Why do these Matrices Work"?

min_|XSA — Al < [A(SA)"SA — Al < (1 + ©)|A— Ayl

rank—

By the normal equations,
|XSA — A|z2 = |XSA — A(SA)"SA|% + |A(SA)"SA — Al

Hence,
min |XSA — A|F— |A(SA)”SA — A|F+ rr11<1n |XSA—A(SA)‘SA|12:

rank—k X

Can write SA = UXVT in its thin SVD

Then, min |XSA A(SA)"SA|E = rr11<1n |XUZ — A(SA)~UZ|4
ra

"rank—k
= rarrlr11<1n Y|Y A(SA)"UZ|A

Hence, we can just compute the SVD of A(SA)~UZ

But how do we compute A(SA)~UX quickly?

Caveat: projecting the points onto SA is slow

Current algorithm:
Compute S*A
Project each of the rows onto S*A

Find best rank-k approximation of projected points
inside of rowspace of S*A

rninrank-kX |X(SA)R'AR|F2
Bottleneck is step 2
Can solve with affine embeddings

[CW] Approximate the projection
Fast algorithm for approximate regression /
minrank-kX |X(SA)'A|F2

Want nnz(A) + (n+d)*poly(k/c) time

Using Affine Embeddings

We know we can just output arg rrll(ln |XSA — Al
ran

Choose an affine embedding R:
|XSAR — AR|% = (1 + €)|XSA — A|2 for all X

Note: we can compute AR and SAR in nnz(A) time

Canjust solve min |XSAR — AR|?3

rank—k X

min |XSAR — AR|Z = |AR(SAR)”(SAR) — AR[Z + min [XSAR — AR(SAR)™ (SAR)I3
rank—

ran

Compute mm |Y AR(SAR)™(SAR)|% using SVD which is n - poly()tlme

rank—

Necessarily, Y = XSAR for some X. Output Y(SAR)™SA in factored form. We’re done!

Low Rank Approximation Summary

Compute SA

Compute SAR and AR

Compute min |Y — AR(SAR)™(SAR)|% using SVD
rank—-kY

Output Y(SAR)~SA in factored form

Overall time: nnz(A) + (n+d)poly(k/e)

Course Outline

Subspace embeddings and least squares regression
Gaussian matrices

Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings

Application to low rank approximation
High precision regression
Leverage score sampling
Distributed low rank approximation
L1 Regression
M-Estimator regression

High Precision Regression

= (oal: output x' for which |[Ax'-b|, < (1+¢€) min, |AX-b|,
with high probability

= Qur algorithms all have running time poly(d/g)
= Goal: Sometimes we want running time poly(d)*log(1/¢)

= \Want to make A well-conditioned
* k(A) = sup |Ax|, / 1nf |Ax|,

1X[2=1
= | ots of algorithms’ time complexity depends on k(A)

» Use sketching to reduce k(A) to O(1)!

Small QR Decomposition

» Let S be a(l+ ¢y)-subspace embedding for A
= Compute SA

= Compute QR-factorization, SA = QR™1

(1+Eo)
—€p

= Claim: x(AR) =

= Forall unitx, (1 —¢y)]|ARx|, < |[SARx|,=1

= Forall unit x, (1 + €3)|ARx|, = |SARx|, = 1

1+EO

= So k(AR) = sup |ARx|, / 1nf |ARx|, <

|x|,=1 1=¢o

Finding a Constant Factor Solution

Let S be a 1+ ¢, - subspace embedding for AR

Solve x; = argmin|SARx — Sb|,
X

Time to compute R and x, is nnz(A) + poly(d) for constant ¢,
Xmi1 < Xm + RTAT(b — AR %)

AR(Xp4+q1 — X*) = AR (x4 + RTAT(b — ARx,,) — x*)
= (AR — ARRTATAR) (x, — x*)
= U - 23V (xy — x7),

where AR = UXVT is the SVD of AR

[AR(Xm41 — Xz = |E = Z3)V (X — x*)|, = 0(€0) |AR(xXpm — x|
|ARx, — b|?, = [AR(x, — x¥)|5 + |ARX* — b3

Course Outline

Subspace embeddings and least squares regression
Gaussian matrices

Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings

Application to low rank approximation
High precision regression
Leverage score sampling
Distributed low rank approximation
M-Estimator regression

Leverage Score Sampling

This is another subspace embedding, but it is based on sampling!
If A has sparse rows, then SA has sparse rows!

Let A = U XVT be an n x d matrix with rank d, written in its SVD

Define the i-th leverage score ¢(i) of Ato be |U;, z
What is);; £(i)?

B£()
d

Let (q, ..., qn) be a distribution with q; > , Where (3 is a parameter

Define sampling matrix S = D - QF, where D is k x k and Q is n x k
Q is a sampling matrix, and D is a rescaling matrix

For each column j of Q, D, independently, and with replacement, pick a row
index i in [n] with probability q;, and set Q;; = 1 and D;; = 1/(q;k)>

Leverage Score Sampling

Note: leverage scores do not depend on choice of orthonormal
basis U for columns of A

Indeed, let U and U’ be two such orthonormal bases
Claim: |e;U|3 = |e;U’|5 for all i

Proof: Since both U and U’ have column space equal to that of A,
we have U = U'Z for change of basis matrix Z

Since U and U’ each have orthonormal columns, Z is a rotation
matrix (orthonormal rows and columns)

Then |e;U|5 = |e;U'Z|5 = |e;U’|5

Leverage Score Sampling gives a Subspace Embedding

Want to show for S = D - Q7, that |SAx|3 = (1 + €)|Ax|3 for all x

Writing A = U XVT in its SVD, this is equivalent to showing
ISUyl3 = (1 £ ©)|Uyl3 = (1 £ e)lyl3 forally

As usual, we can just show with high probability, [UTSTSU — 1| < e

How can we analyze UTSTSU?

(Matrix Chernoff) Let X4, ..., X be independent copies of a symmetric

random matrix X € R4*d with E[X] = 0, |X|, <y, and |E[XTX]|2 < o2 LetW =
1

- Zjefig Xj- Forany e >0,

Ye
Pr[[W], > €] < 2d - e K€/ (@*+3)
[Wx|,

.Since W is symmetric, |[W|, = sup xTWx.)
IX|2 x[2=1

(here |W]|, = sup

Leverage Score Sampling gives a Subspace Embedding

Let i(j) denote the index of the row of U sampled in the j-th trial

Ul Uig . .
Let X; =14 — ‘(qL(D, where U is the j-th sampled row of U
i)
The X; are independent copies of a symmetric matrix random variable
Uj Uj

B[] = Ly - Zya (%) = 1g — 1g = 0¢
X[< 14 +—|UiT(j)Ui(j)|2 <1+ maxlUil% <149

jlp = 11dl2 di(j) _ i qi B

T
Ui ViG)

EX™X] =14 — 2E[

T T
L E Ui Vi Vi Vig
digj) aij)
ulu;uly; d T d
=i qil —Iq < 3 %iUiU; —1Ig < 5—1 Iq,
where A < B means x'Ax < x!Bx for all x

Hence, [E[XTX]|, < % -1

Applying the Matrix Chernoff Bound

(Matrix Chernoff) Let X4, ..., X be independent copies of a symmetric
random matrix X € R4*d with E[X] = 0, |X|, <y, and |E[XTX]|2 < o2 LetW =

%Zje[k] X;. Forany e > 0,

Y€
Pr[|W|, > €] < 2d - e K€/ +3)

|Wx|,

(here |[W|, = sup 0,

.Since W is symmetric, |[W|, = sup xTWx.)
1x|2=1

_ d 2 _ 94 _
y—1+B,andG : 1

Ui Vig)
A= la— Clli(j)]
column j of Q, D, independently, and with replacement, pick a row index i in
[n] with probability q;, and set Q;; = 1 and D;; = 1/(q;k)~
Implies W = 14 — UTSTSU

, and recall how we generated S = D - QT: For each

Pr“ld uTsTsu|, > e] <2d-e*®(D) setk = G)(dlog 9y and we’re done.

Fast Computation of Leverage Scores

Naively, need to do an SVD to compute leverage scores
Suppose we compute SA for a subspace embedding S
Let SA = QR be such that Q has orthonormal columns
Set ‘gi = |€1AR|%
Since AR has the same column span of A, AR = UT?
(1 —e)|ARx|; < [SARx[; = [x];
(1 + €)|ARx|, = |SARx|, = |x],
(1 £0(e)Ixl, = |ARx|, = [UT x|, = [T~ x|y,

¢ = |&ARTIZ = (14 0(9)|eARIZ = (1 4 0(€)#/

But how do we compute AR? We want nnz(A) time

Fast Computation of Leverage Scores

¢ = (1 £ 0(e)¥
Suffices to set this € to be a constant

Set #; = |e;AR|3
This takes too long

Let G be a d x O(log n) matrix of i.i.d. normal random variables

For any vector z, Pr[|zG|5 = (1 i%) 1z]?] = 1 _1

n2

Instead set #] = |e;ARG]|3.
Can compute in (nnz(A) + d?) logn time

Can solve regression in nnz(A) log n + poly(d(log n)/€) time

Course Outline

Subspace embeddings and least squares regression
Gaussian matrices

Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings

Application to low rank approximation
High precision regression
Leverage score sampling
Distributed low rank approximation
L1 Regression
M-Estimator regression

Distributed low rank approximation

We have fast algorithms for low rank approximation, but
can they be made to work in a distributed setting?

Matrix A distributed among s servers

Fort=1, ..., s, we get a customer-product matrix from
the t-th shop stored in server t. Server t's matrix = At

Customer-product matrix A=A + A2 + ... + AS
Model is called the arbitrary partition model

More general than the row-partition model in which each
customer shops in only one shop

The Communication Model

Coordinator

Server 1 Server 2 Server s

« Each player talks only to a Coordinator via 2-way communication

« Can simulate arbitrary point-to-point communication up to factor of 2
(and an additive O(log s) factor per message)

Communication cost of low rank approximation

Input: n x d matrix A stored on s servers
Server t has n x d matrix Al
A=A"+A%+ +As
Assume entries of At are O(log(nd))-bit integers

Output: Each server outputs the same k-dimensional space W
C = APy + A%Py + ...+ ASPy, Where Py, is the projection onto W
|A-Cle < (1+€)|A-Aylr
Application: k-means clustering

Resources: Minimize total communication and computation.
Also want O(1) rounds and input sparsity time

Work on Distributed Low Rank Approximation

[FSS]: First protocol for the row-partition model.
O(sdk/g) real numbers of communication
Don’t analyze bit complexity (can be large)
SVD Running time, see also [BKLW]

[KVW]: O(skd/e) communication in arbitrary partition model

[BWZ]: O(skd) + poly(sk/e) words of communication in
arbitrary partition model. Input sparsity time

Matching Q(skd) words of communication lower bound

Variants: kernel low rank approximation [BLSWX], low rank
approximation of an implicit matrix [WZ], sparsity [BWZ]

Outline of Distributed Protocols

[FSS] protocol

[KVW] protocol

[BW/Z] protocol

Constructing a Coreset [FSS]

Let A=UZ2XVT beits SVD
Letm =k + k/e

Let X, agree with X on the first m diagonal entries, and be 0
otherwise

Claim: For all projection matrices Y=I-X onto (d-k)-dimensional
subspaces,

ZaVTY|S + ¢ = (L ©)AYIE,

where ¢ = |A — A,,|% does not depend on Y

We can think of S as Ul so that SA = UL UZVT =X VT is a sketch

Constructing a Coreset

Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces,
ZnVTY|S + ¢ = (1 £ o)AV,

where c = |A — A, |% does not depend on Y

Proof: |AY|Z = [UZ,VTY|" + |U(E - £)VTY|

< [ZnVTY[S + 1A = AR = [ZVTY[+c

Also, |, VTY|” + A — Apl3 — |AY|?
= [2nVT]s = [ZmVTX]" + 1A — Al — |AIZ + |AXIZ
= |AX|E — [ZnVTX]
= | - Zn)VTX|
< | -2V - IXIE

2 2 2 2
S Oms1 K< €0 (m—k) < EZie{k+1,..,m+1} of < €|lA— Axlg

