
Adversarially Robust Streaming 
Algorithms



Classic Streaming Algorithms

Modeled by updates to a large vector 
• At time , receive update , causing change 

• If for all t, , the stream is called insertion-only

• At any point, algorithm computes function using small space

• E.g. 

• Algorithm stores a small sketch of the data, much smaller than 



Example: Estimation
• Output for which (recall )

• Choose a random matrix   × 

• Entries can be 4-wise independent

• Maintain in the stream
• Given an update , set ∗, 

• Use to estimate 
• and 

• bits of memory

-1 1  1 1  -1 -1 1 -1 
1 -1 -1 1  1 -1 -1 1
-1 1  1-1  1 -1  1 -1
1-1  1-1 -1  1  1 1

S = 



Example: Estimation in Insertion Streams
• Output with (recall )

• Choose a hash function , where 
• With good probability, no collisions

• Maintain the smallest hash values in the stream

• Output Z = tM/v, where v is the t-th smallest hash value

• Smallest hash value about , so v should be about 

• bits of memory. Can improve to bits

10 2 Mv



Tracking Algorithms

• ( ) the stream vector after updates 

• Algorithm must output ( ) so 
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Tracking Algorithms

• ( ) the stream vector after updates 

• Algorithm must output ( ) so

( )



Adversarial Streams

• Classic streams: Data is fixed before algorithm starts: future data does 
not depend on outputs ( )

• Future data often depends on past decisions: no known guarantees for 
streaming algorithms in this case!

• Adversarial Streams: Adversary controls stream updates: sees ( )

then gets to choose .



Adversarial Streams

Modeled by 2-player game.
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Modeled by 2-player game.
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Adversarial Streams

Goal of Adversary: Make Algorithm fail to output an -approximation:

• Adversary wants: ( ) at some time 

• Adversary has unbounded computational power, knows entire history 
of outputs ( ) ( ) ( ) at time 

• Deterministic algorithms are adversarially robust, however most 
streaming algorithms provably must be randomized



Classic Streaming Algorithms Not Robust!

Theorem: the classic AMS Sketch (Alon, Matias, Szegedy ‘96) for 
estimating is not adversarially robust!

• Even in insertion only streams, meaning for all 



Classic Streaming Algorithms Not Robust!

Theorem: the classic AMS Sketch (Alon, Matias, Szegedy ‘96) for 
estimating is not adversarially robust!

• Even in insertion only streams, meaning for all 

We need new algorithms!



Generic Transformations [Ben-Eliezer, Jayaram, W, Yogev]

Give two generic methods to transform any streaming algorithm 
into an adversarially robust algorithm with a mild space overhead:



Generic Transformations

Give two generic methods to transform any streaming algorithm 
into an adversarially robust algorithm using small space overhead:

Sketch Switching Computation Paths



Generic Transformations

Sketch Switching Computation Paths

Useful for exploiting algorithms which 
provide tracking better than one shot + a 
union bound over all time steps 

Useful for exploiting algorithms with better 
dependence on failure probability than 
multiplicative 



Flip Number

Definition (informal): For a function define the -flip 
number to be the maximum number of times can change 
by a factor of after updates. 



Flip Number

Definition (informal): For a function define the -flip 
number to be the maximum number of times can change 
by a factor of after updates. 

Example: , then for insertion only streams
( )

( )

So ( )



Sketch Switching
1. Keep multiple (𝜆 𝑓 many) independent 

sketches concurrently.

2. Only use output of one sketch 𝑆 at a time.

3. Once estimate 𝑅( ) of 𝑆  changes by 1 + 𝜖 ,

info about 𝑆 is leaked, throw 𝑆 away!



Sketch Switching Computation Paths
1. Keep multiple (λ f many) independent   

sketches concurrently.
2.    Only use outputs of one sketch S at a time.
3.    Once estimate R( ) of S  changes by

1 + ϵ , info about S is leaked, 
throw S away!

Streaming algorithms can be made robust by 
setting failure probability δ small enough:

δ = δ ⋅ n ( )

1. Only need to change output λ f times! 
2. Stream is length poly(n), and output is O(log n) 

bits, so only n ( ) possible “computation 
paths” between algorithm and adversary. 

3. Setting δ small enough, can union bound over 
all of them!



Theorem (informal): For , let be any algorithm which -
tracks Then there is an adversarially robust algorithm for -
tracking using space .

Theorem (informal): Let be any algorithm which -tracks with 
probability using space . Then there is an 
adversarially robust algorithm that uses where 

( )



Sketch Switching

Theorem (informal): For , let be any algorithm which -
tracks Then there is an adversarially robust algorithm for -
tracking using space .



Application of Sketch Switching

Theorem (Blasiok SODA ‘18): There is a streaming algorithm that -
tracks the number of distinct elements in an insertion only stream
defined by ( ) using space .



Application of Sketch Switching

Theorem (Blasiok SODA ‘18): There is a streaming algorithm that -
tracks the number of distinct elements in an insertion only stream
defined by ( ) using space .

Theorem: There is an adversarially robust streaming algorithm for -
tracking the number of distinct elements using space: 

 
∗

In this case can improve the leading log n factor to 



Sketch Switching

High level idea:
• Adversary wants to learn about your sketch and randomness to fool it
• We carefully reveal information about our sketches
• As soon as we reveal any new information, immediately make this 

information irrelevant



Sketch Switching
Sketch Switching:
1. Create ) independent sketches each providing

a -approximation.  and ( )

2.   At time ( )

1. Set ( ) and throw out 

Otherwise set ( ) ( )



Sketch Switching Proof
• Can assume adversary is deterministic by averaging

• This fixes the part of the stream the adversary gives after returned an answer Out

• The stream does not depend on though it may depend on 

• So, is correct at all positions in new stream

• outputs old value Out until its value Out’ , at which point 
we switch to 

• Might worry you learn something about until it outputs Out’, and you do, but is 
correct on whatever fixed stream you choose until outputs Out’



Sketch Switching Proof

• If provides a -approximation, then if Out’ , 

necessarily f has changed by a factor

• Number of sketches we need is bounded by 

• Conversely, if f changes by a factor, necessarily Out’ 

• So we are correct at all times



Computation Paths

Theorem (informal): For  , let be any algorithm which -
tracks with probability using space . Then there is a 
robust algorithm for using space where 

( / )

 Streaming algorithms can be made robust by setting failure probability to be 
small!



Computation Paths: High Level Proof
Streaming algorithms can be made robust by setting failure probability to be

( / )

1. Only need to change the output / times

2. Stream is length poly , and output is O(log n) bits, so ( / ) possible 

streams a deterministic adversary can create

3. Setting small enough, can union bound over all of them



Results of [BJWY], instantiating 

Problem Non-Adversarial Adversarial ([BJWY])

Distinct Elements (𝐹 ) 𝑂(𝜖 + log 𝑛 ) 𝑂(𝜖 + log 𝑛 )

𝐹 estimation, 𝑝 ∈ 0,2 ∖ {1} 𝑂(𝜖 log 𝑛 ) 𝑂(𝜖 log 𝑛 )

𝐹 estimation, 𝑝 > 2
𝑂 𝑛 𝜖 log 𝑛 + 𝜖 log 𝑛

Same when 

𝛿 = 𝑂(𝑛 )

Heavy Hitters 𝑂(𝜖 log 𝑛 ) 𝑂(𝜖 log 𝑛 )

Entropy Estimation 𝑂(𝜖 log 𝑛 ) 𝑂(𝜖 log 𝑛 )

For adversaries with bounded computation + Cryptographic Assumptions, can improve some of above:

Problem Adversarial ([BJWY])

Distinct Elements (𝐹 ) 𝑂(𝜖 + log 𝑛 )
optimal even with no adversary

Entropy Estimation 𝑂(𝜖 log 𝑛 )



Polynomially Bounded Adversaries
• Recall non-robust -estimation algorithm:

• Choose a hash function , where 

• Maintain smallest values h(i) found when processing stream

• State of the algorithm is exactly the same if you insert the same item twice
• Breaking this algorithm requires breaking the hash function h

• Assumption: for any c > 0 there is a d > 0 and a family of hash functions that can be 
evaluated in O(log n) memory such that any -time Adversary cannot break this 

• Exponentially secure pseudorandom function (in practice, AES or SHA256)



Improvements

1. [Hassidim, Kaplan, Mansour, Matias, Stemmer] 
1. Use differential privacy

2. Improve the [BJWY] bounds of to . for 
and many other streaming tasks

2. [W, Zhou]
1. Introduce “Difference Estimators”

2. Improve the [BJWY] bounds of and the . bounds 
above to for and many other streaming tasks

3. Non-robust algorithms for these problems require bits, so our 
memory is optimal in (and often matches non-robust log n factors)



Difference Estimators

• Do we really need to switch our sketch whenever the output changes by 1+ ?

• Maybe? Unclear what the adversary is learning.

• If the last output Out was a ( )-approximation to function value f(x), and f(x) 
changes to f(x‘) with f( , do we need a brand new 
approximation to f(x‘)? 

• Seems wasteful. We've fixed Out - maybe we can use Out for something?

• Difference Estimator: approximate f(x‘)-f(x) up to an O(1)-factor, and add it to Out! 



Difference Estimators

• Need to approximate f(x’)-f(x) up to additive error given that     
f(x’)-f(x) 

• Can’t afford to approximate each of f(x’) and f(x) up to relative 

• Approximating each of f(x’) and f(x) up to relative O(1) error won’t 
give additive error 

• Design the first difference estimators for streams!
• Example: 
• Approximate terms up to error – uses
• Only need memory to do this



Sketch-Stitching and Granularity Changing
• Suppose x is the current underlying vector 

• If x grows to x’ with f(x’) , x must first grow to with f( )

• Approximate the difference f( ) up to C/ -relative error for constant C > 0

• Then must grow to a vector where f( )
• Approximate the difference f( ) up to -relative error
• Important not to use [f( ) ] + [f( ) ] here – errors would grow too fast

• Then x must grow to a vector where f( )
• Approximate the difference f( ) up to -relative error
• Approximate the difference f( ) up to / -relative error

• Additive errors add to , using differences in binary representation



Achieving Adversarial Robustness

• For robustness for , sketch-switch in each of levels in a binary tree

• Top level uses memory but only need to sketch-switch O(log n) times

• Bottom level uses memory but needs to sketch-switch times

• Overall memory bound is a sum over levels



Further Work / Open Questions

• Tight bounds in terms of flip number [Kaplan,Mansour,Nissim,Stemmer]

• Improvements for small stream length [Ben-Eliezer, Eden, Onak]

• For streams with negative updates, can one prove strong lower bounds?

• Other uses of cryptography for data streams?


