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Lecture 2.2 — 9/17/2020
Prof. David Woodruff Scribe: Tommy Jiang

1 Recap: Subsampled Randomized Hadamard Transform

Using a Subsampled Randomized Hadamard Transform (SRHT) allows us to reduce the time
complexity of approximating least squares from O(nd2) to O(nd logn). We previously proved the
Flattening Lemma and a consequence of it:

Lemma 1. (Flattening Lemma) For any fixed unit vector y and some constant C > 0,

Pr[‖HDy‖∞ ≥ C

√
log(ndδ )
√
n

] ≤ δ

2d (1)

Corollary 1. For all j ∈ [n],

‖ejHDA‖2 ≤ C
√
d log(nd/δ)√

n
(2)

Our goal is to prove that the SRHT is a subspace embedding; i.e., ‖SAx‖2 = ‖PHDAx‖22 = 1± ε
for all unit vectors x. We will proceed by conditioning on the consequence of the Flattening Lemma
being true, with probability at least 1− δ/2.

2 Matrix Chernoff Bound

Theorem 1. (Matrix Chernoff Bound) Let X1, . . . , Xs be independent copies of a symmetric
random matrix X ∈ Rd×d with E[X] = 0, ‖X‖2 ≤ γ with probability 1, and ‖E[X>X]‖2 ≤ σ2. Let
W = 1

s

∑
i∈[s]Xi. For any ε > 0,

Pr[‖W‖2 > ε] ≤ 2d · e−sε2/(σ2+ γε
3 ) (3)

Before we can apply the Matrix Chernoff Bound, we need to define our random matrix X. Let
V = HDA, and recall that V has orthonormal columns. Furthermore, suppose the matrix P in our
SRHT samples s rows uniformly and with replacement, scaling each row by a factor of

√
n/s. In

other words, if row j is sampled in the ith sample, Pi,j =
√
n/s.

Now, let Yi be the ith sampled row of V and let Xi = Id − nY >i Yi.

Remark 1. Each Xi is symmetric, since Id is symmetric, the outer product of a vector with itself
is symmetric, and the linear combination of two symmetric matrices is symmetric.

Remark 2. Each Yi was sampled uniformly with replacement, so each Yi is independent, making
each Xi independent as well.
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Claim 1. Each matrix Xi satisfies the conditions for Xi in the Matrix Chernoff Bound, namely
that they are independent and E[Xi] = 0.

Proof. By Remark 2, each Xi is independent. Now we just need to show that E[Xi] = 0. Recall
that Yi is the ith sampled row of V . Since Yi was sampled uniformly, we have

E[Y >i Yi] =
n∑
j=1

Pr[Yi = vj ] · v>j vj =
n∑
j=1

1
n
· v>j vj = 1

n
V >V (4)

Since V has orthogonal columns, V >V = Id, meaning

E[Xi] = E[Id − nY >i Yi] = Id − nE[Y >i Yi] = Id − n ·
1
n
V >V = Id − Id = 0 �

Claim 2. Each row vector Yi of HDA satisfies
∥∥∥nY >i Yi∥∥∥2

≤ n ·maxj ‖ejHDA‖22.

Proof: Rewriting nY >i Yi, we have

nY >i Yi = Y >i nYi =
(
Y >i
‖Yi‖2

)
n ‖Yi‖22

(
Yi
‖Yi‖2

)
(5)

It follows that
∥∥∥nY >i Yi∥∥∥2

= n ‖Yi‖22. Also, Yi is a row vector of HDA, which means for some j ∈ [n],
Yi = ejHDA. So, we can conclude that ‖Yi‖2 ≤ maxj ‖ejHDA‖2. Thus,∥∥∥nY >i Yi∥∥∥2

≤ n ·max
j
‖ejHDA‖22 �

Claim 3. The matrices Xi satisfy ‖Xi‖2 ≤ γ for γ = Θ(d log(nd/δ)).

Proof: The operator norm is a norm, which means it satisfies the triangle inequality.

‖Xi‖2 =
∥∥∥Id − n · Y >i Yi∥∥∥2

(6)

≤ ‖Id‖2 +
∥∥∥nY >i Yi∥∥∥2

(7)

≤ ‖Id‖2 + n ·max
j
‖ejHDA‖22 (8)

≤ 1 + n ·
(
C
√
d log(nd/δ)/

√
n

)2
(9)

= 1 + C2d log(nd/δ) (10)
= Θ(d log(nd/δ)) (11)

(7) to (8) follows from Claim 2, and (8) to (9) follows from Corollary 1. �

Claim 4. Letting X be the random matrix that X1, . . . , Xs are independent copies of, we have∥∥∥E[X>X]
∥∥∥

2
≤ σ2 where σ2 = O(d log(nd/δ)).
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Proof: We will come up with an expression for E[X>X + Id]. To do so, we will first come up with
an expression for E[X>X]. Recall each Xi is symmetric, so Xi = X>i .

E[X>X] = Ei[Xi ·Xi] (12)
= Ei[(Id − nY >i Yi)2] (13)
= Ei[Id − 2nY >i Yi + n2Y >i YiY

>
i Yi] (14)

= Id − 2nEi[Y >i Yi] + n2Ei[Y >i YiY >i Yi] (15)

We can solve for Ei[Y >i Yi] and Ei[Y >i YiY >i Yi]. Recall that vi is the ith row vector of matrix V , so
v>i is a column vector and viv>i = ‖vi‖22.

Ei[Y >i Yi] =
n∑
i=1

1
n
v>i vi = 1

n
V >V = 1

n
· Id (16)

Ei[Y >i YiY >i Yi] =
n∑
i=1

1
n
· v>i viv>i vi =

n∑
i=1

1
n
· v>i (viv>i )vi = 1

n

n∑
i=1

v>i vi · ‖vi‖
2
2 (17)

Now we can get an expression for E[X>X + Id]:

E[X>X + Id] = Id + E[X>X] (18)
= Id + Id − 2nEi[Y >i Yi] + n2Ei[Y >i YiY >i Yi] (19)

= 2Id − 2n
( 1
n
· Id
)

+ n2
(

1
n

n∑
i=1

v>i vi

)
· ‖vi‖22 (20)

= n
n∑
i=1

v>i vi · ‖vi‖
2
2 (21)

Now, we will define Z to be Z = n
∑
i v
>
i viC

2 log(ndδ ) · dn .

Remark 3. We can rewrite Z to get Z = C2d log(ndδ )
∑
i v
>
i vi = C2d log(ndδ )Id. From this, we can

tell that ‖Z‖2 =
∥∥∥C2d log(ndδ )Id

∥∥∥
2

= C2d log(ndδ ) ‖Id‖2 = C2d log(ndδ ).

We will use Loewner’s ordering on positive semi-definite matrices to help us reach the desired bound
for

∥∥∥E[X>X]
∥∥∥

2
.

Definition. (Loewner order) If A,B are positive semi-definite matrices, matrices whose eigenvalues
are all non-negative, then A ≤ B if and only if for all vectors x, x>Ax ≤ x>Bx.

Theorem 2. If A ≤ B in Loewner’s ordering, then ‖A‖2 ≤ ‖B‖2.

Noting that E[X>X + Id] and Z are both real symmetric matrices with non-negative eigenvalues, if
we can show that E[X>X + Id] ≤ Z in Loewner’s ordering, then we can use Theorem 2 to get an
upper bound on

∥∥∥E[X>X + Id]
∥∥∥

2
and in turn get an upper bound on

∥∥∥E[X>X]
∥∥∥

2
.

Claim 5. For all vectors y, y>E[X>X + Id]y ≤ y>Zy; i.e., E[X>X + Id] ≤ Z.
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Proof: Using the result of (21) and the definition of Z, we have

y>E[X>X + Id]y = y>
(
n

n∑
i=1

v>i vi · ‖vi‖
2
2

)
y (22)

= n
n∑
i=1

y>v>i viy · ‖vi‖
2
2 (23)

= n
n∑
i=1
〈vi, y〉2 · ‖vi‖22 (24)

y>Zy = y>
(
n
∑
i

v>i viC
2 log

(
nd

δ

)
· d
n

)
y (25)

= n
∑
i

y>v>i viy · C2 log
(
nd

δ

)
· d
n

(26)

= n
∑
i

〈vi, y〉2 · C2 log
(
nd

δ

)
· d
n

(27)

vi = eiV = eiHDA, so by Corollary 1,

‖vi‖2 ≤ C
√
d log(nd/δ)√

n
(28)

=⇒ ‖vi‖22 ≤ C
2 log

(
nd

δ

)
· d
n

(29)

So, we can conclude that

y>E[X>X + Id]y = n
n∑
i=1
〈vi, y〉2 · ‖vi‖22 (30)

≤ n
n∑
i=1
〈vi, y〉2 · C2 log

(
nd

δ

)
· d
n

(31)

= y>Zy �

Now that we proved Claim 5, we can finish the proof for Claim 4. By Claim 5, Theorem 2 and
Remark 3,

∥∥∥E[X>X + Id]
∥∥∥

2
≤ ‖Z‖2 = C2d log(ndδ ). We have
∥∥∥E[X>X]

∥∥∥
2

=
∥∥∥E[X>X] + Id − Id

∥∥∥
2

(32)

≤
∥∥∥E[X>X] + Id

∥∥∥
2

+ ‖Id‖2 (33)

=
∥∥∥E[X>X + Id]

∥∥∥
2

+ 1 (34)

≤ C2d log
(
nd

δ

)
+ 1 (35)

= O

(
d log nd

δ

)
�
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Now, we’re finally ready to apply the Matrix Chernoff Bound. The matrix W can be expressed as

W = 1
s

∑
i∈[s]

Xi (36)

= 1
s

∑
i∈[s]

Id − nY >i Yi (37)

= 1
s

sId − n∑
i∈[s]

Y >i Yi

 (38)

= Id −
∑
i∈[s]

(
Y >i

√
n

s

)(
Yi

√
n

s

)
(39)

Notice that by definition, each i represents the ith randomly sampled random matrix Xi, which
corresponds to the ith randomly sampled row of V = PHD. Furthermore,

√
n/s is equivalent to

the scaling factor used in our SRHT matrix P . This means Yi
√
n/s corresponds exactly to the ith

row of the sketch, (PHDA)i. Thus,

W = Id − (PHDA)>(PHDA) (40)

By the Matrix Chernoff Bound, we get

Pr[
∥∥∥Id − (PHDA)>(PHDA)

∥∥∥
2
> ε] ≤ 2d · e−sε2/(σ2+ γε

3 ) = 2d · e−sε2/Θ(d log(nd/δ)) (41)

Set s = d log(nd/δ) log(d/δ)
ε2 to make this probability less than δ/2.

3 SRHT Wrap Up

We have shown that with s = d log(nd/δ) log(d/δ)
ε2 , we can achieve

∥∥∥Id − (PHDA)>(PHDA)
∥∥∥

2
< ε

with probability at least 1 − δ/2. So, for every unit vector x, if we left and right multiply
Id − (PHDA)>(PHDA) by x, we can get

|1− ‖PHDAx‖22 | = |x
>x− x>(PHDA)>(PHDA)x| < ε, (42)

so ‖PHDAx‖22 ∈ 1± ε for all unit vectors x, proving that SRHT is a subspace embedding. We can
then solve the regression problem in the same way we did last lecture, by considering the column
span of A adjoined with b.

The time needed is O(n logn) to calculate Sb and O(nd logn) to calculate SA, plus an addi-
tional poly(d log(n)/ε) to compute the least squares approximation. The total time complexity is
O(nd logn) + poly(d log(n)/ε), which is nearly optimal in the matrix dimensions when n >> d.

4 Faster Subspace Embeddings

Using SRHT, we’ve managed to find a nearly optimal runtime with tight bounds for approximating
linear regression on dense matrices A. So, a natural follow-up is whether or not we can further
improve the time complexity on sparse matrices.
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Definition. (CountSketch) The CountSketch Matrix is a k × n matrix S for k = O(d2/ε2), such
that there is only a single randomly chosen non-zero entry for each column of S.


0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 1 0 −1 0
0 −1 0 0 0 0 0 1



Figure 1: Example of a 4× 8 CountSketch matrix

Claim 6. If we let nnz(A) be the number of non-zero entries in A, then we can compute SA in
nnz(A) time.

A simple algorithm for doing this is to use a sparse representation of A (e.g., keep a list of non-zero
entries of A with the positions of said entries), and then iterate over the non-zero entries in A,
multiplying each entry by the corresponding column in S. Since each column in S only has one
non-zero entry, this can be done in constant time for each entry in A, for a total of nnz(A) time.

4.1 CountSketch matrix S is a subspace embedding

As with our previous proofs of subspace embeddings, in order to show S is a subspace embedding,
we can assume the columns of A are orthonormal, and it suffices to show that ‖SAx‖2 = 1± ε for
all unit x. We can then apply S to the matrix with b adjoined to the columns of A for regression.
Let k = 6d2/(δε2), so SA is a 6d2/(δε2)× d matrix.

Claim 7. To show that S is a subspace embedding, it suffices to show
∥∥∥A>S>SA− I∥∥∥

F
≤ ε.

Proof: Suppose we showed that
∥∥∥A>S>SA− I∥∥∥

F
≤ ε. Since

∥∥∥A>S>SA− I∥∥∥
2
≤
∥∥∥A>S>SA− I∥∥∥

F
,

we get ∥∥∥A>S>SA− I∥∥∥
2
≤ ε (43)

=⇒ |x>A>S>SAx− x>x| ≤ ε (44)
=⇒ |‖SAx‖22 − 1| ≤ ε (45)
=⇒ ‖SAx‖22 = 1± ε (46)

=⇒ ‖SAx‖2 = 1±O(ε) (47)

as desired.

Lemma 2. (Matrix Product Result) For matrices C, D, and S,

Pr[
∥∥∥CS>SD − CD∥∥∥2

F
≤ [6/(δ(# rows of S))] · ‖C‖2F ‖D‖

2
F ] ≥ 1− δ (48)

We will use the matrix product result first, and then prove it later. Let C = A> and D = A. Notice
that since A has orthonormal columns, the norm of each column of A is 1, so the squared Frobenius
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norm of A is just the number of columns; i.e., ‖A‖2F = d. Also, A is an orthogonal matrix, so
A>A = I. We use the CountSketch matrix for S, so (# rows of S) = 6d2/(δε2). By the matrix
product result, we get

Pr[
∥∥∥A>S>SA−A>A∥∥∥2

F
≤
[
6/(δ(6d2/(δε2)))

]
·
∥∥∥A>∥∥∥2

F
‖A‖2F ] (49)

= Pr[
∥∥∥A>S>SA− I∥∥∥2

F
≤ (ε2/d2) · d · d] (50)

= Pr[
∥∥∥A>S>SA− I∥∥∥2

F
≤ ε2] (51)

= Pr[
∥∥∥A>S>SA− I∥∥∥

F
≤ ε] ≥ 1− δ (52)

So, by Claim 7, S is a subspace embedding w.p. at least 1− δ.

4.2 Matrix Product Result

We now show that we can use the matrix product result for the CountSketch matrix. Recall the
matrix product result

Pr[
∥∥∥CS>SD − CD∥∥∥2

F
≤ [6/(δ(# rows of S))] · ‖C‖2F ‖D‖

2
F ] ≥ 1− δ (53)

Definition. (JL Property) A distribution on matrices S ∈ Rk×n has the (ε, δ, `)-JL moment property
if for all x ∈ Rn with ‖x‖2 = 1,

ES [‖Sx‖22 − 1]` ≤ ε` · δ (54)

The goal is to first show that the JL Property implies the matrix product result, and then show
that CountSketch satisfies the JL Property.

Claim 8. (From vectors to matrices) For ε, δ ∈ (0, 1/2), let D be a distribution on matrices S with
k rows and n columns that satisfies the (ε, δ, `)-JL moment property for some ` ≥ 2. Then, for
matrices A, B with n rows,

Pr
S

[
∥∥∥A>S>SB −A>B∥∥∥

F
≥ 3ε ‖A‖F ‖B‖F ] ≤ δ (55)

Before we prove this, we will introduce and prove Minkowski’s Inequality.

Definition. For a random scalar X, define the norm ‖·‖p as (E[|X|p])1/p.

Lemma 3. (Minkowski’s Inequality) For any matrices X and Y ,

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p (56)

Proof: Suppose we have matrices X, Y , where ‖X‖p and ‖Y ‖p are both finite. The function
f(x) = |x|p is convex for p ≥ 1, which means f(x+y

2 ) ≤ 1
2f(x) + 1

2f(y). So, for any fixed x and y,∣∣∣∣12x+ 1
2y
∣∣∣∣p ≤ ∣∣∣∣12 |x|+ 1

2 |y|
∣∣∣∣p ≤ 1

2 |x|
p + 1

2 |y|
p (57)

2p
∣∣∣∣12x+ 1

2y
∣∣∣∣p ≤ 2p

(1
2 |x|

p + 1
2 |y|

p
)

(58)

|x+ y|p ≤ 2p−1(|x|p + |y|p) (59)
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So, E[|X + Y |p] ≤ E[2p−1 (|X|p + |Y |p)]. By definition, (E[|X + Y |p])1/p = ‖X + Y ‖p =⇒
E[|X + Y |p] = ‖X + Y ‖pp. It follows that since E[|X + Y |p] is finite, ‖X + Y ‖p is finite. Now, we
can get an upper bound for ‖X + Y ‖pp:

‖X + Y ‖pp =
∫
|x+ y|pdµ (60)

=
∫
|x+ y| · |x+ y|p−1dµ (61)

≤ (|x|+ |y|)|x+ y|p−1dµ (62)

=
∫
|x||x+ y|p−1dµ+

∫
|y||x+ y|p−1dµ (63)

Theorem 3. (Hölder’s Inequality) For vectors u, v, and scalars p, q such that 1
p + 1

q = 1,

〈u, v〉 ≤ ‖u‖p ‖v‖q =
(∑

|ui|p
)1/p (∑

|vi|q
)1/q

(64)

Applying Hölder’s Inequality, with the norm of the first vector being p and the norm of the second
vector being p

p−1 , we get

∫
|x||x+ y|p−1dµ ≤

(∫
|x|pdµ

)1/p (∫ (
|x+ y|p−1

) p
p−1 dµ

)(p−1)/p
(65)∫

|y||x+ y|p−1dµ ≤
(∫
|y|pdµ

)1/p (∫ (
|x+ y|p−1

) p
p−1 dµ

)(p−1)/p
(66)

So,

‖X + Y ‖pp ≤
((∫

|x|pdµ
)1/p

+
(∫
|y|pdµ

)1/p
)(∫

|x+ y|pdµ
)(p−1)/p

(67)

=
(
(E[|X|p])1/p + (E[|Y |p])1/p

) (
E[|X + Y |p]1/p

)p−1
(68)

= (‖X‖p + ‖Y ‖p) ‖X + Y ‖p−1
p (69)

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p �

Now that we proved Minkowski’s inequality, we can proceed to prove the matrix product result in
the next lecture.
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