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Massive data sets

Examples
 Internet traffic logs
 Financial data
 etc.

Algorithms
 Want nearly linear time or less 
 Usually at the cost of a randomized approximation
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Regression analysis

Regression
 Statistical method to study dependencies between 

variables in the presence of noise.
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies 

between variables in the presence of noise.
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Linear Regression
 Statistical method to study linear dependencies 

between variables in the presence of noise.

Example
 Ohm's law V = R ∙ I 

0

50

100

150

200

250

0 50 100 150

Example Regression

Example Regression



6

Regression analysis

Linear Regression
 Statistical method to study linear dependencies 

between variables in the presence of noise.

Example
 Ohm's law V = R ∙ I 
 Find linear function that 

best fits the data
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between 

variables in the presence of noise.

Standard Setting
 One measured variable b
 A set of predictor variables a  ,…, a
 Assumption:

b  = x  + a   x  + … + a    x   + 
 is assumed to be noise and the xi are model 

parameters we want to learn
 Can assume x0 = 0
 Now consider n observations of b
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Regression analysis

Matrix form
Input:  nd-matrix A and a vector b=(b1,…, bn)

n is the number of observations; d is the number of  
predictor variables

Output: x* so that Ax* and b are close

 Consider the over-constrained case, when n � d
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Regression analysis

Least Squares Method

 Find x* that minimizes |Ax-b|22 =  (bi – <Ai*, x>)²

 Ai* is i-th row of A

 Certain desirable statistical properties
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Regression analysis

Geometry of regression
 We want to find an x that minimizes |Ax-b|2
 The product Ax can be written as

A*1x1 + A*2x2 + ... + A*dxd

where A*i is the i-th column of A

 This is a linear d-dimensional subspace 
 The problem is equivalent to computing the point of the 

column space of A nearest to b in l2-norm
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Regression analysis

Solving least squares regression via the normal equations

 How to find the solution x to minx |Ax-b|2 ?

 Equivalent problem: minx |Ax-b |22

 Write b = Ax’ + b’, where b’ orthogonal to columns of A
 Cost is |A(x-x’)|22 + |b’|22 by Pythagorean theorem
 Optimal solution x if and only if AT(Ax-b) = AT(Ax-Ax’) = 0
 Normal Equation: ATAx = ATb for any optimal x
 x = (ATA)-1 AT b 

 If the columns of A are not linearly independent, the Moore-
Penrose pseudoinverse gives a minimum norm solution x
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Moore-Penrose Pseudoinverse
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Moore-Penrose Pseudoinverse

• Any optimal solution x has the form Aିb ൅
I െ V′V′୘ z,	where Vᇱ ୘		corresponds to the rows i

of V୘ for which Σ௜,௜	 ൐ 0

• Why?

• Because A I െ V′V′୘ z ൌ 0, so Aିb ൅ I െ V′V′୘ z
is a solution. This is a (d-rank(A))-dimensional 
affine space so it spans all optimal solutions

• Since Aିb is in column span of V’, by the 
Pythagorean theorem, |Aିb ൅ I െ V′V′୘ z|ଶଶ ൌ
Aିb ଶ

ଶ ൅ |ሺI െ VᇱVᇱ୘ሻz|ଶଶ ൒ Aିb ଶ
ଶ
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Time Complexity

Solving least squares regression via the normal equations

 Need to compute x = A-b 

 Naively this takes ndଶ time

 Can do ndଵ.ଷ଻଺ using fast matrix multiplication

 But we want much better running time!
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Sketching to solve least squares regression

 How to find an approximate solution x to minx |Ax-b|2 ?

 Goal: output x‘ for which |Ax‘-b|2 � (1+ε) minx |Ax-b|2
with high probability

 Draw S from a k x n random family of matrices, for a 
value k << n

 Compute S*A and S*b

 Output the solution x‘ to minx‘ |(SA)x-(Sb)|2
 x’ = (SA)-Sb 
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How to choose the right sketching matrix S? 

 Recall: output the solution x‘ to minx‘ |(SA)x-(Sb)|2

 Lots of matrices work

 S is d/ε2 x n matrix of i.i.d. Normal random variables

 To see why this works, we 
introduce the notion of a 
subspace embedding



Subspace Embeddings

• Let k = O(d/ε2)
• Let S be a k x n matrix of i.i.d. normal 

N(0,1/k) random variables
• For any fixed d-dimensional subspace, i.e., 

the column space of an n x d matrix A
– W.h.p., for all x in Rd, |SAx|2 = (1±ε)|Ax|2

• Entire column space of A is preserved

Why is this true?



Subspace Embeddings – A Proof
• Want to show |SAx|2 = (1±ε)|Ax|2 for all x

• Can assume columns of A are orthonormal,  
since we prove this for all x

• Claim: SA is a k x d matrix of i.i.d. N(0,1/k) 
random variables

– First property: for two independent random variables X 
and Y, with X drawn from N(0,aଶ) and Y drawn from 
N(0,bଶ), we have X+Y is drawn from N(0, aଶ ൅ bଶሻ



X+Y is drawn from N(0, 
• Probability density function ୸ of Z = X+Y is 

convolution of probability density functions fଡ଼ and	fଢ଼

• f୞ z ൌ ׬ fଡ଼ z െ y fଢ଼ y 	dy	

• fଡ଼ x ൌ ଵ
ୟ ଶ஠ .ఱ eି୶

మ/ଶୟమ ,   fଢ଼ y ൌ ଵ
ୠ ଶ஠ .ఱ eି୷

మ/ଶୠమ

• f୞ z ൌ ׬ ଵ
ୟ ଶ஠ .ఱ eିሺ୸ି୷ሻ

మ/ଶୟమ ଵ
ୠ ଶ஠ .ఱ eି୷

మ/ଶୠమdy

ൌ ଵ
ଶ஠ .ఱ ୟమାୠమ .ఱ eି୸

మ/ଶ ୟమାୠమ ׬ ୟమାୠమ .ఱ

ଶ஠ .ఱୟୠ
e

ି
౯ష ౘమ౰

౗మశౘమ

మ

మ ౗ౘ మ
౗మశౘమ dy



X+Y is drawn from N(0, 

Calculation:	݁ି
೥ష೤ మ

మೌమ
	ି	 ೤

మ

మ್మ 		ൌ 		 ݁

ି ೥మ

మ ೌమశ್మ
	ି	

೤ష ್మ೥
ೌమశ್మ

మ

మ ೌ್ మ
ೌమశ್మ

Density	of	Gaussian	distribution:	׬ ௔మା௕మ .ఱ

ଶగ .ఱ௔௕
݁

ି
೤ష ್మ೥

ೌమశ್మ

మ

మ ೌ್ మ
ೌమశ್మ dy = 1 



Rotational Invariance
• Second property: if u, v are vectors with <u, v> = 0, 

then <g,u> and <g,v> are independent, where g is a 
vector of i.i.d. N(0,1/k) random variables

• Why? 
• If g is an n-dimensional  vector of i.i.d. N(0,1)  

random variables, and R is a fixed matrix, then   
the probability density function of Rg is 

݂ ݔ ൌ ଵ
ୢୣ୲	ሺୖ ୖ౐ሻ ଶగ ೙/మ ݁

ି
ೣ೅ ౎ ౎౐

షభ
ೣ

మ

୘ is the covariance matrix
– For a rotation matrix R, the distribution of Rg

and of g are the same



Orthogonal Implies Independent
• Want to show: if u, v are vectors with <u, v> = 0, then 

<g,u> and <g,v> are independent, where g is a vector of 
i.i.d. N(0,1/k) random variables

• Choose a rotation R which sends u to αeଵ, and sends v 
to βeଶ

• ൏ g, u ൐	ൌ	൏ Rg, Ru ൐	ൌ	൏ h, αeଵ ൐	ൌ αhଵ
• ൏ g, v ൐	ൌ	൏ Rg, Rv ൐	ൌ	൏ h, βeଶ ൐	ൌ βhଶ

where h is a vector of i.i.d. N(0, 1/k) random variables

• Then hଵ and hଶ	are independent by definition 



Where were we?
• Claim: SA is a k x d matrix of i.i.d. N(0,1/k) random 

variables

• Proof: The rows of SA are independent

– Each row is: ൏ g, Aଵ ൐,൏ g, Aଶ ൐	, … ,൏ g, Aୢ ൐	

– First property implies the entries in each row are 
N(0,1/k) since the columns A୧ have unit norm

– Since the columns A୧ are orthonormal, the entries in a 
row are independent by our second property



Back to Subspace Embeddings
• Want to show |SAx|2 = (1±ε)|Ax|2 for all x
• Can assume columns of A are orthonormal
• Can also assume x is a unit vector
• SA is a k x d matrix of i.i.d. N(0,1/k) random variables

• Consider any fixed unit vector x ∈ Rୢ

• SAx ଶ
ଶ ൌ ∑ ൏ g୧, x ൐ଶ

୧∈ ୩ , where g୧ is i-th row of SA

• Each ൏ g୧, x ൐ଶ is distributed as N 0, ଵ
୩

ଶ

• E[൏ g୧, x ൐ଶ] = 1/k, and so E[ SAx ଶ
ଶ] = 1

How concentrated is SAx ଶ
ଶ about its expectation?



Johnson-Lindenstrauss Theorem
• Suppose hଵ,… , h୩	are i.i.d. N(0,1) random variables
• Then G = ∑ h୧ଶ୧ is a ߯ଶ-random variable
• Apply known tail bounds to G:

– (Upper)	Pr G ൒ k ൅ 2 kx .ହ ൅ 2x ൑ eି୶

– (Lower) Pr G ൑ k	 െ 	2 kx .ହ ൑ eି୶

• If x ൌ ஫మ୩
ଵ଺

, then Pr G ∈ kሺ1 േ ϵሻ	 ൒ 1 െ 2eି஫మ୩/ଵ଺

• If k ൌ Θሺϵିଶlog	ሺଵ
ஔ
ሻሻ, this probability is 1-δ

• Pr SAx ଶ
ଶ ∈ 1 േ ϵ ൒ 1 െ 2ି஀ ୢ

This only holds for a fixed x, how to argue for all x?



Net for Sphere 
• Consider the sphere Sୢିଵ

• Subset N is a γ-net if for all x ∈ Sୢିଵ, there is a y ∈ N, 
such that x െ y ଶ ൑ γ

• Greedy construction of N
– While there is a point x ∈ Sୢିଵ of distance larger than 
γ from every point in N, include x in N

• The ball of radius γ/2 around every point in N is 
contained in the ball of radius 1+ γ/2 around 0ୢ

• Further, all such balls are disjoint
• Ratio of volume of d-dimensional ball of radius 1+ γ/2 to 

d-dimensional sphere of radius ߛ is 1 ൅ γ/2 ୢ/ሺγ/2ሻୢ, 
so N ൑ 1 ൅ γ/2 ୢ/ሺγ/2ሻୢ



Net for Subspace
• Let M = {Ax | x in N}, so	 M ൑ 1 ൅ γ/2 ୢ/ሺγ/2ሻୢ

• Claim: For every x in Sୢିଵ, there is a y in M for which 
Ax െ y ଶ ൑ γ

• Proof: Let x’ in Sୢିଵ be such that x െ xᇱ ଶ ൑ γ
Then Ax െ Axᇱ ଶ ൌ x െ xᇱ ଶ ൑ γ, using that the 
columns of A are orthonormal. Set y = Ax’



Net Argument
• For a fixed unit x, Pr SAx ଶ

ଶ ∈ 1 േ ϵ ൒ 1 െ 2ି஀ ୢ

• For a fixed pair of unit x, x’, SAx ଶ
ଶ, SAx′ ଶଶ, SA x െ xᇱ ଶ

ଶ

are preserved up to a 1 േ ϵ factor with prob. 1 െ 2ି஀ ୢ

• SA x െ xᇱ ଶ
ଶ ൌ SAx ଶ

ଶ ൅ SAxᇱ ଶଶ െ 2 ൏ SAx, SAxᇱ ൐
• A x െ xᇱ ଶ

ଶ ൌ Ax ଶ
ଶ ൅ Axᇱ ଶଶ െ 2 ൏ Ax, Axᇱ ൐

– So Pr ൏ Ax, Axᇱ ൐	ൌ	൏ SAx, SAxᇱ ൐ 	േ	O ϵ ൌ 1	 െ 2ି஀ሺୢሻ

• Choose a ½-net M = {Ax | x in N} of size 5ௗ

• By a union bound, for all pairs y, y’ in M, 
൏ y, y′ ൐	ൌ	൏ Sy, Sy′ ൐ 	േ	O ϵ

• Condition on this event
• By linearity, if this holds for y, y’ in M, for αy, βy′ we have

൏ αy, βy′ ൐	ൌ αβ ൏ Sy, Sy′ ൐ 	േ	O ϵ	αβ



Finishing the Net Argument

• Let y = Ax for an arbitrary x ∈ Sୢିଵ

• Let yଵ ∈ M be such that y െ yଵ ଶ ൑ γ
• Let α be such that αሺy െ yଵሻ ଶ ൌ 1

– α ൒ 1/γ (could be infinite)
• Let yଶᇱ ∈ M be such that α y െ yଵ െ yଶ′ ଶ ൑ γ

• Then y െ yଵ െ
୷మᇱ
஑ ଶ

൑ ஓ
஑
൑ γଶ

• Set yଶ ൌ
୷మᇲ

஑
. Repeat, obtaining yଵ, yଶ, yଷ, … such that for 

all integers i, 
y െ yଵ െ yଶ െ	…െ y୧ ଶ ൑ γ୧

• Implies y୧ ଶ ൑ γ୧ିଵ ൅ γ୧ ൑ 2γ୧ିଵ	



Finishing the Net Argument
• Have yଵ, yଶ, yଷ, … such that y	ൌ ∑ y୧୧ and y୧ ଶ ൑ 2γ୧ିଵ	

• Sy ଶ
ଶ ൌ |S∑ y୧|ଶଶ୧

= ∑ Sy୧ ଶଶ ൅ 2∑ ൏ Sy୧, Sy୨ ൐୧,୨୧

= ∑ y୧ ଶଶ ൅ 2	∑ ൏ y୧, y୨ ൐୧,୨	୧ േ O ϵ ∑ y୧ ଶ y୨ ଶ୧,୨	

= | ∑ y୧୧ |ଶଶ 	േ O ϵ
= y ଶ

ଶ േ O ϵ
= 1 േ O ϵ

• Since this held for an arbitrary y = Ax for unit x, by 
linearity it follows that for all x, |SAx|2 = (1±ε)|Ax|2 



• We showed that S is a subspace 
embedding, that is, simultaneously for all x,

|SAx|2 = (1±ε)|Ax|2 

What does this have to do with regression?

Back to Regression



Subspace Embeddings for 
Regression

• Want x so that |Ax-b|2 � (1+ε) miny |Ay-b|2
• Consider subspace L spanned by columns of A 

together with b
• Then for all y in L, |Sy|2 = (1± ε) |y|2
• Hence, |S(Ax-b)|2 = (1± ε) |Ax-b|2 for all x
• Solve argminy |(SA)y – (Sb)|2
• Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes O(nd2) time 
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How to choose the right sketching matrix S? [S] 

 S is a Subsampled Randomized Hadamard Transform
 S = P*H*D

 D is a diagonal matrix with +1, -1 on diagonals

 H is the Hadamard matrix: H୧,୨ ൌ െ1/n.ହ ழ୧,୨வ

 P just chooses a random (small) subset of rows of H*D

 S*A can be computed in O(nd log n) time

Why does it work?
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Why does this work?

 We can again assume columns of A are orthonormal

 It suffices to show SAx ଶ
ଶ ൌ PHDAx ଶ

ଶ ൌ 1 േ ϵ for all x

 HD is a rotation matrix, so HDAx ଶ
ଶ ൌ Ax ଶ

ଶ ൌ 1 for any x
 Notation: let y = Ax

 Flattening Lemma: For any fixed y, 

Pr [ HDy ஶ ൒ C
୪୭୥.ఱሺ౤ౚಌ ሻ

୬.ఱ
ሿ ൑ ஔ

ଶୢ
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 Flattening Lemma: Pr [ HDy ஶ ൒ C ୪୭୥.ఱ ୬ୢ/ஔ
୬.ఱ

ሿ ൑ ஔ
ଶୢ

 Let C > 0 be a constant. We will show for a fixed i in [n], 

Pr [ HDy ୧ ൒ C ୪୭୥.ఱ ୬ୢ/ஔ
୬.ఱ

ሿ ൑ ஔ
ଶ୬ୢ

 If we show this, we can apply a union bound over all i
 HDy ୧ ൌ ∑ H୧,୨D୨,୨y୨୨

 (Azuma-Hoeffding) For independent zero-mean random variables Z୨: 

	Pr | ∑ Z୨|୨ ൐ t ൑ 2e
ିሺ ౪మ

మ ∑ ಊౠ
మ

ౠ
ሻ
,	where |Z୨| ൑ β୨ with probability 1

 Z୨ ൌ H୧,୨D୨,୨y୨ has 0 mean

 |Z୨| ൑
|୷ౠ|
୬.ఱ

ൌ β୨ with probability 1

 ∑ β୨ଶ ൌ
ଵ
୬୨

 Pr | ∑ Z୨|୨ ൐
େ	୪୭୥.ఱ ౤ౚ

ಌ
୬.ఱ

൑ 2eି
ిమ ౢ౥ౝ ౤ౚ

ഃ
మ 	 ൑ ஔ

ଶ୬ୢ

Proving the Flattening Lemma
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Consequence of the Flattening Lemma

 Recall columns of A are orthonormal
 HDA has orthonormal columns 

 Flattening Lemma implies HDAe୧ ஶ ൑ C ୪୭୥.ఱ ୬ୢ/ஔ
୬.ఱ

with 

probability 1 െ ஔ
ଶୢ

for a fixed i ∈ d

 With probability 1 െ ஔ
ଶ
, e୨HDAe୧ ൑ C ୪୭୥.ఱ ୬ୢ/ஔ

୬.ఱ
for all i,j

 Given this, e୨HDA ଶ
൑ C ୢ.ఱ୪୭୥.ఱ ୬ୢ/ஔ

୬.ఱ
for all j

(Can be optimized further)
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Matrix Chernoff Bound

 Let Xଵ, … , Xୱ be independent copies of a symmetric random matrix X ∈ Rୢ୶ୢ

with E X ൌ 0, X ଶ ൑ γ, and E X୘X ଶ ൑ .ଶߪ Let W ൌ ଵ
ୱ
∑ X୧୧∈ሾୱሿ .	 For any ϵ ൐ 0,

Pr W ଶ ൐ ϵ ൑ 2d ⋅ eିୱ஫
మ/ሺఙమାಋಣయ ሻ

(here W ଶ ൌ sup	 Wx ଶ/ x ଶሻ

 Let V = HDA, and recall V has orthonormal columns

 Suppose P in the S = PHD definition samples s rows uniformly with 
replacement. If row i is sampled in the j-th sample, P୨,୧ ൌ

௡
√௦

, and is 0 otherwise

 Let Y୧ be the i-th sampled row of V = HDA

 Let X୧ ൌ Iୢ െ n ⋅ Y୧୘Y୧
 E X୧ ൌ Iୢ െ n ⋅ ∑ ଵ

୬
V୨୘V୨୨ ൌ Iୢ െ V୘V ൌ 0ୢ	୶	ୢ

 X୧ ଶ ൑ Iୢ ଶ ൅ n ⋅ max	 e୨HDA ଶ
ଶ ൌ 1 ൅ n ⋅ Cଶ	log ୬ୢ

ஔ
⋅ ୢ
୬
ൌ Θሺd log ୬ୢ

ஔ
ሻ


