Lecture 5: Hashing

David Woodruff
Hashing

• Universal hashing

• Perfect hashing
Maintaining a Dictionary

• Let U be a universe of “keys”
 • U could be all strings of ASCII characters of length at most 80

• Let S be a subset of U, which is a small “dictionary”
 • S could be all English words

• Support operations to maintain the dictionary
 • Insert(x): add the key x to S
 • Query(x): is the key x in S?
 • Delete(x): remove the key x from S
Dictionary Models

• **Static**: don’t support insert and delete operations, just optimize for fast query operations
 - For example, the English dictionary does not change much
 - Could use a sorted array with binary search

• **Insertion-only**: just support insert and query operations

• **Dynamic**: support insert, delete, and query operations
 - Could use a balanced search tree (AVL trees) to get $O(\log |S|)$ time per operation

• Hashing is an alternative approach, often the fastest and most convenient
Formal Hashing Setup

• Universe U is very large
 • E.g., set of ASCII strings of length 80 is 128^{80}

• Care about a small subset $S \subseteq U$. Let $N = |S|$.
 • S could be the names of all students in this class

• Our data structure is an array A of size M and a “hash function” $h : U \rightarrow \{0, 1, ..., M-1\}$.
 • Typically $M \ll U$, so can’t just store each key x in $A[x]$
 • $\text{Insert}(x)$ will try to place key x in $A[h(x)]$

• But what if $h(x) = h(y)$ for $x \neq y$? We let each entry of A be a linked list.
 • To insert an element x into $A[h(x)]$, insert it at the top of the list
 • Hope linked lists are small
How to Choose the Hash Function h?

• Want it to be unlikely that \(h(x) = h(y) \) for different keys \(x \) and \(y \)
• Want our array size \(M \) to be \(O(N) \), where \(N \) is number of keys
• Want to quickly compute \(h(x) \) given \(x \)
 • We will treat this computation as \(O(1) \) time

• How long do Query(\(x \)) and Delete(\(x \)) take?
 • \(O(\text{length of list } A[h(x)]) \) time

• How long does Insert(\(x \)) take?
 • \(O(1) \) time no matter what

• How long can the lists \(A[h(x)] \) be?
Bad Sets Exist for any Hash Function

• **Claim:** For any hash function $h: U \rightarrow \{0, 1, 2, ..., M-1\}$, if $|U| \geq (N - 1)M + 1$, there is a set S of N elements of U that all hash to the same location.

• **Proof:** If every location had at most $N-1$ elements of U hashing to it, we would have $|U| \leq (N - 1)M$.

• There’s no good hash function h that works for every S. Thoughts?

• **Universal Hashing:** *Randomly choose h!*
 - Show for *any* sequence of insert, query, and delete operations, the expected number of operations, over a random h, is small.
Universal Hashing

- **Definition:** A set H of hash functions h, where each h in H maps $U \rightarrow \{0, 1, 2, ..., M-1\}$ is universal if for all $x \neq y$,

\[
\Pr_{h \leftarrow H} [h(x) = h(y)] \leq \frac{1}{M}
\]

- The condition holds for every $x \neq y$, and the randomness is only over the choice of h from H

- Equivalently, for every $x \neq y$, we have:

\[
\frac{|\{h \in H | h(x) = h(y)\}|}{|H|} \leq \frac{1}{M}
\]
Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set \(\{a, b\} \) to \(\{0, 1\} \) are universal, because at most \(1/M \) of the hash functions in them cause \(a \) and \(b \) to collide, were \(M = |\{0, 1\}| \).

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_2)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(h_2)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_2)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(h_3)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Examples that are Not Universal

- Note that a and b collide with probability more than $1/M = 1/2$
Universal Hashing Example

- The following hash function is universal with $M = |\{0,1,2\}|$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>h_3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Using Universal Hashing

• **Theorem:** If H is universal, then for any set $S \subseteq U$ with $|S| = N$, for any $x \in S$, if we choose h at random from H, the **expected** number of collisions between x and other elements in S is less than N/M.

• **Proof:** For $y \in S$ with $y \neq x$, let $C_{xy} = 1$ if $h(x) = h(y)$, otherwise $C_{xy} = 0$.

Let $C_x = \sum_{y \neq x} C_{xy}$ be the total number of collisions with x.

$E[C_{xy}] = \Pr[h(x) = h(y)] \leq \frac{1}{M}$

By linearity of expectation, $E[C_x] = \sum_{y \neq x} E[C_{xy}] \leq \frac{N-1}{M}$
Using Universal Hashing

• **Corollary:** If H is universal, for any sequence of L insert, query, and delete operations in which there are at most M keys in the data structure at any time, the expected cost of the L operations for a random $h \in H$ is $O(L)$
 • Assumes the time to compute h is $O(1)$

• **Proof:** For any operation in the sequence, its expected cost is $O(1)$ by the last theorem, so the expected total cost is $O(L)$ by linearity of expectation
But how to Construct a Universal Hash Family?

• Suppose $|U| = 2^u$ and $M = 2^m$
• Let A be a random $m \times u$ binary matrix, and $h(x) = Ax \mod 2$

• Claim: for $x \neq y$, $\Pr[h(x) = h(y)] = \frac{1}{M} = \frac{1}{2^m}$
But how to Construct a Universal Hash Family?

• **Claim:** For \(x \neq y \), \(\Pr_{h}[h(x) = h(y)] = \frac{1}{M} = \frac{1}{2^m} \)

• **Proof:** \(A \cdot x \mod 2 = \sum_i A_i x_i \mod 2 \), where \(A_i \) is the i-th column of \(A \)

 If \(h(x) = h(y) \), then \(Ax = Ay \mod 2 \), so \(A(x-y) = 0 \mod 2 \)

 If \(x \neq y \), there exists an \(i^* \) for which \(x_{i^*} \neq y_{i^*} \)

 Fix \(A_j \) for all \(j \neq i^* \), which fixes \(b = \sum_{j\neq i^*} A_j (x_j - y_j) \mod 2 \)

 \(A(x-y) = 0 \mod 2 \) if and only if \(A_{i^*} = b \)

 \[
 \Pr_{A_{i^*}}[A_{i^*} = b] = \frac{1}{2^m} = \frac{1}{M}
 \]

 So \(h(x) = Ax \mod 2 \) is universal