Adversarially Robust Streaming
Algorithms

Classic Streaming Algorithms

Modeled by updates to a large vector x € R"

* Attime t = 1,2, ..., receive update (i;, A;), causing change

Xi «— Xit _I'At

t
* If forallt, A, = 0, the stream is called insertion-only

* At any point, algorithm computes function f(x) using small space

cEg.fx) =F,= |x|5=X,x* or f(x) =F, = |{isuchthatx; # 0}|

* Algorithm stores a small sketch S(x) of the data, much smaller than n bits

Example: F, — Estimation

e Output F, forwhich (1 —¢€)-F, <F, <(1+¢€)-F, (recallF, = > xZ)

1
* Choose a random matrix S € {—¢, e} &~ "

* Entries can be 4-wise independent -1111-1-11-1

S=€- 1-1-111-1-11
e Maintain S - X in the stream -111-11-11-1
* Given an update X;, < X;, + A, setS-x « S-x+ A - S, ;, 1-11-1-1111

* Use |S - x|3 to estimate |x|5
* Eg[IS - xI3] = IxI3 and Varg]|S - xI3| = 0(e?|xI3)

. O(loegzn) bits of memory

Example: Fy — Estimation in Insertion Streams

Output Fy with (1 —€) -Fo < Fy < (1+¢€)-F, (recall Fy = |{i with x; # 0}|)

Choose a hash function h: {1, 2, ...,n} - {0,1, 2, ..., M}, where M = O(nz)
* With good probability, no collisions

L 100 :
Maintain the smallest t = —- hash values in the stream

Output Z = tM/v, where v is the t-th smallest hash value

M M
* Smallest hash value about —, so v should be about X
Fo Fo 012 v

O(e™ 2 - logn) bits of memory. Can improve to O(e~2 + logn) bits

Tracking Algorithms

« x(U := the stream vector after updates 1,2, ... t

e Algorithm must output R so
R® = (1 + e)f(xV)

Tracking Algorithms

« x(U := the stream vector after updates 1,2, ...t

e Algorithm must output R so
R® = (1 + e)f(x®)

/ G At)\ ¢
N——’

Tracking Algorithms

« x() := the stream vector after updates 1,2, ...t

e Algorithm must output R® so
RO =(1£e)f(x")

Tracking Algorithms

« x() := the stream vector after updates 1,2, ...t

e Algorithm must output R® so
RO =(1£e)f(x")

| /(it+1' Atm
. | L7/) -

Tracking Algorithms

« x() := the stream vector after updates 1,2, ...t

e Algorithm must output R® so
RO =(1£e)f(x")

_ ﬂﬂ,Ath
] FlD

Adversarial Streams

* Classic streams: Data is fixed before algorithm starts: future data does
not depend on outputs RV

* Future data often depends on past decisions: no known guarantees for
streaming algorithms in this case!

« Adversarial Streams: Adversary controls stream updates: sees R(Y,
then gets to choose (it4+1, At+1)-

Adversarial Streams

Modeled by 2-player game.

u e

Adversarial Streams

Modeled by 2-player game.

Adversarial Streams

Modeled by 2-player game.

Adversarial Streams

Modeled by 2-player game.

Adversarial Streams

Modeled by 2-player game.

Adversarial Streams

Modeled by 2-player game.

Adversarial Streams

Modeled by 2-player game.

Adversarial Streams

Goal of Adversary: Make Algorithm fail to output an e-approximation:
e Adversary wants: R(® = (1 + €)f(x")) at some time t

* Adversary has unbounded computational power, knows entire history
of outputs RV, R R(=D at time t

* Deterministic algorithms are adversarially robust, however most
streaming algorithms provably must be randomized

Classic Streaming Algorithms Not Robust!

Theorem: the classic AMS Sketch (Alon, Matias, Szegedy ‘96) for
estimating F, is not adversarially robust!

* Evenin insertion only streams, meaning A; = 0 for all ¢.

Classic Streaming Algorithms Not Robust!

Theorem: the classic AMS Sketch (Alon, Matias, Szegedy ‘96) for
estimating F, is not adversarially robust!

* Evenin insertion only streams, meaning A; = 0 for all ¢.

We need new algorithms!

Generic Transformations (sen-liezer, Jayaram, W, Yogev]

Give two generic methods to transform any streaming algorithm A
into an adversarially robust algorithm A’, with a mild space overhead:

Generic Transformations

Give two generic methods to transform any streaming algorithm A
into an adversarially robust algorithm A’, using small space overhead:

Sketch Switching Computation Paths

Generic Transformations

Sketch Switching Computation Paths

Useful for exploiting algorithms A which Useful for exploiting algorithms A with better
provide tracking better than one shot + a dependence on failure probability § than
union bound over all time steps t. multiplicative O(log 1/4).

Flip Number

Definition (informal): For a function f: R" — R, define the e-flip
number A (f) to be the maximum number of times f(x(?)) can change
by a factor of (1 + €) after poly(n) updates.

Flip Number

Definition (informal): For a function f: R" — R, define the e-flip
number A.(f) to be the maximum number of times f(x(?)) can change
by a factor of (1 + €) after poly(n) updates.

Example: f(x) = ”X”g =).i|x;|P, then for insertion only streams
kO =0
p

2. [lx®VE||” < poly(n)

S0 Ac(f) = 10g(1.+6)(Poly(n)) = 0 (¢ logn)

Sketch Switching

1. Keep multiple (A.(f) many) independent
sketches concurrently.

2. Only use output of one sketch S; at a time.

3. Once estimate R® of S; changes by (1 + €),
info about S; is leaked, throw §; away!

= & ™ ﬁ\ﬂ@w ﬁ\ﬁ‘"ﬁm |
\# \=" \7 \Z

Sketch Switching Computation Paths

1. Keep multiple (A¢(f) many) independent Streaming algorithms can be made robust by
sketches concurrently. setting failure probability 6 small enough:
Only use outputs of one sketch S; at a time. §' =8 -n 0%
Once estimate R® of S; changes by 1. Only need to change output A(f) times!
(1 + €), info about S; is leaked, 2. Stream is length poly(n), and output is O(log n)
throw S; away! bits, so only n®®(®) possible “computation

paths” between algorithm and adversary.
3. Setting 8’ small enough, can union bound over
all of them!

Theorem (informal): For f: R" — R, let A be any algorithm which e-
tracks f(x(t)). Then there is an adversarially robust algorithm A’ for e-
tracking f(x(t)) using space O(Ae(f) : Space(cfl)).

Theorem (informal): Let A be any algorithm which e-tracks f(x(t)) with
probability 1 — & using space Space(A, §). Then there is an
adversarially robust algorithm A’ that uses Space(A, §") where

5§ =68 -n"2@e()

Sketch Switching

Theorem (informal): For f: R" — R, let A be any algorithm which e-
tracks f(x(t)). Then there is an adversarially robust algorithm A’ for e-

tracking f(x(t)) using space O(Ae(f) : Space(c/l)).

Application of Sketch Switching

Theorem (Blasiok SODA ‘18): There is a streaming algorithm that €-
tracks the number of distinct elements in an insertion only stream,

defined by ||x(t)||0 = |{i :x; 0 }|, using space O (loglo + log n).

€2

Application of Sketch Switching

Theorem (Blasiok SODA ‘18): There is a streaming algorithm that e-

tracks the number of distinct elements in an insertion only stream,

defined by ||x(’:)||0 = |{i tx; # 0 }|, using space O (logelggn + log n).

Theorem: There is an adversarially robust streaming algorithm for €-
tracking the number of distinct elements using space:

logn (loglogn)
0(5 (gzg +logn>>
€ €

In this case can improve the leading log n factor to log(%)

Sketch Switching

High level idea:
* Adversary wants to learn about your sketch and randomness to fool it
* We carefully reveal information about our sketches

* As soon as we reveal any new information, immediately make this
information irrelevant

Sketch Switching

Sketch Switching Proof

Can assume adversary is deterministic by averaging
This fixes the part of the stream the adversary gives S' after S'=1 returned an answer Out
« The stream does not depend on S! though it may depend on S1,S?, ...,S!71

* So, S'is correct at all positions in new stream

€

St outputs old value Out until its value Out’ & [(1 — 5) Out, (1 + §) Out], at which point

we switch to S!*1

Might worry you learn something about S! until it outputs Out’, and you do, but St is
correct on whatever fixed stream you choose until S' outputs Out’

Sketch Switching Proof

€

If S! provides a (1 + %)-approximation, then if Out’ & [(1 — 5) Out, (1 + g) Out],

necessarily f has changed by a (1 + %) factor

* Number of sketches we need is bounded by A ¢ (f)
12

Conversely, if f changes by a (1 + €) factor, necessarily Out’ & [(1 — g) Out, (1 + g) Out]

e So we are correct at all times

Computation Paths

Theorem (informal): For f: R™ — R, let A be any algorithm which e-
tracks f(x(t)) with probability 1 — 6 using space L(€,6). Then thereis a
robust algorithm A’ for using space L(e/10,4"), where

S =6 - n"2%e/12()

» Streaming algorithms can be made robust by setting failure probability § to be
small!

Computation Paths: High Level Proof

Streaming algorithms can be made robust by setting failure probability to be

§ =§- n_o(}\e/lz(f))

1. Only need to change the output A/, (f) times

2. Stream is length poly(n), and output is O(log n) bits, so nOe/12(0) possible

streams a deterministic adversary can create

3. Setting 6’ small enough, can union bound over all of them

Results of [BJWY], instantiating A.(f) = O(e~*logn)

Problem

Non-Adversarial

Adversarial ([BJWY])

Distinct Elements (Fy)

O(e™%2 +1logn)

O(e3 +1logn)

F, estimation, p € (0,2] \ {1} O(e™?logn) O(e 3logn)
F, estimation, p > 2 _2 _6 4 Same when
: 0 (nl P (6_3 log?n +¢ PlogP n)) _log
d=0n €)

Heavy Hitters

O(e~?log?n)

O0(e 3log?n)

Entropy Estimation

O0(e?log3n)

0(e~°logbn)

For adversaries with bounded computation + Cryptographic Assumptions, can improve some of above:

Problem

Adversarial ([BJWY])

Distinct Elements (Fj)

O0(e™2 +logn)
optimal even with no adversary

Entropy Estimation

0(e~>log*n)

Polynomially Bounded Adversaries

Recall non-robust Fy-estimation algorithm:

* Choose a hash function h: {1, 2, ...,n} = {0, 1, 2, ..., M}, where M = O(nz)
* Maintain smallestt = % values h(i) found when processing stream

State of the algorithm is exactly the same if you insert the same item twice
* Breaking this algorithm requires breaking the hash function h

Assumption: for any ¢ > 0 there is a d > 0 and a family of n9 hash functions that can be
evaluated in O(log n) memory such that any n-time Adversary cannot break this

* Exponentially secure pseudorandom function (in practice, AES or SHA256)

Improvements

1. [Hassidim, Kaplan, Mansour, Matias, Stemmer]
1. Use differential privacy

2. Improve the [BJWY] bounds of O(e~3logn) to O(e~2>log* n) for Fy, F,,
and many other streaming tasks

2. [W, Zhou]
1. Introduce “Difference Estimators”

2. Improve the [BJWY] bounds of O(e~> logn) and the O(e~2* log* n) bounds
above to O(e"%?log n) for Fy, F,, and many other streaming tasks

3. Non-robust algorithms for these problems require Q(e~?) bits, so our
memory is optimal in € (and often matches non-robust log n factors)

Difference Estimators

* Do we really need to switch our sketch whenever the output changes by 1+€?
* Maybe? Unclear what the adversary is learning.

e |f the last output Out was a (1 + €)-approximation to function value f(x), and f(x)
changes to f(x‘) with f(x") € (1 + O(e))f(x), do we need abrand new 1 + €
approximation to f(x‘)?

* Seems wasteful. We've fixed Out - maybe we can use Out for something?

 Difference Estimator: approximate f(x‘)-f(x) up to an O(1)-factor, and add it to Out!

Difference Estimators

* Need to approximate f(x’)-f(x) up to additive error € f(x) given that
f(x’)-f(x) = 0(e)f(x)

* Can’t afford to approximate each of f(x’) and f(x) up to relative 1 + €

* Approximating each of f(x’) and f(x) up to relative O(1) error won’t
give 0(e)f(x) additive error

* Design the first difference estimators for streams!
e Example: [x'|5 = |x|5 =[x —x|5+2 <x ' —x,x>
» Approximate terms up to 0(€)|x|3 error — uses |x’ — x|3 = O(elx|3)
* Only need 1/e memory to do this

Sketch-Stitching and Granularity Changing

Suppose x is the current underlying vector

If x grows to x” with f(x’) = 2f(x), x must first grow to x with f(x!)= (1 + €)f(x)

* Approximate the difference f(x!)—f(x) up to C/log(%)-relative error for constant C>0

Then x must grow to a vector x? where f(x?)= (1 + 2€)f(x)
* Approximate the difference f(x?)—f(x) up to C/(2log (—)) relative error
* Important not to use [f(x!)—f(x)] + [f(x?)—f(x{)] here — errors would grow too fast

Then x must grow to a vector x> where f(x3)= (1 + 3¢€)f(x)
* Approximate the difference f(x?)—f(x) up to C/(2log (—)) relative error

* Approximate the difference f(x3)— f(xz) up to C/log(—) -relative error

Additive errors add to O(e)f(x), using O(log (E)) differences in binary representation

Achieving Adversarial Robustness
* For robustness for F,, sketch-switch in each of log 1/€ levels in a binary tree
* Top level uses memory(_:i2 but only need to sketch-switch O(log n) times

1 Lo 1.
* Bottom level uses memory - but needs to sketch-switch - times

* Overall memory bound is a sum over levels

Further Work / Open Questions

* Tight bounds in terms of flip number [Kaplan,Mansour,Nissim,Stemmer]
* Improvements for small stream length [Ben-Eliezer, Eden, Onak]

* For streams with negative updates, can one prove strong lower bounds?

* Other uses of cryptography for data streams?

