
Adversarially Robust Streaming
Algorithms

Classic Streaming Algorithms

Modeled by updates to a large vector
• At time , receive update , causing change

• If for all t, , the stream is called insertion-only

• At any point, algorithm computes function using small space

• E.g.

• Algorithm stores a small sketch of the data, much smaller than

Example: Estimation
• Output for which (recall)

• Choose a random matrix ×

• Entries can be 4-wise independent

• Maintain in the stream
• Given an update , set ∗,

• Use to estimate
• and

• bits of memory

-1 1 1 1 -1 -1 1 -1
1 -1 -1 1 1 -1 -1 1
-1 1 1-1 1 -1 1 -1
1-1 1-1 -1 1 1 1

S =

Example: Estimation in Insertion Streams
• Output with (recall)

• Choose a hash function , where
• With good probability, no collisions

• Maintain the smallest hash values in the stream

• Output Z = tM/v, where v is the t-th smallest hash value

• Smallest hash value about , so v should be about

• bits of memory. Can improve to bits

10 2 Mv

Tracking Algorithms

• () the stream vector after updates

• Algorithm must output () so

Tracking Algorithms

• () the stream vector after updates

• Algorithm must output () so

Tracking Algorithms

• () the stream vector after updates

• Algorithm must output () so

()

Tracking Algorithms

• () the stream vector after updates

• Algorithm must output () so

Tracking Algorithms

• () the stream vector after updates

• Algorithm must output () so

()

Adversarial Streams

• Classic streams: Data is fixed before algorithm starts: future data does
not depend on outputs ()

• Future data often depends on past decisions: no known guarantees for
streaming algorithms in this case!

• Adversarial Streams: Adversary controls stream updates: sees ()

then gets to choose .

Adversarial Streams

Modeled by 2-player game.

Adversarial Streams

Modeled by 2-player game.

()

Adversarial Streams

Modeled by 2-player game.

()

Adversarial Streams

Modeled by 2-player game.

()

Adversarial Streams

Modeled by 2-player game.

()()

Adversarial Streams

Modeled by 2-player game.

(), ()

Adversarial Streams

Modeled by 2-player game.

(), ()

Adversarial Streams

Goal of Adversary: Make Algorithm fail to output an -approximation:

• Adversary wants: () at some time

• Adversary has unbounded computational power, knows entire history
of outputs () () () at time

• Deterministic algorithms are adversarially robust, however most
streaming algorithms provably must be randomized

Classic Streaming Algorithms Not Robust!

Theorem: the classic AMS Sketch (Alon, Matias, Szegedy ‘96) for
estimating is not adversarially robust!

• Even in insertion only streams, meaning for all

Classic Streaming Algorithms Not Robust!

Theorem: the classic AMS Sketch (Alon, Matias, Szegedy ‘96) for
estimating is not adversarially robust!

• Even in insertion only streams, meaning for all

We need new algorithms!

Generic Transformations [Ben-Eliezer, Jayaram, W, Yogev]

Give two generic methods to transform any streaming algorithm
into an adversarially robust algorithm with a mild space overhead:

Generic Transformations

Give two generic methods to transform any streaming algorithm
into an adversarially robust algorithm using small space overhead:

Sketch Switching Computation Paths

Generic Transformations

Sketch Switching Computation Paths

Useful for exploiting algorithms which
provide tracking better than one shot + a
union bound over all time steps

Useful for exploiting algorithms with better
dependence on failure probability than
multiplicative

Flip Number

Definition (informal): For a function define the -flip
number to be the maximum number of times can change
by a factor of after updates.

Flip Number

Definition (informal): For a function define the -flip
number to be the maximum number of times can change
by a factor of after updates.

Example: , then for insertion only streams
()

()

So ()

Sketch Switching
1. Keep multiple (𝜆 𝑓 many) independent

sketches concurrently.

2. Only use output of one sketch 𝑆 at a time.

3. Once estimate 𝑅() of 𝑆 changes by 1 + 𝜖 ,

info about 𝑆 is leaked, throw 𝑆 away!

Sketch Switching Computation Paths
1. Keep multiple (λ f many) independent

sketches concurrently.
2. Only use outputs of one sketch S at a time.
3. Once estimate R() of S changes by

1 + ϵ , info about S is leaked,
throw S away!

Streaming algorithms can be made robust by
setting failure probability δ small enough:

δ = δ ⋅ n ()

1. Only need to change output λ f times!
2. Stream is length poly(n), and output is O(log n)

bits, so only n () possible “computation
paths” between algorithm and adversary.

3. Setting δ small enough, can union bound over
all of them!

Theorem (informal): For , let be any algorithm which -
tracks Then there is an adversarially robust algorithm for -
tracking using space .

Theorem (informal): Let be any algorithm which -tracks with
probability using space . Then there is an
adversarially robust algorithm that uses where

()

Sketch Switching

Theorem (informal): For , let be any algorithm which -
tracks Then there is an adversarially robust algorithm for -
tracking using space .

Application of Sketch Switching

Theorem (Blasiok SODA ‘18): There is a streaming algorithm that -
tracks the number of distinct elements in an insertion only stream
defined by () using space .

Application of Sketch Switching

Theorem (Blasiok SODA ‘18): There is a streaming algorithm that -
tracks the number of distinct elements in an insertion only stream
defined by () using space .

Theorem: There is an adversarially robust streaming algorithm for -
tracking the number of distinct elements using space:

∗

In this case can improve the leading log n factor to

Sketch Switching

High level idea:
• Adversary wants to learn about your sketch and randomness to fool it
• We carefully reveal information about our sketches
• As soon as we reveal any new information, immediately make this

information irrelevant

Sketch Switching
Sketch Switching:
1. Create) independent sketches each providing

a -approximation. and ()

2. At time ()

1. Set () and throw out

Otherwise set () ()

Sketch Switching Proof
• Can assume adversary is deterministic by averaging

• This fixes the part of the stream the adversary gives after returned an answer Out

• The stream does not depend on though it may depend on

• So, is correct at all positions in new stream

• outputs old value Out until its value Out’ , at which point
we switch to

• Might worry you learn something about until it outputs Out’, and you do, but is
correct on whatever fixed stream you choose until outputs Out’

Sketch Switching Proof

• If provides a -approximation, then if Out’ ,

necessarily f has changed by a factor

• Number of sketches we need is bounded by

• Conversely, if f changes by a factor, necessarily Out’

• So we are correct at all times

Computation Paths

Theorem (informal): For , let be any algorithm which -
tracks with probability using space . Then there is a
robust algorithm for using space where

(/)

 Streaming algorithms can be made robust by setting failure probability to be
small!

Computation Paths: High Level Proof
Streaming algorithms can be made robust by setting failure probability to be

(/)

1. Only need to change the output / times

2. Stream is length poly , and output is O(log n) bits, so (/) possible

streams a deterministic adversary can create

3. Setting small enough, can union bound over all of them

Results of [BJWY], instantiating

Problem Non-Adversarial Adversarial ([BJWY])

Distinct Elements (𝐹) 𝑂(𝜖 + log 𝑛) 𝑂(𝜖 + log 𝑛)

𝐹 estimation, 𝑝 ∈ 0,2 ∖ {1} 𝑂(𝜖 log 𝑛) 𝑂(𝜖 log 𝑛)

𝐹 estimation, 𝑝 > 2
𝑂 𝑛 𝜖 log 𝑛 + 𝜖 log 𝑛

Same when

𝛿 = 𝑂(𝑛)

Heavy Hitters 𝑂(𝜖 log 𝑛) 𝑂(𝜖 log 𝑛)

Entropy Estimation 𝑂(𝜖 log 𝑛) 𝑂(𝜖 log 𝑛)

For adversaries with bounded computation + Cryptographic Assumptions, can improve some of above:

Problem Adversarial ([BJWY])

Distinct Elements (𝐹) 𝑂(𝜖 + log 𝑛)
optimal even with no adversary

Entropy Estimation 𝑂(𝜖 log 𝑛)

Polynomially Bounded Adversaries
• Recall non-robust -estimation algorithm:

• Choose a hash function , where

• Maintain smallest values h(i) found when processing stream

• State of the algorithm is exactly the same if you insert the same item twice
• Breaking this algorithm requires breaking the hash function h

• Assumption: for any c > 0 there is a d > 0 and a family of hash functions that can be
evaluated in O(log n) memory such that any -time Adversary cannot break this

• Exponentially secure pseudorandom function (in practice, AES or SHA256)

Improvements

1. [Hassidim, Kaplan, Mansour, Matias, Stemmer]
1. Use differential privacy

2. Improve the [BJWY] bounds of to . for
and many other streaming tasks

2. [W, Zhou]
1. Introduce “Difference Estimators”

2. Improve the [BJWY] bounds of and the . bounds
above to for and many other streaming tasks

3. Non-robust algorithms for these problems require bits, so our
memory is optimal in (and often matches non-robust log n factors)

Difference Estimators

• Do we really need to switch our sketch whenever the output changes by 1+ ?

• Maybe? Unclear what the adversary is learning.

• If the last output Out was a ()-approximation to function value f(x), and f(x)
changes to f(x‘) with f(, do we need a brand new
approximation to f(x‘)?

• Seems wasteful. We've fixed Out - maybe we can use Out for something?

• Difference Estimator: approximate f(x‘)-f(x) up to an O(1)-factor, and add it to Out!

Difference Estimators

• Need to approximate f(x’)-f(x) up to additive error given that
f(x’)-f(x)

• Can’t afford to approximate each of f(x’) and f(x) up to relative

• Approximating each of f(x’) and f(x) up to relative O(1) error won’t
give additive error

• Design the first difference estimators for streams!
• Example:
• Approximate terms up to error – uses
• Only need memory to do this

Sketch-Stitching and Granularity Changing
• Suppose x is the current underlying vector

• If x grows to x’ with f(x’) , x must first grow to with f()

• Approximate the difference f() up to C/ -relative error for constant C > 0

• Then must grow to a vector where f()
• Approximate the difference f() up to -relative error
• Important not to use [f()] + [f()] here – errors would grow too fast

• Then x must grow to a vector where f()
• Approximate the difference f() up to -relative error
• Approximate the difference f() up to / -relative error

• Additive errors add to , using differences in binary representation

Achieving Adversarial Robustness

• For robustness for , sketch-switch in each of levels in a binary tree

• Top level uses memory but only need to sketch-switch O(log n) times

• Bottom level uses memory but needs to sketch-switch times

• Overall memory bound is a sum over levels

Further Work / Open Questions

• Tight bounds in terms of flip number [Kaplan,Mansour,Nissim,Stemmer]

• Improvements for small stream length [Ben-Eliezer, Eden, Onak]

• For streams with negative updates, can one prove strong lower bounds?

• Other uses of cryptography for data streams?

