Adversarially Robust Streaming Algorithms

Classic Streaming Algorithms

Modeled by updates to a large vector $x \in \mathbb{R}^n$

• At time t = 1,2, ..., receive update (i_t, Δ_t) , causing change

 $x_{i_t} \leftarrow x_{i_t} + \Delta_t$

- If for all t, $\Delta_t \ge 0$, the stream is called insertion-only
- At any point, algorithm computes function f(x) using small space
- E.g. $f(x) = F_2 = |x|_2^2 = \sum_i x_i^2$ or $f(x) = F_0 = |\{i \text{ such that } x_i \neq 0\}|$
- Algorithm stores a small sketch S(x) of the data, much smaller than n bits

Example: F_2 – Estimation

- Output $\widetilde{F_2}$ for which $(1 \epsilon) \cdot F_2 \le \widetilde{F_2} \le (1 + \epsilon) \cdot F_2$ (recall $F_2 = \sum_i x_i^2$)
- Choose a random matrix $S \in \{-\epsilon, \epsilon\}^{\frac{1}{\epsilon^2} \times n}$
 - Entries can be 4-wise independent
- Maintain $S\cdot x$ in the stream
 - Given an update $x_{i_t} \leftarrow x_{i_t} + \Delta_t$, set $S \cdot x \leftarrow S \cdot x + \Delta_t \cdot S_{*, i_t}$
- Use $|S \cdot x|_2^2$ to estimate $|x|_2^2$ • $E_S[|S \cdot x|_2^2] = |x|_2^2$ and $Var_S[|S \cdot x|_2^2] = O(\epsilon^2 |x|_2^4)$
- $O(\frac{\log n}{\epsilon^2})$ bits of memory

Example: F_0 – Estimation in Insertion Streams

- Output $\widetilde{F_0}$ with $(1 \epsilon) \cdot F_0 \le \widetilde{F_0} \le (1 + \epsilon) \cdot F_0$ (recall $F_0 = |\{i \text{ with } x_i \neq 0\}|)$
- Choose a hash function h: $\{1, 2, ..., n\} \rightarrow \{0, 1, 2, ..., M\}$, where $M = O(n^2)$
 - With good probability, no collisions
- Maintain the smallest $t = \frac{100}{\epsilon^2}$ hash values in the stream
- Output Z = tM/v, where v is the t-th smallest hash value
 - Smallest hash value about $\frac{M}{F_0}$, so v should be about $\frac{tM}{F_0}$

• $O(\epsilon^{-2} \cdot \log n)$ bits of memory. Can improve to $O(\epsilon^{-2} + \log n)$ bits

- $\mathbf{x}^{(t)} \coloneqq$ the stream vector after updates 1,2, ... t
- Algorithm must output $\boldsymbol{R}^{(t)}$ so

 $\mathbf{R}^{(t)} = (1 \pm \epsilon)\mathbf{f}(\mathbf{x}^{(t)})$

- $\mathbf{x}^{(t)} \coloneqq$ the stream vector after updates 1,2, ... t
- Algorithm must output $\boldsymbol{R}^{(t)}$ so

 $R^{(t)} = (1 \pm \epsilon)f(x^{(t)})$

- $x^{(t)} \coloneqq$ the stream vector after updates 1,2, ... *t*
- Algorithm must output $R^{(t)}$ so

 $R^{(t)} = (1 \pm \epsilon) f(x^{(t)})$

- $x^{(t)} \coloneqq$ the stream vector after updates 1,2, ... *t*
- Algorithm must output $R^{(t)}$ so

 $R^{(t)} = (1 \pm \epsilon) f(x^{(t)})$

- $x^{(t)} \coloneqq$ the stream vector after updates 1,2, ... *t*
- Algorithm must output $R^{(t)}$ so

 $R^{(t)} = (1 \pm \epsilon) f(x^{(t)})$

- Classic streams: Data is fixed before algorithm starts: future data does not depend on outputs $R^{(t)}!$
 - Future data often depends on past decisions: no known guarantees for streaming algorithms in this case!
- Adversarial Streams: Adversary controls stream updates: sees $R^{(t)}$, then gets to choose (i_{t+1}, Δ_{t+1}) .

Goal of Adversary: Make Algorithm fail to output an ϵ -approximation:

- Adversary wants: $R^{(t)} \neq (1 \pm \epsilon)f(x^{(t)})$ at some time t
- Adversary has unbounded computational power, knows entire history of outputs $R^{(1)}$, $R^{(2)}$, ... $R^{(t-1)}$ at time t
- Deterministic algorithms are adversarially robust, however most streaming algorithms provably **must** be randomized

Classic Streaming Algorithms Not Robust!

<u>Theorem</u>: the classic **AMS Sketch** (Alon, Matias, Szegedy '96) for estimating F_2 is not adversarially robust!

• Even in insertion only streams, meaning $\Delta_t \ge 0$ for all t.

Classic Streaming Algorithms Not Robust!

<u>Theorem</u>: the classic **AMS Sketch** (Alon, Matias, Szegedy '96) for estimating F_2 is not adversarially robust!

• Even in insertion only streams, meaning $\Delta_t \ge 0$ for all t.

We need new algorithms!

Generic Transformations [Ben-Eliezer, Jayaram, W, Yogev]

Give two **generic** methods to **transform** any streaming algorithm \mathcal{A} into an *adversarially robust* algorithm \mathcal{A}' , with a mild space overhead:

Generic Transformations

Give two **generic** methods to **transform** any streaming algorithm \mathcal{A} into an *adversarially robust* algorithm \mathcal{A}' , using small space overhead:

Sketch Switching

Computation Paths

Generic Transformations

Sketch Switching

Computation Paths

Useful for exploiting algorithms \mathcal{A} which provide tracking better than one shot + a union bound over all time steps t.

Useful for exploiting algorithms \mathcal{A} with better dependence on failure probability δ than multiplicative $O(\log 1/\delta)$.

Flip Number

Definition (informal): For a function $f : \mathbb{R}^n \to \mathbb{R}$, define the ϵ -flip number $\lambda_{\epsilon}(f)$ to be the maximum number of times $f(x^{(t)})$ can change by a factor of $(1 + \epsilon)$ after poly(n) updates.

Flip Number

Definition (informal): For a function $f: \mathbb{R}^n \to \mathbb{R}$, define the ϵ -flip number $\lambda_{\epsilon}(f)$ to be the maximum number of times $f(x^{(t)})$ can change by a factor of $(1 + \epsilon)$ after poly(n) updates.

Example: $f(x) = ||x||_p^p = \sum_i |x_i|^p$, then for insertion only streams 1. $||x^{(0)}||_p^p = 0$ 2. $||x^{(poly(n))}||_p^p \le poly(n)$

So $\lambda_{\epsilon}(f) = \log_{(1+\epsilon)}(\operatorname{poly}(n)) = O\left(\frac{1}{\epsilon}\log n\right)$

Sketch Switching

- 1. Keep multiple ($\lambda_{\epsilon}(f)$ many) independent sketches concurrently.
- 2. Only use output of one sketch S_i at a time.
- 3. Once estimate $R^{(t)}$ of S_i changes by $(1 + \epsilon)$, info about S_i is leaked, throw S_i away!

Sketch Switching

- 1. Keep multiple ($\lambda_{\epsilon}(f)$ many) independent sketches concurrently.
- 2. Only use outputs of one sketch S_i at a time.
- 3. Once estimate $R^{(t)}$ of S_i changes by $(1 + \epsilon)$, info about S_i is leaked, throw S_i away!

Computation Paths

Streaming algorithms can be made robust by setting failure probability δ small enough:

 $\delta' = \delta \cdot n^{-O(\lambda_\varepsilon(f))}$

- 1. Only need to change output $\lambda_{\varepsilon}(f)$ times!
- 2. Stream is length poly(n), and output is O(log n) bits, so only $n^{O(\lambda_{\epsilon}(f))}$ possible "computation paths" between algorithm and adversary.
- 3. Setting δ' small enough, can union bound over all of them!

Theorem (informal): For $f: \mathbb{R}^n \to \mathbb{R}$, let \mathcal{A} be any algorithm which ϵ tracks $f(x^{(t)})$. Then there is an adversarially robust algorithm \mathcal{A}' for ϵ tracking $f(x^{(t)})$ using space $O(\lambda_{\epsilon}(f) \cdot \operatorname{Space}(\mathcal{A}))$.

Theorem (informal): Let \mathcal{A} be any algorithm which ϵ -tracks $f(x^{(t)})$ with probability $1 - \delta$ using space Space(\mathcal{A}, δ). Then there is an adversarially robust algorithm \mathcal{A}' that uses Space(\mathcal{A}, δ') where

$$\delta' = \delta \cdot n^{-O(\lambda_{\epsilon}(f))}$$

Sketch Switching

Theorem (informal): For $f: \mathbb{R}^n \to \mathbb{R}$, let \mathcal{A} be any algorithm which ϵ tracks $f(x^{(t)})$. Then there is an adversarially robust algorithm \mathcal{A}' for ϵ tracking $f(x^{(t)})$ using space $O(\lambda_{\epsilon}(f) \cdot \operatorname{Space}(\mathcal{A}))$.

Application of Sketch Switching

Theorem (Blasiok SODA '18): There is a streaming algorithm that ϵ tracks the number of **distinct elements** in an insertion only stream, defined by $\|x^{(t)}\|_0 = |\{i : x_i \neq 0\}|$, using space $O\left(\frac{\log \log n}{\epsilon^2} + \log n\right)$.

Application of Sketch Switching

Theorem (Blasiok SODA '18): There is a streaming algorithm that ϵ -tracks the number of **distinct elements** in an insertion only stream, defined by $\|x^{(t)}\|_0 = |\{i : x_i \neq 0\}|$, using space $O\left(\frac{\log \log n}{\epsilon^2} + \log n\right)$.

Theorem: There is an adversarially robust streaming algorithm for ϵ -tracking the number of **distinct elements** using space:

$$O\left(\frac{\log n}{\epsilon}\left(\frac{\log \log n}{\epsilon^2} + \log n\right)\right)^*$$

In this case can improve the leading log n factor to $\log(\frac{1}{c})$

Sketch Switching

High level idea:

- Adversary wants to learn about your sketch and randomness to fool it
- We carefully reveal information about our sketches
- As soon as we reveal any new information, immediately make this information irrelevant

Sketch Switching

Sketch Switching:

- 1. Create $O(\lambda_{\frac{\epsilon}{12}}(f))$ independent sketches S_1, \dots, S_k , each providing a $(1 \pm \frac{\epsilon}{10})$ -approximation. Set i = 1 and $R^{(0)} = 0$
- 2. At time t, if Estimate $(S_i) \notin (1 \pm \frac{\epsilon}{3}) R^{(t-1)}$ 1. Set $R^{(t)} = \text{Estimate}(S_i)$ and throw out S_i 2. $i \leftarrow i + 1$

Otherwise set $R^{(t)} = R^{(t-1)}$

Sketch Switching Proof

- Can assume adversary is deterministic by averaging
- This fixes the part of the stream the adversary gives S^i after S^{i-1} returned an answer Out
 - The stream does not depend on S^i though it may depend on S^1,S^2,\ldots,S^{i-1}
 - So, Sⁱ is correct at all positions in new stream
- Sⁱ outputs old value Out until its value Out' $\notin [(1 \frac{\epsilon}{3}) \text{Out}, (1 + \frac{\epsilon}{3}) \text{Out}]$, at which point we switch to Sⁱ⁺¹
- Might worry you learn something about Sⁱ until it outputs Out', and you do, but Sⁱ is correct on whatever fixed stream you choose until Sⁱ outputs Out'

Sketch Switching Proof

- If Sⁱ provides a $(1 \pm \frac{\epsilon}{10})$ -approximation, then if Out' $\notin [(1 \frac{\epsilon}{3}) \text{Out}, (1 + \frac{\epsilon}{3}) \text{Out}],$ necessarily f has changed by a $(1 \pm \frac{\epsilon}{12})$ factor
 - Number of sketches we need is bounded by $\lambda_{\frac{\epsilon}{12}}(f)$
- Conversely, if f changes by a $(1 \pm \epsilon)$ factor, necessarily Out' $\notin [(1 \frac{\epsilon}{3}) \text{Out}, (1 + \frac{\epsilon}{3}) \text{Out}]$
 - So we are correct at all times

Computation Paths

Theorem (informal): For $f: \mathbb{R}^n \to \mathbb{R}$, let \mathcal{A} be any algorithm which ϵ tracks $f(x^{(t)})$ with probability $1 - \delta$ using space $L(\epsilon, \delta)$. Then there is a *robust* algorithm \mathcal{A}' for using space $L(\epsilon/10, \delta')$, where

$$\delta' = \delta \cdot n^{-O(\lambda_{\epsilon/12}(f))}$$

> Streaming algorithms can be made robust by setting failure probability δ to be small!

Computation Paths: High Level Proof

Streaming algorithms can be made robust by setting failure probability to be

 $\delta' = \delta \cdot n^{-O(\lambda_{\epsilon/12}(f))}$

- 1. Only need to change the output $\lambda_{\epsilon/12}(f)$ times
- 2. Stream is length poly(n), and output is O(log n) bits, so $n^{O(\lambda_{\epsilon/12}(f))}$ possible streams a deterministic adversary can create
- 3. Setting δ' small enough, can union bound over all of them

Results of [BJWY], instantiating $\lambda_{\epsilon}(f) = O(\epsilon^{-1} \log n)$

Problem	Non-Adversarial	Adversarial ([BJWY])
Distinct Elements (F_0)	$\tilde{O}(\epsilon^{-2} + \log n)$	$\tilde{O}(\epsilon^{-3} + \log n)$
F_p estimation, $p \in (0,2] \setminus \{1\}$	$ ilde{O}(\epsilon^{-2}\log n$)	$ ilde{O}(\epsilon^{-3}\log n)$
F_p estimation, $p > 2$	$O\left(n^{1-\frac{2}{p}}\left(\epsilon^{-3}\log^2 n + \epsilon^{-\frac{6}{p}}\log^{\frac{4}{p}+1}n\right)\right)$	Same when $\delta = O(n^{-\frac{\log}{\epsilon}})$
Heavy Hitters	$O(\epsilon^{-2}\log^2 n)$	$\tilde{O}(\epsilon^{-3}\log^2 n)$
Entropy Estimation	$O(\epsilon^{-2}\log^3 n)$	$O(\epsilon^{-5}\log^6 n)$

For adversaries with **bounded computation + Cryptographic Assumptions,** can improve some of above:

Problem	Adversarial ([BJWY])
Distinct Elements (F_0)	$ ilde{O}(\epsilon^{-2} + \log n)$ optimal even with no adversary
Entropy Estimation	$O(\epsilon^{-5}\log^4 n)$

Polynomially Bounded Adversaries

- Recall non-robust F₀-estimation algorithm:
 - Choose a hash function h: $\{1, 2, ..., n\} \rightarrow \{0, 1, 2, ..., M\}$, where $M = O(n^2)$
 - Maintain smallest t = $\frac{100}{\epsilon^2}$ values h(i) found when processing stream
- State of the algorithm is exactly the same if you insert the same item twice
 - Breaking this algorithm requires breaking the hash function h
- Assumption: for any c > 0 there is a d > 0 and a family of n^d hash functions that can be evaluated in O(log n) memory such that any n^c-time Adversary cannot break this
 - Exponentially secure pseudorandom function (in practice, AES or SHA256)

Improvements

- 1. [Hassidim, Kaplan, Mansour, Matias, Stemmer]
 - 1. Use differential privacy
 - 2. Improve the [BJWY] bounds of $\tilde{O}(\epsilon^{-3} \log n)$ to $\tilde{O}(\epsilon^{-2.5} \log^4 n)$ for F_0 , F_2 , and many other streaming tasks
- 2. [W, Zhou]
 - 1. Introduce "Difference Estimators"
 - 2. Improve the [BJWY] bounds of $\tilde{O}(\epsilon^{-3} \log n)$ and the $\tilde{O}(\epsilon^{-2.5} \log^4 n)$ bounds above to $\tilde{O}(\epsilon^{-2} \log n)$ for F_0 , F_2 , and many other streaming tasks
 - 3. Non-robust algorithms for these problems require $\Omega(\epsilon^{-2})$ bits, so our memory is optimal in ϵ (and often matches non-robust log n factors)

Difference Estimators

- Do we really need to switch our sketch whenever the output changes by $1+\epsilon$?
- Maybe? Unclear what the adversary is learning.
- If the last output Out was a $(1 \pm \epsilon)$ -approximation to function value f(x), and f(x) changes to f(x') with $f(x') \in (1 \pm O(\epsilon))f(x)$, do we need a brand new $1 \pm \epsilon$ approximation to f(x')?
- Seems wasteful. We've fixed Out maybe we can use Out for something?
- Difference Estimator: approximate f(x')-f(x) up to an O(1)-factor, and add it to Out!

Difference Estimators

- Need to approximate f(x')-f(x) up to additive error $\epsilon f(x)$ given that $f(x')-f(x) = O(\epsilon)f(x)$
 - Can't afford to approximate each of f(x') and f(x) up to relative $1\pm\epsilon$
 - Approximating each of f(x') and f(x) up to relative O(1) error won't give $O(\varepsilon)f(x)$ additive error
- Design the first difference estimators for streams!
 - Example: $|x'|_2^2 |x|_2^2 = |x' x|_2^2 + 2 < x' x, x >$
 - Approximate terms up to $O(\epsilon)|x|_2^2$ error uses $|x' x|_2^2 = O(\epsilon |x|_2^2)$
 - Only need $1/\epsilon$ memory to do this

Sketch-Stitching and Granularity Changing

- Suppose x is the current underlying vector
- If x grows to x' with $f(x') \ge 2f(x)$, x must first grow to x^1 with $f(x^1) = (1 + \epsilon)f(x)$
- Approximate the difference $f(x^1) f(x)$ up to $C/\log(\frac{1}{\epsilon})$ -relative error for constant C > 0
- Then x must grow to a vector x^2 where $f(x^2) = (1 + 2\epsilon)f(x)$
 - Approximate the difference $f(x^2)-f(x)$ up to $C/(2\log(\frac{1}{\epsilon}))$ -relative error
 - Important not to use $[f(x^1)-f(x)] + [f(x^2)-f(x_1)]$ here $-e^{r}$ errors would grow too fast
- Then x must grow to a vector x^3 where $f(x^3) = (1 + 3\epsilon)f(x)$

 - Approximate the difference $f(x^2)-f(x)$ up to $C/(2\log(\frac{1}{\epsilon}))$ -relative error Approximate the difference $f(x^3)-f(x^2)$ up to $C/\log(\frac{1}{\epsilon})$ -relative error
- Additive errors add to $O(\epsilon)f(x)$, using $O(\log(\frac{1}{\epsilon}))$ differences in binary representation

Achieving Adversarial Robustness

- For robustness for F_2 , sketch-switch in each of $\log 1/\epsilon$ levels in a binary tree
 - Top level uses memory $\frac{1}{\epsilon^2}$ but only need to sketch-switch O(log n) times
 - Bottom level uses memory $\frac{1}{\epsilon}$ but needs to sketch-switch $\frac{1}{\epsilon}$ times
 - Overall memory bound is a sum over levels

Further Work / Open Questions

- Tight bounds in terms of flip number [Kaplan, Mansour, Nissim, Stemmer]
- Improvements for small stream length [Ben-Eliezer, Eden, Onak]
- For streams with negative updates, can one prove strong lower bounds?
- Other uses of cryptography for data streams?