
Adversarially Robust Streaming
Algorithms

Classic Streaming Algorithms

Modeled by updates to a large vector ୬

• At time , receive update ୲ ୲ , causing change

౪ ౪

• If for all t, ୲ , the stream is called insertion-only

• At any point, algorithm computes function using small space

• E.g. ଶ ଶ
ଶ

୧
ଶ

୧ ଴ ୧

• Algorithm stores a small sketch of the data, much smaller than

Example: Estimation
• Output ଶ for which ଶ ଶ ଶ (recall ଶ ୧

ଶ
୧)

• Choose a random matrix
భ

ಣమ× ୬

• Entries can be 4-wise independent

• Maintain in the stream
• Given an update ୧౪ ୧౪ ୲, set ୲ ∗, ୧౪

• Use ଶ
ଶ to estimate ଶ

ଶ

• ୗ ଶ
ଶ

ଶ
ଶ and ୗ ଶ

ଶ ଶ
ଶ
ସ

•
୪୭୥ ୬

஫మ bits of memory

-1 1 1 1 -1 -1 1 -1
1 -1 -1 1 1 -1 -1 1
-1 1 1-1 1 -1 1 -1
1-1 1-1 -1 1 1 1

S =

Example: Estimation in Insertion Streams
• Output ଴ with ଴ ଴ ଴ (recall ଴ ୧)

• Choose a hash function , where ଶ

• With good probability, no collisions

• Maintain the smallest ଵ଴଴

஫మ hash values in the stream

• Output Z = tM/v, where v is the t-th smallest hash value

• Smallest hash value about ୑

୊బ
, so v should be about ୲୑

୊బ

• ିଶ bits of memory. Can improve to ିଶ bits

10 2 Mv

Tracking Algorithms

• (୲) the stream vector after updates

• Algorithm must output (୲) so

Tracking Algorithms

• (୲) the stream vector after updates

• Algorithm must output (୲) so

୲ ୲

Tracking Algorithms

• (௧) the stream vector after updates

• Algorithm must output (௧) so

௧ ௧

(௧)

Tracking Algorithms

• (௧) the stream vector after updates

• Algorithm must output (௧) so

௧ାଵ ௧ାଵ

Tracking Algorithms

• (௧) the stream vector after updates

• Algorithm must output (௧) so

(௧ାଵ)

௧ାଵ ௧ାଵ

Adversarial Streams

• Classic streams: Data is fixed before algorithm starts: future data does
not depend on outputs (୲)

• Future data often depends on past decisions: no known guarantees for
streaming algorithms in this case!

• Adversarial Streams: Adversary controls stream updates: sees (୲)

then gets to choose ୲ାଵ ୲ାଵ .

Adversarial Streams

Modeled by 2-player game.

ଵ ଵ

Adversarial Streams

Modeled by 2-player game.

ଵ ଵ

(ଵ)

Adversarial Streams

Modeled by 2-player game.

(ଵ)

Adversarial Streams

Modeled by 2-player game.

ଶ ଶ

(ଵ)

Adversarial Streams

Modeled by 2-player game.

ଶ ଶ

(ଵ)(ଶ)

Adversarial Streams

Modeled by 2-player game.

(ଵ), (ଶ)

Adversarial Streams

Modeled by 2-player game.

(ଵ), (ଶ)

ଷ ଷ

Adversarial Streams

Goal of Adversary: Make Algorithm fail to output an -approximation:

• Adversary wants: (୲) ୲ at some time

• Adversary has unbounded computational power, knows entire history
of outputs (ଵ) (ଶ) (୲ିଵ) at time

• Deterministic algorithms are adversarially robust, however most
streaming algorithms provably must be randomized

Classic Streaming Algorithms Not Robust!

Theorem: the classic AMS Sketch (Alon, Matias, Szegedy ‘96) for
estimating ଶ is not adversarially robust!

• Even in insertion only streams, meaning ௧ for all

Classic Streaming Algorithms Not Robust!

Theorem: the classic AMS Sketch (Alon, Matias, Szegedy ‘96) for
estimating ଶ is not adversarially robust!

• Even in insertion only streams, meaning ௧ for all

We need new algorithms!

Generic Transformations [Ben-Eliezer, Jayaram, W, Yogev]

Give two generic methods to transform any streaming algorithm
into an adversarially robust algorithm ᇱ with a mild space overhead:

Generic Transformations

Give two generic methods to transform any streaming algorithm
into an adversarially robust algorithm ᇱ using small space overhead:

Sketch Switching Computation Paths

Generic Transformations

Sketch Switching Computation Paths

Useful for exploiting algorithms which
provide tracking better than one shot + a
union bound over all time steps

Useful for exploiting algorithms with better
dependence on failure probability than
multiplicative

Flip Number

Definition (informal): For a function ௡ define the -flip
number ఢ to be the maximum number of times ௧ can change
by a factor of after updates.

Flip Number

Definition (informal): For a function ௡ define the -flip
number ఢ to be the maximum number of times ௧ can change
by a factor of after updates.

Example: ୮
୮

୧
୮

୧ , then for insertion only streams
(଴)

୮

୮

(୮୭୪୷ ୬)
୮

୮

So ஫ (ଵା஫)
ଵ

஫

Sketch Switching
1. Keep multiple (𝜆ఢ 𝑓 many) independent

sketches concurrently.

2. Only use output of one sketch 𝑆௜ at a time.

3. Once estimate 𝑅(௧) of 𝑆௜ changes by 1 + 𝜖 ,

info about 𝑆௜ is leaked, throw 𝑆௜ away!

Sketch Switching Computation Paths
1. Keep multiple (λ஫ f many) independent

sketches concurrently.
2. Only use outputs of one sketch S୧ at a time.
3. Once estimate R(୲) of S୧ changes by

1 + ϵ , info about S୧ is leaked,
throw S୧ away!

Streaming algorithms can be made robust by
setting failure probability δ small enough:

δᇱ = δ ⋅ nି୓(஛ಣ ୤)

1. Only need to change output λ஫ f times!
2. Stream is length poly(n), and output is O(log n)

bits, so only n୓(஛ಣ ୤) possible “computation
paths” between algorithm and adversary.

3. Setting δᇱ small enough, can union bound over
all of them!

Theorem (informal): For ௡ , let be any algorithm which -
tracks ௧ Then there is an adversarially robust algorithm for -
tracking ௧ using space ఢ .

Theorem (informal): Let be any algorithm which -tracks ௧ with
probability using space . Then there is an
adversarially robust algorithm that uses where

ᇱ ିை(ఒച ௙)

Sketch Switching

Theorem (informal): For ௡ , let be any algorithm which -
tracks ௧ Then there is an adversarially robust algorithm for -
tracking ௧ using space ఢ .

Application of Sketch Switching

Theorem (Blasiok SODA ‘18): There is a streaming algorithm that -
tracks the number of distinct elements in an insertion only stream
defined by (௧)

଴ ௜ using space ୪୭୥ ୪୭

ఢమ .

Application of Sketch Switching

Theorem (Blasiok SODA ‘18): There is a streaming algorithm that -
tracks the number of distinct elements in an insertion only stream
defined by (௧)

଴ ௜ using space ୪୭୥ ୪୭୥ ௡

ఢమ .

Theorem: There is an adversarially robust streaming algorithm for -
tracking the number of distinct elements using space:

ଶ

∗

In this case can improve the leading log n factor to ଵ

஫

Sketch Switching

High level idea:
• Adversary wants to learn about your sketch and randomness to fool it
• We carefully reveal information about our sketches
• As soon as we reveal any new information, immediately make this

information irrelevant

Sketch Switching
Sketch Switching:
1. Create ച

భమ
) independent sketches ଵ ୩ each providing

a ஫

ଵ଴
-approximation. and (଴)

2. At time ୧
஫

ଷ
(୲ିଵ)

1. Set (୲)
୧ and throw out ୧

Otherwise set (୲) (୲ିଵ)

Sketch Switching Proof
• Can assume adversary is deterministic by averaging

• This fixes the part of the stream the adversary gives ୧ after ୧ିଵ returned an answer Out

• The stream does not depend on ୧ though it may depend on ଵ ଶ ୧ିଵ

• So, ୧ is correct at all positions in new stream

• ୧ outputs old value Out until its value Out’ ஫

ଷ

஫

ଷ
, at which point

we switch to ୧ାଵ

• Might worry you learn something about ୧ until it outputs Out’, and you do, but ୧ is
correct on whatever fixed stream you choose until ୧ outputs Out’

Sketch Switching Proof

• If ୧ provides a ஫

ଵ଴
-approximation, then if Out’ ஫

ଷ

஫

ଷ
,

necessarily f has changed by a ஫

ଵଶ
factor

• Number of sketches we need is bounded by ಣ

భమ

• Conversely, if f changes by a factor, necessarily Out’ ஫

ଷ

஫

ଷ

• So we are correct at all times

Computation Paths

Theorem (informal): For ௡ , let be any algorithm which -
tracks ௧ with probability using space . Then there is a
robust algorithm for using space where

ᇱ ିை(ఒച/భమ ௙)

 Streaming algorithms can be made robust by setting failure probability to be
small!

Computation Paths: High Level Proof
Streaming algorithms can be made robust by setting failure probability to be

ᇱ ି୓(஛ಣ/భమ ୤)

1. Only need to change the output ఢ/ଵଶ times

2. Stream is length poly , and output is O(log n) bits, so ୓(஛ച/భమ ୤) possible

streams a deterministic adversary can create

3. Setting ᇱ small enough, can union bound over all of them

Results of [BJWY], instantiating

Problem Non-Adversarial Adversarial ([BJWY])

Distinct Elements (𝐹଴) 𝑂෨(𝜖ିଶ + log 𝑛) 𝑂෨(𝜖ିଷ + log 𝑛)

𝐹௣ estimation, 𝑝 ∈ 0,2 ∖ {1} 𝑂෨(𝜖ିଶ log 𝑛) 𝑂෨(𝜖ିଷ log 𝑛)

𝐹௣ estimation, 𝑝 > 2
𝑂 𝑛

ଵି
ଶ
௣ 𝜖ିଷ logଶ 𝑛 + 𝜖

ି
଺
௣ log

ସ
୮ାଵ

𝑛
Same when

𝛿 = 𝑂(𝑛ି
୪୭୥

ఢ)

Heavy Hitters 𝑂(𝜖ିଶ logଶ 𝑛) 𝑂෨(𝜖ିଷ logଶ 𝑛)

Entropy Estimation 𝑂(𝜖ିଶ logଷ 𝑛) 𝑂(𝜖ିହ log଺ 𝑛)

For adversaries with bounded computation + Cryptographic Assumptions, can improve some of above:

Problem Adversarial ([BJWY])

Distinct Elements (𝐹଴) 𝑂෨(𝜖ିଶ + log 𝑛)
optimal even with no adversary

Entropy Estimation 𝑂(𝜖ିହ logସ 𝑛)

Polynomially Bounded Adversaries
• Recall non-robust ଴-estimation algorithm:

• Choose a hash function , where ଶ

• Maintain smallest ଵ଴଴

஫మ values h(i) found when processing stream

• State of the algorithm is exactly the same if you insert the same item twice
• Breaking this algorithm requires breaking the hash function h

• Assumption: for any c > 0 there is a d > 0 and a family of ୢ hash functions that can be
evaluated in O(log n) memory such that any ୡ-time Adversary cannot break this

• Exponentially secure pseudorandom function (in practice, AES or SHA256)

Improvements

1. [Hassidim, Kaplan, Mansour, Matias, Stemmer]
1. Use differential privacy

2. Improve the [BJWY] bounds of ିଷ to ିଶ.ହ ସ for ଴ ଶ
and many other streaming tasks

2. [W, Zhou]
1. Introduce “Difference Estimators”

2. Improve the [BJWY] bounds of ିଷ and the ିଶ.ହ ସ bounds
above to ିଶ for ଴ ଶ and many other streaming tasks

3. Non-robust algorithms for these problems require ିଶ bits, so our
memory is optimal in (and often matches non-robust log n factors)

Difference Estimators

• Do we really need to switch our sketch whenever the output changes by 1+ ?

• Maybe? Unclear what the adversary is learning.

• If the last output Out was a ()-approximation to function value f(x), and f(x)
changes to f(x‘) with f(ᇱ , do we need a brand new
approximation to f(x‘)?

• Seems wasteful. We've fixed Out - maybe we can use Out for something?

• Difference Estimator: approximate f(x‘)-f(x) up to an O(1)-factor, and add it to Out!

Difference Estimators

• Need to approximate f(x’)-f(x) up to additive error given that
f(x’)-f(x)

• Can’t afford to approximate each of f(x’) and f(x) up to relative

• Approximating each of f(x’) and f(x) up to relative O(1) error won’t
give additive error

• Design the first difference estimators for streams!
• Example: ᇱ

ଶ
ଶ

ଶ
ଶ ᇱ

ଶ
ଶ ᇱ

• Approximate terms up to ଶ
ଶ error – uses ᇱ

ଶ
ଶ

ଶ
ଶ

• Only need memory to do this

Sketch-Stitching and Granularity Changing
• Suppose x is the current underlying vector

• If x grows to x’ with f(x’) , x must first grow to ଵ with f(ଵ)

• Approximate the difference f(ଵ) up to C/ ଵ

஫
-relative error for constant C > 0

• Then must grow to a vector ଶ where f(ଶ)
• Approximate the difference f(ଶ) up to ଵ

஫
-relative error

• Important not to use [f(ଵ)] + [f(ଶ) ଵ] here – errors would grow too fast

• Then x must grow to a vector ଷ where f(ଷ)
• Approximate the difference f(ଶ) up to ଵ

஫
-relative error

• Approximate the difference f(ଷ) ଶ up to / ଵ

஫
-relative error

• Additive errors add to , using ଵ

஫
differences in binary representation

Achieving Adversarial Robustness

• For robustness for ଶ, sketch-switch in each of levels in a binary tree

• Top level uses memory ଵ

஫మ but only need to sketch-switch O(log n) times

• Bottom level uses memory ଵ
஫

but needs to sketch-switch ଵ
஫

times

• Overall memory bound is a sum over levels

Further Work / Open Questions

• Tight bounds in terms of flip number [Kaplan,Mansour,Nissim,Stemmer]

• Improvements for small stream length [Ben-Eliezer, Eden, Onak]

• For streams with negative updates, can one prove strong lower bounds?

• Other uses of cryptography for data streams?

