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1 Coresets and Unions of Coresets (continued)

Recall that in the first part of the lecture, we talked about coreset construction, and we arrived at
the followinng claim:

Claim 1. For all projection matrices Y = Id −X onto (d− k)-dimensional subspaces,

‖AY ‖2F ≤ ‖ΣmV
TY ‖2F + c ≤ (1 + ε)‖AF‖2F ,

where UΣV T , m = k + k
ε , Σm agree with Σ on the first m diagonal entries and 0 otherwise,

c = ‖A−Am‖2F that does not depend on Y , and Am is the best rank-m approximation of A.

Note that we can think of S as UTm so that SA = UmUΣV T = ΣmV
T is a sketch. ΣmV

T and c
are what we called coreset. To get a decent k-dimensional approximation to AY, we only need to
remember the coreset.

Now suppose we have matrices A1, · · · , As and construct Σ1
mV

T,1, · · · ,Σs
mV

T,s as mentioned above
together with c1, · · · , cs. Then for matrix A formed by concatenating the rows of A1, · · · , As, we
have that

Σi‖Σi
mV

T,iY ‖2F + ci = (1± ε)‖AY ‖2F .

Let B be the matrix obtained by concatenating the rows of Σ1
mV

T,1, · · · ,Σs
mV

T,s. Suppose we
compute B = UΣV T , ΣmV

T , and ‖B −Bm‖2F . Then,

‖ΣmV
TY ‖2F + c+ Σici = (1± ε)‖BY ‖2F + Σici = (1±O(ε))‖AY ‖2F .

Thus, ΣmV
T and c+

∑
i ci are coresets for A.

2 [FSS] Row-Partition Protocal

With the construction of coresets in mind, we have the row-partition protocol as follows:

• Server t sends the top k
ε + k principle components of P t, scaled by the top k

ε + k singular
values Σt, together with ct.

• Coordinator returns c+ Σici and top k
ε principle components of [Σ1V 1,Σ2V 2; · · · ; ΣsV s].

However, there’re several problems associated with row-partition protocal:

1. sdk
ε real numbers of communication;

1



2. bit complexity can be large;

3. running time for SVDs;

4. doesn’t work in arbitrary partition model.

This is an SVD-based protocol. Maybe our random matrix techniques can improve communication
just like they improve computation, and we’re going to handle some of these problems in the next
protocal we discussed, the [KVW] protocal.

3 [KVW] Arbitrary Partition Model Protocal

In the arbitrary partition protocol, we consider the matrix A = A1 + · · ·+As with arbitrary partition.
This protocol is inspired by the sketching algorithm we discussed earlier in the course. Let S be one
of the k

ε × n random matrices discussed earlier, such as Gaussian Sketch, CountSketch, etc. S can
be generated pseudo-randomly from small seeds, and coordinator can seed small seed for S to all
servers. The process can be summarized as: Server t computes SAt and sends it to the coordinator.
The coordinator then sends Σs

t=1SA
t = SA to all servers. In this way, each server gets the same S

with relatively small communication cost. Note that there’s a good k-dimensional subspace inside
of SA. If we knew it, the tth server could output projection of At onto it. However, this approach
has some problems:

• Can’t output projection of At onto SA since the rank of SA is larger than k;

• Could communicate this projection to the coordinator who could find a k-dimensional space,
but the communication depends on n. (This is because we need to compute the SVD of
A(SA)†UΣ where SA = UΣV T , and At(SA)†UΣ has n rows.) We don’t want this to happen
because n can be large.

To fix this, instead of projecting A onto SA, we can solve

min
rank−kX

‖A(SA)TXSA−A‖2F .

This is because that in low rank approximation discussed earlier, we know that minrank−kX‖XSA−
A‖2F ≤ (1 + ε)‖A−Ak‖2F . Therefore, there is a rank-k space Y in SA, let Y also denote a rank k
matrix such that rows of Y SA are orthonormal and form a basis for subspace Y , such that we have
‖A(Y SA)TY SA−A‖2F ≤ ‖A(SA)TY TY SA−A‖2F ≤ (1 + ε)‖A−Ak‖F .

To find the minimization with respect to X, we could let T1, T2 to be affine embeddings, and solve

min
rank−kX

‖T1A(SA)TX(SA)T2 − T1AT2‖2F ,

which is a small optimization problem and it has a closed-form solution. Note that here our T1
needs poly( rank(A(SA)T )

ε ) = poly(k/ε) rows, and T2 needs poly( rank(SA)
ε ) = poly(k/ε) rows, thus the

computation should be fast. Now we have the following protocol:

• Each server sends SAt to the coordinator (takes s · kdε communication);
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• Coordinator sums them all and sends back SA (takes s · kdε communication);

• Each server t sends T1A
t(SA)T , SAtT2, T1A

tT2 (takes s · poly(kε ) communication);

• Coordinator sums over them and get T1A(SA)T , SAT2, T1AT2, and sends them back to all
servers (takes s · poly(kε ) communication).

• Each server solves the optimization problem and output the rowspace of (SA)TXSA which
has dimension at most k as rank of X is k.

4 [BWZ] Protocol

The main problem with [KVW] is that the communication is O(skd/ε) + poly(sk/ε), but we want
O(skd) + poly(sk/ε) communication as d can be quite large in many scenarios. The idea uses to
obtain this is to use projection-cost preserving sketches.

Definition. Let A be a n× d matrix. A k
ε2 × n matrix S is a projection-cost preserving sketch if

there’s a scalar c ≥ 0 such that for all k-dimensional projection matrices P , we have

‖SA(I − P )‖2F + c = (1± ε)‖A(I − P )‖2F .

The protocol is as follows: Let S be a k
ε2 ×n projection-cost preserving sketch, and let T be a d× k

ε2

projection-cost preserving sketch,

• All servers send SAtT to the coordinator;

• Coordinator sends back SAT =
∑
t SA

tT to all servers;

• Servers compute k
ε2 × k matrix U of top k left singular vectors of SAT ;

• Servers send UTSAt to the coordinator;

• Coordinator returns the space UTSA =
∑
t U

TSAt to output.

Note that what we’re doing with U is that we select the top k left singular values of SAT , so UTSA
looks like top k scaled right singular vectors of SA. The top k right singular vectors of SA work
because S is a projection-cost preserving sketch. Moreover, in the protocol, we know that SAtT and
SAT are matrices of k

ε2 ×
k
ε2 , and U

TSAt and UTSA are matrices of k×d. Since they’re all matrices
we deal with in the whole communication, we have communication complexity in O(sdk) + poly(kε ).

We’re going to continue the discussion for this protocol, and prove its correctness in the next lecture.
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