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
୰ୟ୬୩ି  ଡ଼

୊
ଶ

୩ ୩
ି

୊
ଶ

୩ ୊
ଶ

 By the normal equations, 

୊
ଶ ି

୊
ଶ ି

୊
ଶ

 Hence, 

୰ୟ୬୩ି୩ ଡ଼
୊
ଶ ି

୊
ଶ

୰ୟ୬୩ି  ଡ଼

ି
୊
ଶ

 Can write ୘ in its thin SVD

 Then,
୰ୟ୬୩ି୩ ଡ଼

ି
୊
ଶ

୰ୟ୬୩ି୩ ଡ଼

ି
୊
ଶ

୰ୟ୬୩ି୩ ଢ଼

ି
୊
ଶ

 Hence, we can just compute the SVD of ି

 But how do we compute ି quickly?

Why do these Matrices Work?
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Caveat: projecting the points onto SA is slow 

 Current algorithm: 

1. Compute S*A 

2. Project each of the rows onto S*A

3. Find best rank-k approximation of projected points 
inside of rowspace of S*A 

 Bottleneck is step 2 

 [CW] Approximate the projection
 Fast algorithm for approximate regression 

minrank-k X |X(SA)-A|F
2

 Want nnz(A) + (n+d)*poly(k/ε) time

minrank-k X |X(SA)R-AR|F
2

Can solve with affine embeddings



68

Using Affine Embeddings

 We know we can just output 
୰ୟ୬୩  ଡ଼

୊
ଶ

 Choose an affine embedding R:

୊
ଶ

୊
ଶ for all X

 Note: we can compute AR and SAR in nnz(A) time

 Can just solve 
୰ୟ୬୩ି୩ ଡ଼

୊
ଶ


୰ୟ୬  ଡ଼

୊
ଶ ି

୊
ଶ

୰ୟ୬୩ି  ଡ଼

ି
୊
ଶ

 Compute 
୰ୟ୬୩ି୩ ଢ଼

ି
୊
ଶ using SVD which is 

୩

஫
time

 Necessarily, for some X. Output ି in factored form. We’re done! 
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Low Rank Approximation Summary

1. Compute SA

2. Compute SAR and AR

3. Compute using SVD

4. Output in factored form

Overall time: nnz(A) + (n+d)poly(k/ε)
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Course Outline

 Subspace embeddings and least squares regression
 Gaussian matrices

 Subsampled Randomized Hadamard Transform

 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression

 Leverage score sampling

 Distributed low rank approximation

 L1 Regression

 M-Estimator regression
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High Precision Regression

 Goal: output x‘ for which |Ax‘-b|2 · (1+ε) minx |Ax-b|2
with high probability

 Our algorithms all have running time poly(d/ε)

 Goal: Sometimes we want running time poly(d)*log(1/ε)

 Want to make A well-conditioned 


మ మ

 Lots of algorithms’ time complexity depends on 

 Use sketching to reduce to O(1)!
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Small QR Decomposition

 Let S be a ( - subspace embedding for A

 Compute SA

 Compute QR-factorization, 

 Claim: బ

బ

 For all unit x, 

 For all unit x, 

 So 
మ మ

బ

బ
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Finding a Constant Factor Solution

 Let S be a ଴ - subspace embedding for AR

 Solve ଴
୶

ଶ

 Time to compute and ଴ is nnz(A) + poly(d) for constant ଴

 ୫ାଵ ୫
୘ ୘  

୫

 ୫ାଵ 
∗  

୫
୘ ୘

୫
∗

= ୘ ୘
୫

∗

ଷ ୘
୫

∗ ,
where ୘ is the SVD of AR

 ୫ାଵ 
∗

ଶ
ଷ ୘

୫
∗

ଶ ଴ ୫
∗

ଶ


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Course Outline

 Subspace embeddings and least squares regression
 Gaussian matrices

 Subsampled Randomized Hadamard Transform

 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression

 Leverage score sampling

 Distributed low rank approximation

 M-Estimator regression
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 This is another subspace embedding, but it is based on sampling!
 If A has sparse rows, then SA has sparse rows!

 Let ୘ be an n x d matrix with rank d, written in its SVD

 Define the i-th leverage score of A to be ୧,∗ ଶ

ଶ

 What is  
୧

 Let ଵ ୬ be a distribution with ୧
ஒκ ୧

ୢ
, where β is a parameter

 Define sampling matrix ୘, where D is k x k and is n x k
 is a sampling matrix, and D is a rescaling matrix

 For each column j of independently, and with replacement, pick a row 
index i in [n] with probability ୧, and set ୧,୨ and ୨,୨ ୧

.ହ

Leverage Score Sampling
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Leverage Score Sampling

 Note: leverage scores do not depend on choice of orthonormal 
basis U for columns of A

 Indeed, let U and U’ be two such orthonormal bases

 Claim: ୧ ଶ
ଶ

୧
ᇱ

ଶ
ଶ for all i

 Proof: Since both U and U’ have column space equal to that of A, 
we have ᇱ for change of basis matrix Z

 Since U and U’ each have orthonormal columns, Z is a rotation 
matrix (orthonormal rows and columns)

 Then ୧ ଶ
ଶ

୧
ᇱ

ଶ
ଶ

୧
ᇱ

ଶ
ଶ
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Leverage Score Sampling gives a Subspace Embedding

 Want to show for ୘ that ଶ
ଶ

ଶ
ଶ for all x

 Writing ୘ in its SVD, this is equivalent to showing               

ଶ
ଶ

ଶ
ଶ

ଶ
ଶ for all y

 As usual, we can just show with high probability, ୘ ୘
ଶ

 How can we analyze ୘ ୘

 (Matrix Chernoff) Let ଵ ୩ be independent copies of a symmetric 
random matrix ୢ୶ୢ with ଶ and ୘

ଶ
ଶ Let 

ଵ

୩ ୨
 
୨∈[୩] For any 

ଶ
ି୩஫మ/(஢మା

ಋಣ

య
)

(here ଶ
୛୶ మ

୶ మ
ince W is symmetric, ଶ

୘

୶ మୀଵ 
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Leverage Score Sampling gives a Subspace Embedding

 Let i(j) denote the index of the row of U sampled in the j-th trial

 Let ୨ ୢ

୙౟(ౠ)
౐ ୙౟(ౠ)

୯౟(ౠ)
, where ୧(୨) is the j-th sampled row of U

 The ୨ are independent copies of a symmetric matrix random variable

 ୨ ୢ ୧
୙౟

౐୙౟

୯౟

 
୧ ୢ ୢ

ୢ

 ୨ ଶ ୢ ଶ

୙౟ ౠ
౐ ୙౟ ౠ

మ

୯౟ ౠ ୧

୙౟ మ
మ

୯౟

ୢ

ஒ

 ୘
ୢ

୙౟ ౠ
౐ ୙౟ ౠ

୯౟ ౠ

୙౟ ౠ
౐ ୙౟ ౠ ୙౟ ౠ

౐ ୙౟ ౠ

୯౟ ౠ
మ

୙౟
౐୙౟୙౟

౐୙౟

୯౟

 
୧ ୢ

ୢ

ஒ ୧
୘

୧
 
୧ ୢ

ୢ

ஒ ୢ, 

where means ୘ ୘ for all x

 Hence, | ୘
ଶ

ୢ

ஒ
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Applying the Matrix Chernoff Bound

 (Matrix Chernoff) Let ଵ ୩ be independent copies of a symmetric 
random matrix ୢ୶ୢ with ଶ and ୘

ଶ
ଶ Let 

ଵ

୩ ୨
 
୨∈[୩] For any 

ଶ
ି୩஫మ/(஢మା

ಋಣ

య
)

(here ଶ
୛୶ మ

୶ మ
ince W is symmetric, ଶ

୘

୶ మୀଵ 


ୢ

ஒ
, and ଶ ୢ

ஒ

 ୨ ୢ

୙౟ ౠ
౐ ୙౟ ౠ

୯౟ ౠ
and recall how we generated ୘ For each 

column j of independently, and with replacement, pick a row index i in 
[n] with probability ୧, and set ୧,୨ and ୨,୨ ୧

.ହ

 Implies W = Iୢ − U୘S୘SU

 ୢ
୘ ୘

ଶ

ି୩஫మ஀
ಊ

ౚ Set 
ୢ ୪୭୥ ୢ

ஒ஫మ and we’re done. 
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Fast Computation of Leverage Scores

 Naively, need to do an SVD to compute leverage scores

 Suppose we compute for a subspace embedding S

 Let ିଵ be such that Q has orthonormal columns

 Set ୧
ᇱ

୧ ଶ
ଶ

 Since AR has the same column span of A, ିଵ

 ଶ ଶ ଶ

 ଶ ଶ ଶ

 ଶ ଶ
ିଵ

ଶ
ିଵ

ଶ, 

 ୧ ୧ ଶ
ଶ

୧ ଶ
ଶ

୧

 But how do we compute AR? We want nnz(A) time
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Fast Computation of Leverage Scores

 ୧ ୧

 Suffices to set this to be a constant 

 Set ୧
ᇱ

୧ ଶ
ଶ

 This takes too long

 Let be a d x O(log n) matrix of i.i.d. normal random variables

 For any vector z, ଶ
ଶ ଵ

ଶ
ଶ ଵ

୬మ

 Instead set ୧
ᇱ

୧ ଶ
ଶ. 

 Can compute in (nnz(A) + ଶ

 Can solve regression in nnz(A) log n + poly(d(log n)/ε) time 
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Course Outline

 Subspace embeddings and least squares regression
 Gaussian matrices

 Subsampled Randomized Hadamard Transform

 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression

 Leverage score sampling

 Distributed low rank approximation

 L1 Regression

 M-Estimator regression
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Distributed low rank approximation 

 We have fast algorithms for low rank approximation, but 
can they be made to work in a distributed setting?

 Matrix A distributed among s servers

 For t = 1, …, s, we get a customer-product matrix from 
the t-th shop stored in server t. Server t’s matrix = At

 Customer-product matrix A = A1 + A2 + … + As

 Model is called the arbitrary partition model

 More general than the row-partition model in which each 
customer shops in only one shop
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The Communication Model

…

Server 1

Coordinator

• Each player talks only to a Coordinator via 2-way communication

• Can simulate arbitrary point-to-point communication up to factor of 2
(and an additive O(log s) factor per message)

Server 2 Server s
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Communication cost of low rank approximation 

 Input: n x d matrix A stored on s servers
 Server t has n x d matrix At

 A = A1 + A2 + … + As

 Assume entries of At are O(log(nd))-bit integers

 Output: Each server outputs the same k-dimensional space W
 ଵ

୛
ଶ

୛
ୱ

୛, where ୛ is the projection onto W
 |A-C|F · (1+ε)|A-Ak|F
 Application: k-means clustering

 Resources: Minimize total communication and computation. 
Also want O(1) rounds and input sparsity time
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Work on Distributed Low Rank Approximation

 [FSS]: First protocol for the row-partition model.

 O(sdk/ε) real numbers of communication

 Don’t analyze bit complexity (can be large)

 SVD Running time, see also [BKLW]

 [KVW]: O(skd/ε) communication in arbitrary partition model

 [BWZ]: O(skd) + poly(sk/ε) words of communication in 
arbitrary partition model. Input sparsity time
 Matching Ω(skd) words of communication lower bound

 Variants: kernel low rank approximation [BLSWX], low rank 
approximation of an implicit matrix [WZ], sparsity [BWZ]
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Outline of Distributed Protocols

 [FSS] protocol

 [KVW] protocol

 [BWZ] protocol
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Constructing a Coreset [FSS]

 Let ୘ be its SVD

 Let m = k + 

 Let ୫ agree with on the first m diagonal entries, and be 0 
otherwise

 Claim: For all projection matrices Y=I-X onto (d-k)-dimensional 
subspaces, 

୫
୘

୊

ଶ
୊
ଶ, 

where ୫ ୊
ଶ does not depend on Y

 We can think of S as ୫
୘ so that ୫

୘ ୘
୫

୘ is a sketch 
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Constructing a Coreset

 Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces, 

୫
୘

୊

ଶ
୊
ଶ, 

where ୫ ୊
ଶ does not depend on Y

 Proof: ୊
ଶ

୫
୘

୊

ଶ
୫

୘
୊

ଶ

୫
୘

୊

ଶ
୫ ୊

ଶ
୫

୘
୊

ଶ

Also, ୫
୘

୊

ଶ
୫ ୊

ଶ
୊
ଶ

୫
୘

୊

ଶ
୫

୘
୊

ଶ
୫ ୊

ଶ
୊
ଶ

୊
ଶ

୊
ଶ

୫
୘

୊

ଶ

୫
୘

୊

ଶ

୫
୘

ଶ

ଶ
୊
ଶ

୫ାଵ 
ଶ

୫ାଵ
ଶ

୧
ଶ

୩ ୊
ଶ 

୧∈{୩ାଵ,..,୫ାଵ}


