Why do these Matrices Work"?

min_|XSA — Al < [A(SA)"SA — Al < (1 + ©)|A— Ayl

rank—

By the normal equations,
|XSA — A|z2 = |XSA — A(SA)"SA|% + |A(SA)"SA — Al

Hence,
min |XSA — A|F— |A(SA)”SA — A|F+ rr11<1n |XSA—A(SA)‘SA|12:

rank—k X

Can write SA = UXVT in its thin SVD

Then, min |XSA A(SA)"SA|E = rr11<1n |XUZ — A(SA)~UZ|4
ra

"rank—k
= rarrlr11<1n Y|Y A(SA)"UZ|A

Hence, we can just compute the SVD of A(SA)~UZ

But how do we compute A(SA)~UX quickly?



Caveat: projecting the points onto SA is slow

Current algorithm:
Compute S*A
Project each of the rows onto S*A

Find best rank-k approximation of projected points
inside of rowspace of S*A

rninrank-kX |X(SA)R'AR|F2
Bottleneck is step 2
Can solve with affine embeddings

[CW] Approximate the projection
Fast algorithm for approximate regression /
minrank-kX |X(SA)'A|F2

Want nnz(A) + (n+d)*poly(k/c) time



Using Affine Embeddings

We know we can just output arg rrll(ln |XSA — Al
ran

Choose an affine embedding R:
|XSAR — AR|% = (1 + €)|XSA — A|2 for all X

Note: we can compute AR and SAR in nnz(A) time

Canjust solve min |XSAR — AR|?3

rank—k X

min |XSAR — AR|Z = |AR(SAR)”(SAR) — AR[Z + min [XSAR — AR(SAR)™ (SAR)I3
rank—

ran

Compute mm |Y AR(SAR)™(SAR)|% using SVD which is n - poly( )tlme

rank—

Necessarily, Y = XSAR for some X. Output Y(SAR)™SA in factored form. We’re done!



Low Rank Approximation Summary

Compute SA

Compute SAR and AR

Compute min |Y — AR(SAR)™(SAR)|% using SVD
rank—-kY

Output Y(SAR)~SA in factored form

Overall time: nnz(A) + (n+d)poly(k/e)



Course Outline

Subspace embeddings and least squares regression
Gaussian matrices

Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings

Application to low rank approximation
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Leverage score sampling
Distributed low rank approximation
L1 Regression
M-Estimator regression



High Precision Regression

= (oal: output x' for which |[Ax'-b|, < (1+¢€) min, |AX-b|,
with high probability

= Qur algorithms all have running time poly(d/g)
= Goal: Sometimes we want running time poly(d)*log(1/¢)

= \Want to make A well-conditioned
* k(A) = sup |Ax|, / 1nf |Ax|,

1X[2=1
= | ots of algorithms’ time complexity depends on k(A)

» Use sketching to reduce k(A) to O(1)!



Small QR Decomposition

» Let S be a(l+ ¢y)-subspace embedding for A
= Compute SA

= Compute QR-factorization, SA = QR™1

(1+Eo)
—€p

= Claim: x(AR) =

= Forall unitx, (1 —¢y)]|ARx|, < |[SARx|,=1

= Forall unit x, (1 + €3)|ARx|, = |SARx|, = 1

1+EO

= So k(AR) = sup |ARx|, / 1nf |ARx|, <

|x|,=1 1=¢o



Finding a Constant Factor Solution

Let S be a 1+ ¢, - subspace embedding for AR

Solve x; = argmin|SARx — Sb|,
X

Time to compute R and x, is nnz(A) + poly(d) for constant ¢,
Xmi1 < Xm + RTAT(b — AR %)

AR(Xp4+q1 — X*) = AR (x4 + RTAT(b — ARx,,) — x*)
= (AR — ARRTATAR) (x, — x*)
= U - 23V (xy — x7),

where AR = UXVT is the SVD of AR

[AR(Xm41 — Xz = |E = Z3)V (X — x*)|, = 0(€0) |AR(xXpm — x|
|ARx, — b|?, = [AR(x, — x¥)|5 + |ARX* — b3
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Leverage Score Sampling

This is another subspace embedding, but it is based on sampling!
If A has sparse rows, then SA has sparse rows!

Let A = U XVT be an n x d matrix with rank d, written in its SVD

Define the i-th leverage score ¢(i) of Ato be |U;, z
What is );; £(i)?

B£()
d

Let (q, ..., qn) be a distribution with q; > , Where (3 is a parameter

Define sampling matrix S = D - QF, where D is k x k and Q is n x k
Q is a sampling matrix, and D is a rescaling matrix

For each column j of Q, D, independently, and with replacement, pick a row
index i in [n] with probability q;, and set Q;; = 1 and D;; = 1/(q;k)>



Leverage Score Sampling

Note: leverage scores do not depend on choice of orthonormal
basis U for columns of A

Indeed, let U and U’ be two such orthonormal bases
Claim: |e;U|3 = |e;U’|5 for all i

Proof: Since both U and U’ have column space equal to that of A,
we have U = U'Z for change of basis matrix Z

Since U and U’ each have orthonormal columns, Z is a rotation
matrix (orthonormal rows and columns)

Then |e;U|5 = |e;U'Z|5 = |e;U’|5



Leverage Score Sampling gives a Subspace Embedding

Want to show for S = D - Q7, that |SAx|3 = (1 + €)|Ax|3 for all x

Writing A = U XVT in its SVD, this is equivalent to showing
ISUyl3 = (1 £ ©)|Uyl3 = (1 £ e)lyl3 forally

As usual, we can just show with high probability, [UTSTSU — 1| < e

How can we analyze UTSTSU?

(Matrix Chernoff) Let X4, ..., X be independent copies of a symmetric

random matrix X € R4*d with E[X] = 0, |X|, <y, and |E[XTX]|2 < o2 LetW =
1

- Zjefig Xj- Forany e >0,

Ye
Pr[[W], > €] < 2d - e K€/ (@*+3)
[Wx|,

.Since W is symmetric, |[W|, = sup xTWx.)
IX|2 x[2=1

(here |W]|, = sup



Leverage Score Sampling gives a Subspace Embedding

Let i(j) denote the index of the row of U sampled in the j-th trial

Ul Uig . .
Let X; =14 — ‘(qL(D, where U is the j-th sampled row of U
i)
The X; are independent copies of a symmetric matrix random variable
Uj Uj

B[] = Ly - Zya (%) = 1g — 1g = 0¢
X[ < 14 +—|UiT(j)Ui(j)|2 <1+ maxlUil% <149

jlp = 11dl2 di(j) _ i qi B

T
Ui ViG)

EX™X] =14 — 2E[

T T
L E Ui Vi Vi Vig
digj) aij)
ulu;uly; d T d
=i qil —Iq < 3 %iUiU; —1Ig < 5—1 Iq,
where A < B means x'Ax < x!Bx for all x

Hence, [E[XTX]|, < % -1



Applying the Matrix Chernoff Bound

(Matrix Chernoff) Let X4, ..., X be independent copies of a symmetric
random matrix X € R4*d with E[X] = 0, |X|, <y, and |E[XTX]|2 < o2 LetW =

%Zje[k] X;. Forany e > 0,

Y€
Pr[|W|, > €] < 2d - e K€/ +3)

|Wx|,

(here |[W|, = sup 0,

.Since W is symmetric, |[W|, = sup xTWx.)
1x|2=1

_ d 2 _ 94 _
y—1+B,andG : 1

Ui Vig)
A= la— Clli(j)]
column j of Q, D, independently, and with replacement, pick a row index i in
[n] with probability q;, and set Q;; = 1 and D;; = 1/(q;k)~
Implies W = 14 — UTSTSU

, and recall how we generated S = D - QT: For each

Pr“ld uTsTsu|, > e] <2d-e*®(D) setk = G)(dlog 9y and we’re done.



Fast Computation of Leverage Scores

Naively, need to do an SVD to compute leverage scores
Suppose we compute SA for a subspace embedding S
Let SA = QR be such that Q has orthonormal columns
Set ‘gi = |€1AR|%
Since AR has the same column span of A, AR = UT?
(1 —e)|ARx|; < [SARx[; = [x];
(1 + €)|ARx|, = |SARx|, = |x],
(1 £0(e)Ixl, = |ARx|, = [UT x|, = [T~ x|y,

¢ = |&ARTIZ = (14 0(9)|eARIZ = (1 4 0(€)#/

But how do we compute AR? We want nnz(A) time



Fast Computation of Leverage Scores

¢ = (1 £ 0(e)¥
Suffices to set this € to be a constant

Set #; = |e;AR|3
This takes too long

Let G be a d x O(log n) matrix of i.i.d. normal random variables

For any vector z, Pr[|zG|5 = (1 i%) 1z]?] = 1 _1

n2

Instead set #] = |e;ARG]|3.
Can compute in (nnz(A) + d?) logn time

Can solve regression in nnz(A) log n + poly(d(log n)/€) time
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Distributed low rank approximation

We have fast algorithms for low rank approximation, but
can they be made to work in a distributed setting?

Matrix A distributed among s servers

Fort=1, ..., s, we get a customer-product matrix from
the t-th shop stored in server t. Server t's matrix = At

Customer-product matrix A=A + A2 + ... + AS
Model is called the arbitrary partition model

More general than the row-partition model in which each
customer shops in only one shop



The Communication Model

Coordinator

Server 1 Server 2 Server s

« Each player talks only to a Coordinator via 2-way communication

« Can simulate arbitrary point-to-point communication up to factor of 2
(and an additive O(log s) factor per message)



Communication cost of low rank approximation

Input: n x d matrix A stored on s servers
Server t has n x d matrix Al
A=A"+A%+  +As
Assume entries of At are O(log(nd))-bit integers

Output: Each server outputs the same k-dimensional space W
C = APy + A%Py + ...+ ASPy, Where Py, is the projection onto W
|A-Cle < (1+€)|A-Aylr
Application: k-means clustering

Resources: Minimize total communication and computation.
Also want O(1) rounds and input sparsity time



Work on Distributed Low Rank Approximation

[FSS]: First protocol for the row-partition model.
O(sdk/g) real numbers of communication
Don’t analyze bit complexity (can be large)
SVD Running time, see also [BKLW]

[KVW]: O(skd/e) communication in arbitrary partition model

[BWZ]: O(skd) + poly(sk/e) words of communication in
arbitrary partition model. Input sparsity time

Matching Q(skd) words of communication lower bound

Variants: kernel low rank approximation [BLSWX], low rank
approximation of an implicit matrix [WZ], sparsity [BWZ]



Outline of Distributed Protocols

[FSS] protocol

[KVW] protocol

[BW/Z] protocol



Constructing a Coreset [FSS]

Let A=UZ2XVT beits SVD
Letm =k + k/e

Let X, agree with X on the first m diagonal entries, and be 0
otherwise

Claim: For all projection matrices Y=I-X onto (d-k)-dimensional
subspaces,

ZaVTY|S + ¢ = (L ©)AYIE,

where ¢ = |A — A,,|% does not depend on Y

We can think of S as Ul so that SA = UL UZVT =X VT is a sketch



Constructing a Coreset

Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces,
ZnVTY|S + ¢ = (1 £ o)AV,

where c = |A — A, |% does not depend on Y

Proof: |AY|Z = [UZ,VTY|" + |U(E - £)VTY|

< [ZnVTY[S + 1A = AR = [ZVTY[ +c

Also, |, VTY|” + A — Apl3 — |AY|?
= [2nVT]s = [ZmVTX]" + 1A — Al — |AIZ + |AXIZ
= |AX|E — [ZnVTX]
= | - Zn)VTX|
< | -2V - IXIE

2 2 2 2
S Oms1 K< €0 (m—k) < EZie{k+1,..,m+1} of < €|lA— Axlg



