Why do these Matrices Work?

$$\min_{\text{rank-} X} |XSA - A|_F^2 \le |A_k(SA_k)^-SA - A|_F^2 \le (1 + \epsilon)|A - A_k|_F^2$$

By the normal equations,

$$|XSA - A|_F^2 = |XSA - A(SA)^-SA|_F^2 + |A(SA)^-SA - A|_F^2$$

Hence,

$$\min_{\text{rank-k X}} |XSA - A|_F^2 = |A(SA)^-SA - A|_F^2 + \min_{\text{rank-X}} |XSA - A(SA)^-SA|_F^2$$

- Can write $SA = U \Sigma V^T$ in its thin SVD
- Then, $\min_{\text{rank-k X}} |XSA A(SA)^{-}SA|_F^2 = \min_{\text{rank-k X}} |XU\Sigma A(SA)^{-}U\Sigma|_F^2$ = $\min_{\text{rank-k Y}} |Y - A(SA)^{-}U\Sigma|_F^2$
- Hence, we can just compute the SVD of $A(SA)^-U\Sigma$
- But how do we compute $A(SA)^-U\Sigma$ quickly?

Caveat: projecting the points onto SA is slow

- Current algorithm:
 - 1. Compute S*A
 - 2. Project each of the rows onto S*A
 - 3. Find best rank-k approximation of projected points inside of rowspace of S*A
- Bottleneck is step 2

 $\min_{\text{rank-k X}} |X(SA)R-AR|_F^2$

Can solve with affine embeddings

- [CW] Approximate the projection
 - Fast algorithm for approximate regression
 min_{rank-k X} |X(SA)-A|_F²
 - Want nnz(A) + (n+d)*poly(k/ε) time

Using Affine Embeddings

- We know we can just output $\underset{\text{rank}}{\text{arg}} \min_{X} |XSA A|_F^2$
- Choose an affine embedding R:

$$|XSAR - AR|_F^2 = (1 \pm \epsilon)|XSA - A|_F^2$$
 for all X

- Note: we can compute AR and SAR in nnz(A) time
- Can just solve min |XSAR AR|_F
- $\min_{\text{ran}} |XSAR AR|_F^2 = |AR(SAR)^-(SAR) AR|_F^2 + \min_{\text{rank}-X} |XSAR AR(SAR)^-(SAR)|_F^2$
- Compute $\min_{\text{rank}-k} |Y AR(SAR)^{-}(SAR)|_F^2$ using SVD which is $n \cdot \text{poly}\left(\frac{k}{\epsilon}\right)$ time
- Necessarily, Y = XSAR for some X. Output Y(SAR) SA in factored form. We're done!

Low Rank Approximation Summary

- 1. Compute SA
- 2. Compute SAR and AR
- 3. Compute $\min_{\text{rank-k Y}} |Y AR(SAR)^{-}(SAR)|_F^2$ using SVD
- 4. Output Y(SAR)⁻SA in factored form

Overall time: $nnz(A) + (n+d)poly(k/\epsilon)$

Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression

High Precision Regression

- Goal: output x' for which $|Ax'-b|_2 \le (1+\epsilon) \min_x |Ax-b|_2$ with high probability
- Our algorithms all have running time poly(d/ε)
- Goal: Sometimes we want running time poly(d)*log(1/ε)
- Want to make A well-conditioned

•
$$\kappa(A) = \sup_{|x|_2=1} |Ax|_2 / \inf_{|x|_2=1} |Ax|_2$$

- Lots of algorithms' time complexity depends on $\kappa(A)$
- Use sketching to reduce $\kappa(A)$ to O(1)!

Small QR Decomposition

- Let S be a $(1 + \epsilon_0)$ subspace embedding for A
- Compute SA
- Compute QR-factorization, $SA = QR^{-1}$
- Claim: $\kappa(AR) = \frac{(1+\epsilon_0)}{1-\epsilon_0}$
- For all unit x, $(1 \epsilon_0)|ARx|_2 \le |SARx|_2 = 1$
- For all unit x, $(1 + \epsilon_0)|ARx|_2 \ge |SARx|_2 = 1$
- So $\kappa(AR) = \sup_{|x|_2=1} |ARx|_2 / \inf_{|x|_2=1} |ARx|_2 \le \frac{1+\epsilon_0}{1-\epsilon_0}$

Finding a Constant Factor Solution

- Let S be a $1 + \epsilon_0$ subspace embedding for AR
- Solve $x_0 = \underset{x}{\operatorname{argmin}} |SARx Sb|_2$
- Time to compute R and x_0 is nnz(A) + poly(d) for constant ϵ_0
- $x_{m+1} \leftarrow x_m + R^T A^T (b AR x_m)$
- $AR(x_{m+1} x^*) = AR(x_m + R^T A^T (b ARx_m) x^*)$ = $(AR - ARR^T A^T AR)(x_m - x^*)$ = $U(\Sigma - \Sigma^3)V^T(x_m - x^*)$,

where $AR = U \Sigma V^{T}$ is the SVD of AR

- $|AR(x_{m+1} x^*)|_2 = |(\Sigma \Sigma^3)V^T(x_m x^*)|_2 = O(\epsilon_0)|AR(x_m x^*)|_2$
- $|ARx_m b|^2_2 = |AR(x_m x^*)|_2^2 + |ARx^* b|_2^2$

Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- M-Estimator regression

Leverage Score Sampling

- This is another subspace embedding, but it is based on sampling!
 - If A has sparse rows, then SA has sparse rows!
- Let $A = U \Sigma V^T$ be an n x d matrix with rank d, written in its SVD
- Define the i-th leverage score $\ell(i)$ of A to be $\left|U_{i,*}\right|_2^2$
- What is $\sum_{i} \ell(i)$?
 - Let $(q_1, ..., q_n)$ be a distribution with $q_i \ge \frac{\beta \ell(i)}{d}$, where β is a parameter
- Define sampling matrix $S = D \cdot \Omega^T$, where D is k x k and Ω is n x k
 - Ω is a sampling matrix, and D is a rescaling matrix
 - For each column j of Ω , D, independently, and with replacement, pick a row index i in [n] with probability q_i , and set $\Omega_{i,j}=1$ and $D_{j,j}=1/(q_i k)^{.5}$

Leverage Score Sampling

- Note: leverage scores do not depend on choice of orthonormal basis U for columns of A
- Indeed, let U and U' be two such orthonormal bases
- Claim: $|e_i U|_2^2 = |e_i U'|_2^2$ for all i
- Proof: Since both U and U' have column space equal to that of A, we have U = U'Z for change of basis matrix Z
- Since U and U' each have orthonormal columns, Z is a rotation matrix (orthonormal rows and columns)
- Then $|e_iU|_2^2 = |e_iU'Z|_2^2 = |e_iU'|_2^2$

Leverage Score Sampling gives a Subspace Embedding

- Want to show for $S = D \cdot \Omega^T$, that $|SAx|_2^2 = (1 \pm \epsilon)|Ax|_2^2$ for all x
- Writing $A = U \Sigma V^T$ in its SVD, this is equivalent to showing $|SUy|_2^2 = (1 \pm \epsilon)|Uy|_2^2 = (1 \pm \epsilon)|y|_2^2$ for all y
- As usual, we can just show with high probability, $\left|\mathbf{U}^{\mathrm{T}}\mathbf{S}^{\mathrm{T}}\mathbf{S}\mathbf{U}\right|_{2}\leq\epsilon$
- How can we analyze U^TS^TSU?
- (Matrix Chernoff) Let $X_1, ..., X_k$ be independent copies of a symmetric random matrix $X \in R^{dxd}$ with E[X] = 0, $|X|_2 \le \gamma$, and $|E[X^TX]|_2 \le \sigma^2$. Let $W = \frac{1}{k} \sum_{j \in [k]} X_j$. For any $\epsilon > 0$,

$$\Pr[|W|_2 > \epsilon] \le 2d \cdot e^{-k\epsilon^2/(\sigma^2 + \frac{\gamma\epsilon}{3})}$$
 (here $|W|_2 = \sup_{|x|_2 = 1} \frac{|Wx|_2}{|x|_2}$. Since W is symmetric, $|W|_2 = \sup_{|x|_2 = 1} x^T Wx$.)

Leverage Score Sampling gives a Subspace Embedding

- Let i(j) denote the index of the row of U sampled in the j-th trial
- Let $X_j = I_d \frac{U_{i(j)}^T U_{i(j)}}{q_{i(j)}}$, where $U_{i(j)}$ is the j-th sampled row of U
- The X_i are independent copies of a symmetric matrix random variable

•
$$E[X_j] = I_d - \sum_i q_i \left(\frac{U_i^T U_i}{q_i}\right) = I_d - I_d = 0^d$$

$$|X_j|_2 \le |I_d|_2 + \frac{|U_{i(j)}^T U_{i(j)}|_2}{q_{i(j)}} \le 1 + \max_i \frac{|U_i|_2^2}{q_i} \le 1 + \frac{d}{\beta}$$

$$\begin{split} \bullet \quad & E[X^TX] = I_d - 2E\left[\frac{U_{i(j)}^TU_{i(j)}}{q_{i(j)}}\right] + E\left[\frac{U_{i(j)}^TU_{i(j)}U_{i(j)}^TU_{i(j)}}{q_{i(j)}^2}\right] \\ & = \sum_i \frac{U_i^TU_iU_i^TU_i}{q_i} - I_d \le \left(\frac{d}{\beta}\right)\sum_i U_i^TU_i - I_d \le \left(\frac{d}{\beta} - 1\right)I_d, \end{split}$$

where $A \le B$ means $x^T A x \le x^T B x$ for all x

• Hence, $|E[X^TX]|_2 \le \frac{d}{\beta} - 1$

Applying the Matrix Chernoff Bound

• (Matrix Chernoff) Let $X_1, ..., X_k$ be independent copies of a symmetric random matrix $X \in R^{dxd}$ with E[X] = 0, $|X|_2 \le \gamma$, and $|E[X^TX]|_2 \le \sigma^2$. Let $W = \frac{1}{k} \sum_{j \in [k]} X_j$. For any $\epsilon > 0$,

$$\Pr[|W|_2 > \epsilon] \le 2d \cdot e^{-k\epsilon^2/(\sigma^2 + \frac{\gamma\epsilon}{3})}$$
 (here $|W|_2 = \sup \frac{|Wx|_2}{|x|_2}$. Since W is symmetric, $|W|_2 = \sup_{|x|_2 = 1} x^T W x$.)

- $\gamma = 1 + \frac{d}{\beta}$, and $\sigma^2 = \frac{d}{\beta} 1$
- $X_j = I_d \frac{U_{i(j)}^T U_{i(j)}}{q_{i(j)}}$, and recall how we generated $S = D \cdot \Omega^T$: For each column j of Ω , D, independently, and with replacement, pick a row index i in [n] with probability q_i , and set $\Omega_{i,j} = 1$ and $D_{i,j} = 1/(q_i k)^{.5}$
 - Implies $W = I_d U^T S^T S U$
- $\Pr\left[\left|I_{d} U^{T}S^{T}SU\right|_{2} > \epsilon\right] \le 2d \cdot e^{-k\epsilon^{2}\Theta\left(\frac{\beta}{d}\right)}$. Set $k = \Theta\left(\frac{d \log d}{\beta\epsilon^{2}}\right)$ and we're done.

Fast Computation of Leverage Scores

- Naively, need to do an SVD to compute leverage scores
- Suppose we compute SA for a subspace embedding S
- Let $SA = QR^{-1}$ be such that Q has orthonormal columns
- Set $\ell'_i = |e_iAR|_2^2$
- Since AR has the same column span of A, $AR = UT^{-1}$
 - $(1 \epsilon)|ARx|_2 \le |SARx|_2 = |x|_2$
 - $(1 + \epsilon)|ARx|_2 \ge |SARx|_2 = |x|_2$
 - $(1 \pm O(\epsilon))|x|_2 = |ARx|_2 = |UT^{-1}x|_2 = |T^{-1}x|_2$,
- $\ell_i = |e_i ART|_2^2 = (1 \pm O(\epsilon))|e_i AR|_2^2 = (1 \pm O(\epsilon))\ell_i'$
- But how do we compute AR? We want nnz(A) time

Fast Computation of Leverage Scores

- $\ell_{i} = (1 \pm 0(\epsilon))\ell_{i}'$
- Suffices to set this ϵ to be a constant
- Set $\ell'_i = |e_iAR|_2^2$
 - This takes too long
- Let G be a d x O(log n) matrix of i.i.d. normal random variables
 - For any vector z, $\Pr[|zG|_2^2 = (1 \pm \frac{1}{2})|z|^2] \ge 1 \frac{1}{n^2}$
- Instead set $\ell'_i = |e_iARG|_2^2$.
 - Can compute in (nnz(A) + d²) log n time
- Can solve regression in nnz(A) log n + poly(d(log n)/ε) time

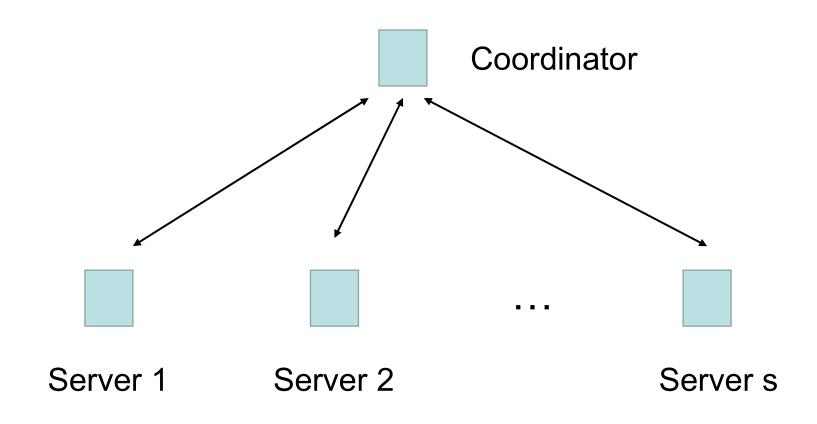
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression

Distributed low rank approximation

- We have fast algorithms for low rank approximation, but can they be made to work in a distributed setting?
- Matrix A distributed among s servers
- For t = 1, ..., s, we get a customer-product matrix from the t-th shop stored in server t. Server t's matrix = A^t
- Customer-product matrix A = A¹ + A² + ... + A^s
 - Model is called the arbitrary partition model
- More general than the row-partition model in which each customer shops in only one shop

The Communication Model



- Each player talks only to a Coordinator via 2-way communication
- Can simulate arbitrary point-to-point communication up to factor of 2
 (and an additive O(log s) factor per message)

Communication cost of low rank approximation

- Input: n x d matrix A stored on s servers
 - Server t has n x d matrix A^t
 - $A = A^1 + A^2 + ... + A^s$
 - Assume entries of A^t are O(log(nd))-bit integers
- Output: Each server outputs the same k-dimensional space W
 - $C = A^1P_W + A^2P_W + ... + A^sP_W$, where P_W is the projection onto W
 - $|A-C|_F \leq (1+\epsilon)|A-A_k|_F$
 - Application: k-means clustering
- Resources: Minimize total communication and computation.
 Also want O(1) rounds and input sparsity time

Work on Distributed Low Rank Approximation

- [FSS]: First protocol for the row-partition model.
 - O(sdk/ε) real numbers of communication
 - Don't analyze bit complexity (can be large)
 - SVD Running time, see also [BKLW]
- [KVW]: O(skd/ε) communication in arbitrary partition model
- [BWZ]: O(skd) + poly(sk/ε) words of communication in arbitrary partition model. Input sparsity time
 - Matching Ω(skd) words of communication lower bound
- Variants: kernel low rank approximation [BLSWX], low rank approximation of an implicit matrix [WZ], sparsity [BWZ]

Outline of Distributed Protocols

[FSS] protocol

[KVW] protocol

[BWZ] protocol

Constructing a Coreset [FSS]

- Let $A = U \Sigma V^T$ be its SVD
- Let $m = k + k/\epsilon$
- Let Σ_m agree with Σ on the first m diagonal entries, and be 0 otherwise
- Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces,

$$\left|\Sigma_m V^T Y\right|_F^2 + c = (1 \pm \epsilon) |AY|_F^2,$$
 where $c = |A - A_m|_F^2$ does not depend on Y

• We can think of S as U_m^T so that $SA = U_m^T U \Sigma V^T = \Sigma_m V^T$ is a sketch

Constructing a Coreset

Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces,

$$\left|\Sigma_{\rm m} V^{\rm T} Y\right|_{\rm F}^2 + c = (1 \pm \epsilon) |AY|_{\rm F}^2,$$

where $c = |A - A_m|_F^2$ does not depend on Y

• Proof:
$$|AY|_F^2 = |U\Sigma_m V^T Y|_F^2 + |U(\Sigma - \Sigma_m) V^T Y|_F^2$$

 $\leq |\Sigma_m V^T Y|_F^2 + |A - A_m|_F^2 = |\Sigma_m V^T Y|_F^2 + c$

Also,
$$\left| \Sigma_{m} V^{T} Y \right|_{F}^{2} + |A - A_{m}|_{F}^{2} - |AY|_{F}^{2}$$

$$= \left| \Sigma_{m} V^{T} \right|_{F}^{2} - \left| \Sigma_{m} V^{T} X \right|_{F}^{2} + |A - A_{m}|_{F}^{2} - |A|_{F}^{2} + |AX|_{F}^{2}$$

$$= \left| AX \right|_{F}^{2} - \left| \Sigma_{m} V^{T} X \right|_{F}^{2}$$

$$= \left| (\Sigma - \Sigma_{m}) V^{T} X \right|_{F}^{2}$$

$$\leq \left| (\Sigma - \Sigma_{m}) V^{T} \right|_{2}^{2} \cdot |X|_{F}^{2}$$

$$\leq \sigma_{m+1}^{2} k \leq \epsilon \sigma_{m+1}^{2} (m - k) \leq \epsilon \sum_{i \in \{k+1, \dots, m+1\}} \sigma_{i}^{2} \leq \epsilon |A - A_{k}|_{F}^{2}$$

89