . Note that if an item x is
placed in level i, it must have been placed in level i− 1 also.

Since each level has a limited space budget, say α, we
also need a way to discard elements from each level. Our
algorithm differs from [25] in the following aspect of how to
discard elements from each level. For correlated aggregates,
we maintain in Si only those items (x, y) that (1)have an x
value that is sampled into Si, and (2)have the smallest y values
among all the elements sampled into Si. In other words, it is
a priority queue using the y values as the weights, whereas in
[25], each level was a simple FIFO (first-in-first-out) queue.

Our algorithm takes advantage of the fact that the basic
data structure in [25] is a sample, and it is easy to maintain a
sample that is solely dependent on the values of the items that
were inserted into the sample, and independent of the order
in which items were inserted. It can be shown that the above
scheme of retaining those elements with a smaller value of y,
when combined with the sampling scheme in [25], yields an
(ε, δ) estimator for the correlated distinct counts. We omit the
proof and a detailed description of the algorithm. We however,
present results on the experimental performance of this data
structure, showing that it is very viable in practice.

We note that other methods for estimating distinct elements
may also be adapted to work here, such as the variant of
the algorithm due to Flajolet and Martin [26], as elaborated
by Datar et al. [11]. We are however, not aware of any
previous work applying these ideas to the context of correlated
aggregates, or associated experimental results.

Theorem 5: Given parameters 0 < ε < 1 and 0 < δ < 1,
there is a streaming algorithm that can maintain a summary
of a stream of tuples (x, y), where x ∈ {1, . . . ,m} and y ∈
{1, ymax} such that (1)The space of the summary is O(logm+
log ymax) logm

ε2 log 1/δ bits (2)The summary can be updated
online as stream elements arrive, and (3)Given a query y0,
the summary can return an (ε, δ)-estimator of |{x|((x, y) ∈
S) ∧ (y ≤ y0)}|

III. DELETIONS IN A STREAM

While in many application settings we see a data stream
of insertions, in other settings it is important to consider
deletions, or more generally, pairs (xi, yi) together with an

integer weight which may be positive or negative. For instance,
xi and yi may represent the first two attribute values of a
record, and for a given application, we may not be interested
in the remaining attributes. If there are many records with
the same first two attribute values, one can represent all such
records with a single positive integer weight followed by the
pair (xi, yi).

Allowing negative integer weights allows for analyzing
attributes which occur in the symmetric difference of two
datasets. Indeed, suppose the records in each dataset are
represented by a positive integer weight together with a pair
of attribute values. We can include all records from the first
dataset in the data stream. Then we can negate the weights of
all records from the second dataset and append these to the
data stream. The absolute value of the sum of the weights of
a pair of attribute values in the stream represents the number
of times the pair occurs in the symmetric difference of the
datasets.

This data stream model with positive and negative weights is
referred to as the turnstile model in the data stream literature;
see, e.g., [27].

In the turnstile model our upper bounds no longer hold.
This is not an artifact of our algorithm or analysis, as we now
show an impossibility result in this setting. In fact, we show
a lower bound assuming the weights are restricted to come
from the set {1,−1}, i.e., when we see a record (xi, yi) we
also see a label “insert” or “delete”, corresponding to weight
1 or weight −1, respectively.

Consider a correlated aggregate function f of the following
form. For each (xi, yi) seen in the stream, 1 ≤ i ≤ n,
we assume xi ∈ [m] and yi ∈ {0, 1, . . . , ymax}. Then for
j ∈ [m] and τ ∈ {0, 1, . . . , ymax}, let j(τ) equal the sum,
over i, of the weights assigned to records of the form (xi, y),
where xi = j and 0 ≤ y ≤ τ . We consider functions of
the form fτ =

∑m
j=1 g(j(τ)), where g : {−n,−n + 1,−n +

2, . . . , n − 1, n} → {0, 1, 2, . . . , poly(n)} is a non-negative
function with g(k) = 0 iff k = 0, and poly(n) is some positive
polynomial. A query specifies an index τ ∈ {0, 1, . . . , ymax}
and then requires an (ε, δ)-approximation to fτ (x). This class
of functions contains all frequency moments Fk studied in
earlier sections.

We show an impossibility result even if we allow multiple
passes over the data stream. Namely, we show that any t-
pass algorithm for approximating fτ , for any τ given at query
time, up to a constant factor and with constant probability,
requires yΩ(1/t)

max / log ymax bits of space, even when m = 2
and n = O(ymax). Hence, deletions cause estimation to be
significantly harder, even if allowed multiple passes.

We match our lower bound by giving an O(log ymax)-pass,
O(ε−1 · log ymax ·s(f, n, ε/30, δ/(ymax +1)))-space algorithm
for this problem in the turnstile model, where s(f, n, ε, δ)
is the space complexity of a 1-pass algorithm which (ε, δ)-
approximates the function f on a stream of length at most
n.



A. Lower Bound

Our lower bound comes from a two-party communication
problem between players, denoted Alice and Bob. While com-
munication complexity is often used to prove streaming lower
bounds [27], we have not seen the communication problem we
use, the GREATER-THAN problem, used to establish multi-pass
lower bounds.

Definition 3: In the two-party GREATER-THAN communi-
cation problem between Alice and Bob, Alice has a number
a ∈ [2r], Bob has b ∈ [2r], and they want to know if a > b.

Definition 4: The t-round randomized communication com-
plexity of a problem is the minimum, over all randomized
protocols for computing a function which on every input fail
with probability at most 1/3 (over the protocol’s random coin
tosses), of the maximum number of bits exchanged by the
two parties, subject to the constraint that there are at most t
messages exchanged.

Theorem 6: ([28]) The t-round randomized communication
complexity of GREATER-THAN is Ω(r1/t).

Theorem 7: Any t-pass randomized algorithm ALG for es-
timating a function f of the above form (together with the as-
sociated function g) up to a constant factor with constant prob-
ability for a τ given at query time, must use yΩ(1/t)

max / log ymax

bits of memory, even if m = 2 and n = O(ymax).
Proof: By increasing the space complexity of ALG by

an O(log ymax) factor, e.g., using independent repetition and
taking the median of outputs, we can assume that ALG is
correct for all 0 ≤ τ ≤ ymax.

We reduce from the GREATER-THAN communication prob-
lem on input strings of length ymax. Letting a1, . . . , aymax

be
the binary representation of Alice’s input a, where a1 is the
most significant bit, she inserts the values (1 + ai, i) with
weight 1 into the stream, where 1 ≤ i ≤ ymax. She feeds this
stream to ALG. After completion, she sends the state of ALG
to Bob who inserts the values (1 + bi, i) with weight −1 into
the stream, for 1 ≤ i ≤ ymax. Bob then sends the state of
ALG back to Alice, who continues the computation of ALG on
the stream she has created. If ALG uses t passes, this results
in a (2t− 1)-round communication protocol. Observe that the
stream length n = 2ymax.

At the end of the (2t− 1)-st round, ALG is queried on τ =
0, 1, 2, . . . , ymax. Let τ be the smallest non-zero index returned
by ALG for which the estimate to fτ is positive. If bτ = 1, Bob
declares that b > a, otherwise he declares that a > b. If for
all τ the estimate to fτ is 0, Bob declares b = a. Correctness
follows from the two facts (1) the statement a > b is equivalent
to having the first index τ at which a and b disagree in their
binary representation satisfying aτ = 1 while bτ = 0, and (2)
g(k) = 0 iff k = 0. It follows from Theorem 7 that ALG must
use Ω(y

1/(2t−1)
max / log ymax) = y

Ω(1/t)
max / log ymax bits of space.

B. Multipass Upper Bound

We give an O(log ymax)-pass upper bound for computing
correlated aggregates f of the form above, showing that
the fact that our lower bound becomes trivial when t =

O(log ymax) is no coincidence. Our algorithm MULTIPASS
is given in Figure 14. We divide the interval [0, ymax] of
y-values into positions p(0), p(1), p(2), . . . , p(r), for some
r = O(ε−1 log(nm)). Ideally, the p(i) are such that the f̂p(i)
satisfy

(1− ε) · (1 + ε)i ≤ fp(i) ≤ (1 + ε) · (1 + ε)i.

Given the output of MULTIPASS and a query τ , the QUERY-
RESPONSE algorithm could then find the largest value of i for
which p(i) ≤ τ and output (1 + ε)i. Since the p(i) represent
(approximate) jumps in the function value by powers of (1+ε),
it would follow that we obtain a good approximation to fτ .

Unfortunately, the above guarantee on fp(i) is impossible
as there may be no index j for which (1 − ε) · (1 + ε)i ≤
fj ≤ (1 + ε) · (1 + ε)i, e.g., if there exist indices k for which
fk � fk−1. We instead impose the requirement that p(i) is
an index for which

(1− ε) · (1 + ε)i ≤ fp(i) and fp(i)−1 ≤ (1 + ε)i.

Notice that we may have p(i) = p(i + 1) in some cases.
Given the output of MULTIPASS and a query τ , the QUERY-
RESPONSE algorithm first finds the largest value of i for which
p(i) ≤ τ . It then outputs (1 + ε)i. Notice that if p(i − `) =
p(i− `+ 1) = · · · = p(i), we indeed need to output (1 + ε)i,
so it is important to find the largest i for which p(i) ≤ τ .

In the description of MULTIPASS, when we say that an
algorithm (ε, δ)-approximates a function f , we use this to
mean it outputs a number f̂ with f ≤ f̂ ≤ (1 + ε)f with
probability at least 1− δ. This is a one-sided estimator, which
can be constructed from any two-sided estimator by scaling.

Algorithm 4: Our O(log ymax)-pass MULTIPASS pro-
tocol for estimating f . Without loss of generality,
ymax + 1 is assumed to be a power of 2.

Let A be a classical streaming algorithm for1

(ε, δ′)-approximating f , where δ′ = δ/(ymax + 1).
Fix the random string of A for the rest of this2

algorithm.
In the first pass (ε, δ′)-approximate fymax

using A,3

obtaining estimate f̂ymax
.

Set r = dlog1+ε f̂ymax
e.4

In parallel for i from 0 to r do5

p(i) = (ymax − 1)/2.6

*binary search procedure*7

for j from 2 to log ymax do8

(ε, δ′)-approximate fp(i) using A, obtaining9

estimate f̂p(i).
If f̂p(i) > (1 + ε)i, then10

p(i)← p(i)− (ymax + 1)/2j , else
p(i)← p(i) + (ymax + 1)/2j .

end11

If f̂p(i) < (1 + ε)i, then p(i)← p(i) + 1.12

end13

Output p(0), p(1), p(2), . . . , p(r).14



Theorem 8: Algorithm MULTIPASS is an O(log ymax)-pass,
O(ε−1s(f, n, ε, δ/(ymax + 1)) log(nm))-space algorithm for
which, given a query τ , the QUERY-RESPONSE algorithm
outputs an (ε, δ)-approximation to fτ .

Proof: The pass and space complexity of MULTIPASS
follow immediately from the description of the algorithm given
in Figure 14. It remains to argue correctness. We condition on
the event E that, for every τ ∈ {0, 1, 2, . . . , ymax}, algorithm
A outputs an estimate f̂τ with fτ ≤ f̂τ ≤ (1 + ε)fτ . Since A
fails with probability at most δ′, it follows that Pr[E ] ≥ 1− δ.

Consider p(i) for some i ∈ {0, 1, 2, . . . , r}.
We first would like to argue that fp(i) ≥ (1 − ε)(1 + ε)i.

Consider the behavior of the algorithm before Step 12 is
reached. At some point the nearest common ancestor a in
the tree on leaves {0, 1, 2, . . . , r} of p(i) and p(i) + 1 was
considered, and the algorithm branched to the left. This
means f̂p(i)+1 > (1 + ε)i. Now, once Step 12 is reached,
if f̂p(i) < (1 + ε)i, then p(i) is replaced with p(i) + 1, and
so after Step 12 we are guaranteed that f̂p(i) ≥ (1 + ε)i. This
means that

fp(i) ≥
f̂p(i)

1 + ε
≥ (1 + ε)i

1 + ε
≥ (1− ε) · (1 + ε)i.

Second, we would like to argue that fp(i)−1 ≤ (1+ε)i. Con-
sider the behavior of the algorithm before Step 12 is reached.
At some point the nearest ancestor a in the tree on leaves
{0, 1, 2, . . . , r} of p(i) − 1 and p(i) was considered, and the
algorithm branched to the right. This means f̂p(i)−1 ≤ (1+ε)i,
Now, once Step 12 is reached, if f̂p(i) ≥ (1+ε)i, then p(i)−1
remains the same. Otherwise, p(i) − 1 is replaced with p(i),
and so after Step 12 we have f̂p(i)−1 < (1 + ε)i. Hence, in
either case,

fp(i)−1 ≤ f̂p(i)−1 ≤ (1 + ε)i.

Given a query τ , the QUERY-RESPONSE algorithm first finds
the largest value of i for which p(i) ≤ τ . It then outputs
(1 + ε)i. Since τ ≥ p(i), we have

fτ ≥ fp(i) ≥ (1− ε)(1 + ε)i.

Since p(i) + 1 > τ , we have

fτ ≤ fp(i)+1 ≤ (1 + ε)i+1.

It follows that the output of (1+ε)i is a (1+ε)-approximation,
as desired.

Remark 9: For the case of f = F2 and m,n, ymax

being polynomially related, we get an O(ε−3 log3 n)-space
O(log n)-pass algorithm for (ε, 1/n)-approximation given a
query point τ . This improves the O(ε−4 log5 n)-space com-
plexity of our 1-pass algorithm for estimating F2 with 1/n
error probability, at the cost of additional passes.

IV. EXPERIMENTAL EVALUATION

A. Correlated F2, Second Frequency Moment

Setup: We implemented our algorithm for correlated F2

estimation in Python. Our goal was to evaluate the scaling
behavior of our algorithms for relatively large datasets.

We used the following three datasets for our experiments.
(1)The Uniform data set, which is a sequence of tuples (x, y)
where x is generated uniformly at random from the set
{0, . . . , 500000} and y is generated uniformly at random from
the set {0, . . . , 1000000}. This maximum size of this dataset
is 50 million. (2)The Zipfian data set, with α = 1. Here the
x values are generated according to the Zipfian distribution
with parameter α = 1, from the domain {0, . . . , 500000}, and
the y values are generated uniformly at random from the set
{0, . . . , 1000000}. The maximum size of this dataset is 50
million. (3)The Zipfian data set as described above, with α
set to 2.

For the sketch for F2, we used a variant of the algorithm due
to Alon et al.[1], based on the idea of Thorup and Zhang [22].
This variant gives much better update time than the original
algorithm of Alon et al..

Our first observation was that for all the datasets, the relative
error of the algorithm was almost always within the desired
approximation error ε, for δ < 0.2.

Space Usage as a function of ε: We measured the space
consumption of the algorithm in terms of the number of tuples
stored by it (the storage for each tuple is a constant number of
bytes). The space depends on a number of factors, including
the values of δ, the value of fmax (since fmax determines the
maximum size of the data structure at each level) and more
critically, on ε.

In Figure 1, the space taken for the summary for F2 is
plotted as a function of ε. This is shown for all the data sets
described above, with each dataset of size 40 million tuples.
We note that the space taken by the sketch increases rapidly
with decreasing ε, and the rate of the growth is similar for all
four datasets. Further, the rate of growth of space with respect
to ε remains similar for all data sets.

Space Usage as a function of the stream size: We next
analyze the space taken by the sketch as a function of the
stream size. The results are shown in Figure 2 (for ε = 0.15),
Figure 3 (for ε = 0.2), and Figure 4 (for ε = 0.25). The good
news is that in all cases, as predicted by theory, the space
taken by the sketch does not change much, and increases only
slightly as the stream size increases. This shows that the space
savings of this algorithm is much larger with streams that are
larger in size.

The time required for processing the stream was nearly the
same for all the three datasets; processing 2 million elements
took about 5 minutes on an Intel 8 CPU machine with 24GB
of RAM (the simulation did not make use of parallelism). The
processing rate can be improved by using the C/C++ language,
and by using a more optimized implementation than ours.
These experiments show that a reasonable processing rate can
be achieved for the data structure for F2, and that correlated
query processing is indeed practical, and provides significant
space savings, especially for large data streams (of the order
of 10 million tuples or larger).
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Fig. 1. F2: Space taken by the sketch for versus relative error ε. The stream
size is 40 million, for all datasets.
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Fig. 2. F2: Space taken by the sketch versus stream size n, ε = 0.15.

B. Correlated F0, Number of Distinct Elements

We implemented the algorithm for F0 in Python. In addition
to the three datasets described in F2, we used an additional
dataset derived from packet traces of Ethernet traffic on a LAN
and a WAN (see http://ita.ee.lbl.gov/html/contrib/BC.html).
The relevant data here is the number of bytes in the packet,
and the timestamp on the packet (in milliseconds). We call
this dataset the “Ethernet” dataset. This dataset has 2 million
packets, and was constructed by taking two packet traces from
the above source and combining them by interleaving them.
We also considered the first 2 million tuples for the other three
datasets.

Another difference is that in the Uniform and Zipfian
datasets, the range of x values was made larger (0 . . . 1000000)
than in the case of F2, where the range of x values was
0 . . . 500000. The reason for this change is that there are
much simpler algorithms for correlated F0 estimation when
the domain size is small: simply maintain the list of all distinct
elements seen so far along the x dimension, along with the
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Fig. 3. F2: Space taken by the sketch versus stream size n, ε = 0.2.
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Fig. 4. F2: Space taken by the sketch versus stream size n, ε = 0.25.

smallest value associated with it in the y dimension. Note that
such a simplification is not (easily) possible for the case of
F2.

The variation of the sketch size with ε is shown in Figure
5. Note that while the sketch size decreases with increasing
ε, the rate of decrease is not as fast as in the case of F2.
Further, note that the sketch size for comparable values of ε
is much smaller than the sketch for correlated F2. Another
point is that the space taken by the sketch for the Ethernet
dataset is significantly smaller than the sketch for the other
datasets. This is due to the fact that the range of x values in
the Ethernet dataset was much smaller (0..2000) than for the
other datasets (0...1000000). The number of levels in the data
structure is proportional to the logarithm of the number of
possible values along the x dimension. Note that as explained
above, the algorithm of choice for correlated F0 estimation for
the Ethernet-type datasets (where the x range is small) will be
different from our sketch, as explained above. Our algorithm
is useful for datasets where the x range is much larger.



The size of the sketch as a function of the stream size is
shown in Figure 6, for ε = 1. It can be seen that the sketch size
hardly changes with the stream size. Note however, that for
much smaller streams, the sketch will be smaller, since some
of the data structures at different levels have not reached their
maximum size yet. The results for other values of ε are similar,
and are not shown here.
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Fig. 5. F0: Space taken by the sketch versus relative error ε. The stream
size is 2× 106, for all datasets.
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Fig. 6. F0: Space taken by the sketch versus stream size n, for the Uniform
and Zipfian datasets. ε = 0.1.
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