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Massive data sets

Examples
Internet traffic logs
Financial data
etc.

Algorithms
Want nearly linear time or less
Usually at the cost of a randomized approximation



Regression analysis

Regression

Statistical method to study dependencies between
variables in the presence of noise.
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Regression analysis
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Statistical method to study linear dependencies
between variables in the presence of noise.
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Regression analysis

Linear Regression

Statistical method to study linear dependencies between
variables in the presence of noise.

Standard Setting
One measured variable b
A set of predictor variables a, ,..., a4
Assumption:
b =X, tar xs+t...+ta, X, te

¢ Is assumed to be noise and the x; are model
parameters we want to learn

Can assume x, = 0
Now consider n observations of b



Regression analysis

Matrix form

Input: nxd-matrix A and a vector b=(b,,..., b,)
n is the number of observations; d is the number of
predictor variables

Output: x” so that Ax* and b are close

Consider the over-constrained case, whenn * d



Regression analysis

Least Squares Method
Find x* that minimizes |Ax-b|,? = X (b, — <A, x>)?
A.. is i-th row of A

Certain desirable statistical properties



Regression analysis

Geometry of regression
We want to find an x that minimizes |Ax-b|,
The product Ax can be written as

A Xy + AX, + 0+ AdgXy
where A., is the i-th column of A

This is a linear d-dimensional subspace

The problem is equivalent to computing the point of the
column space of A nearest to b in I,-norm



Regression analysis

Solving least squares regression via the normal equations
How to find the solution x to min, |Ax-b|, ?

Equivalent problem: min, |Ax-b |,?
Write b = Ax’ + b’, where b’ orthogonal to columns of A
Cost is |A(x-X)|,? + |b’|,? by Pythagorean theorem
Optimal solution x if and only if AT(Ax-b) = AT(Ax-Ax’) =0
Normal Equation: ATAx = ATb for any optimal x
x = (ATA)1 AT b

If the columns of A are not linearly independent, the Moore-
Penrose pseudoinverse gives a minimum norm solution x



Moore-Penrose Pseudoinverse

Singular Value Decomposition (SVD)
Any matrixA=U . Z . VT
» U has orthonormal columns
= 3 is diagonal with non-increasing non-negative
entries down the diagonal
= VT has orthonormal rows

= Pseudoinverse A~ =V Z-10T
» Where Z-1 is a diagonal matrix with i-th diagonal
entry equal to 1/Z;; if £;; > 0 and is O otherwise

= min, |Ax-b |, not unique when columns of A are
linearly independent, but x = A’b has minimum norm



Moore-Penrose Pseudoinverse

Any optimal solution x has the form A™b +

(I—V'V'T)z, where (V)T corresponds to the rows i
of VI for which £;; > 0

 Why?

+ Because A(I-V'VT)z=0,s0 A"b+ (1-V'V'T)z
IS a solution. This is a (d-rank(A))-dimensional
affine space so it spans all optimal solutions

« Since A7 b is in column span of V', by the
Pythagorean theorem, |A™b + (I — V'V'T)z|3 =
|A™b|% + |(1 = V'V'T)z|} = |A bl



Time Complexity

Solving least squares regression via the normal equations
Need to compute x = ADb
Naively this takes nd? time
Can do nd!37¢ using fast matrix multiplication

But we want much better running time!



Sketching to solve least squares regression

How to find an approximate solution x to min, |Ax-b|, ?

Goal: output x’ for which |Ax'-b|, % (1+€) min, |Ax-b|,
with high probability

Draw S from a k x n random family of matrices, for a
value k << n

Compute S*A and S*b

Output the solution x* to min,. [(SA)x-(Sb)|,
x' = (SA)Sb



How to choose the right sketching matrix S?

Recall: output the solution x' to min,. [(SA)x-(Sb)|,

Lots of matrices work

S is d/e?2 x n matrix of i.i.d. Normal random variables

To see why this works, we ®
introduce the notion of a
subspace embedding




Subspace Embeddings

Let k = O(d/e?)
Let S be a k x n matrix of i.i.d. normal
N(0,1/k) random variables

For any fixed d-dimensional subspace, i.e.,
the column space of an n x d matrix A

—W.h.p., for all x in R9, |[SAXx|, = (1x€)|AX|,
Entire column space of A is preserved

Why is this true?



Subspace Embeddings — A Proof

Want to show [SAX|, = (1+€)|Ax|, for all x

Can assume columns of A are orthonormal,
since we prove this for all x

Claim: SAis a k x d matrix of i.i.d. N(0,1/k)
random variables

— First property: for two independent random variables X
and Y, with X drawn from N(0,a%) and Y drawn from
N(0,b?), we have X+Y is drawn from N(0, a® + b?)



X+Y is drawn from N(O, a? + b?)

* Probability density function f, of Z = X+Y is
convolution of probability density functions fx and fy

fz(z) = f fx(z — y)fy(y) dy

1 2 2 _ 2
¢ fX(X) — a(21'[)'5 e % /23. ’ fY(Y) — _ € y /2b

1 7 —\2 2 1 2 2
° fZ(Z) :f 3(211)-56 (z—y)“/2a We y“/2b dy

.5
_ 1 —z2/2(a?+b?) (a?+b?) 23232
(2m)5(a2+b2)5 © f(Zn)'Sab © ( ! ) dy



X+Y is drawn from N(O, a? + b?)

b2z 2
o <y_a2+b2)
(Z=»)? _ y° 2(a%+b%) 2<(ab)2>
Calculation: e 2022 2p2 = ¢ aZ+b?2

(a2+b2)'5 2(%)
Density of Gaussian distribution: [ e
(2m)->ab



Rotational Invariance

« Second property: if u, v are vectors with <u, v> =0,
then <g,u> and <g,v> are independent, where g is a
vector of i.i.d. N(0,1/k) random variables

* Why?
 If g is an n-dimensional vector of i.i.d. N(0,1)

random variables, and R is a fixed matrix, then
the probability density function of Rg is

xT(R RT)_lx

1 N 2

f %)= a®k vz ©

- RRT is the covariance matrix

— For a rotation matrix R, the distribution of Rg
and of g are the same



Orthogonal Implies Independent

« Want to show: if u, v are vectors with <u, v> = 0, then
<g,u> and <g,v> are independent, where g is a vector of
I.i.d. N(0,1/k) random variables

« Choose a rotation R which sends u to ae,, and sends v
to Be,

e <gu>=<Rg,Ru>=<h,ae; >=ah;
e <g v>=<RgRv>=<h, e, >=fh,

where h is a vector of i.i.d. N(O, 1/k) random variables

« Then h; and h, are independent by definition



Where were we?

« Claim: SAis a k x d matrix of i.i.d. N(0,1/k) random
variables

* Proof: The rows of SA are independent
— Eachrowis: < g A, >,<g A, >,...,<g Ay >

— First property implies the entries in each row are
N(0,1/k) since the columns A; have unit norm

— Since the columns A; are orthonormal, the entries in a
row are independent by our second property



Back to Subspace Embeddings

Want to show |SAXx|, = (1x€)|Ax|, for all x

Can assume columns of A are orthonormal

Can also assume x is a unit vector

SAis a k x d matrix of i.i.d. N(0,1/k) random variables

Consider any fixed unit vector x € RY
SAX|5 = e < 81X >%, where g; is i-th row of SA

2
Each < g;,x >? is distributed as N (O, %)

E[< g;,x >2] = 1/k, and so E[|SAx|5] = 1
How concentrated is |SAx|5 about its expectation?



Johnson-Lindenstrauss Theorem

Suppose hg, ..., hy are i.i.d. N(0,1) random variables
Then G =Y h{ is a y2-random variable

Apply known tail bounds to G:

— (Upper) Pr[G = k + 2(kx)® + 2x] < e™X

— (Lower) Pr[G <k — 2(kx)°] < e7*

2
Ifx ===, then Pr[G € k(1 £ €) ] > 1 — 2e~<"/16

If k = ©(e2log()), this probability is 1-5

Pr[|SAx|2 € (1+€)]>1—279W
This only holds for a fixed x, how to argue for all x?



Net for Sphere

Consider the sphere S4-1

Subset N is a y-net if for all x € S471, thereisay € N,
such that [x—y|, <Yy

Greedy construction of N

— While there is a point x € S9=1 of distance larger than
y from every point in N, include x in N

The ball of radius y/2 around every point in N is
contained in the ball of radius 1+ y/2 around 04

Further, all such balls are disjoint

Ratio of volume of d-dimensional ball of radius 1+ y/2 to
d-dimensional sphere of radius y is (1 +v/2)9/(y/2)4,
so [N| < (1+7v/2)4/(y/2)¢



Net for Subspace
« LetM={Ax|xinN},so M| < (1+v/2)4/(y/2)4

« Claim: For every x in S471, there is a y in M for which
|Ax —yl, <

 Proof: Let X’ in S471 be such that |x — x'|, <y

Then |Ax — Ax'|, = [x — x|, <y, using that the
columns of A are orthonormal. Sety = AxX’



Net Argument

For a fixed unit x, Pr[|SAx|3 € (1 +€)] > 1—279W)

For a fixed pair of unit x, X', |SAx|5, |SAX'|5, |SA(x — x")|3
are preserved up to a 1 + e factor with prob. 1 — 279(d)
ISA(x — x)|5 = |SAx|5 + |SAX'|5 — 2 < SAx, SAX' >

IA(x — x)|5 = |Ax|5 + |[AX'|5 — 2 < Ax, Ax' >

— So Pr[< Ax,AX’' > =< SAX,SAX' > +0(e)] =1 — 279D
Choose a ¥2-net M = {Ax | x in N} of size 5¢

By a union bound, for all pairs y, y’ in M,
<y, y >=<Sy,Sy > + 0(e)
Condition on this event

By linearity, if this holds for y, y’ in M, for ay, By’ we have
< ay, By >=ap <Sy,Sy > + 0(e afy)



Finishing the Net Argument

Let y = Ax for an arbitrary x € S4-1

Lety;, € M be such that |y —y,|, <Yy

Let a be such that [a(y —y,)|, =1

- a = 1/y (could be infinite)

Let y;, € M be such that [a(y —y,) — vy, |, <Y

Then ‘y—yl—%'z S%Syz

Sety, = % Repeat, obtaining y4,y,, y3, ... such that for
all integers |,

y=y1i—y2— «—Vil2 <Y
Implies |y;|, <y +y! < 2y



Finishing the Net Argument

- Have y;,y,,y3,...such thaty = Y.y, and |y;|, < 2y'™?

o ISyl = ISXivil3
= XilSyil5 + 2 2ij < Syi, Sy; >
= Zi|yi|% + 2 Zi,j <ypyj> = O(e) Zi,j |}’i|2|}’j|2
= | XiYi 5 +0(e)

= |yl5 £ 0(e)
=14+ 0(e)

« Since this held for an arbitrary y = Ax for unit x, by
linearity it follows that for all x, |SAXx|, = (1+€)|Ax|,



Back to Regression

* \We showed that S is a subspace
embedding, that is, simultaneously for all x,

ISAX], = (12€)|AX],

What does this have to do with regression?



Subspace Embeddings for
Regression

» Want x so that |Ax-bl, & (1+¢€) min, |Ay-b|,

» Consider subspace L spanned by columns of A
together with b

 ThenforallyinlL, |[Sy|, = (1t ¢€) |y|,

* Hence, |S(Ax-b)|, = (1% €) |Ax-b|, for all x

* Solve argmin, |[(SA)y — (Sb)l,

* Given SA, Sb, can solve in poly(d/g) time

Only problem is computing SA takes O(nd?) time



How to choose the right sketching matrix S7? [S]

S is a Subsampled Randomized Hadamard Transform
S =P*HD

D is a diagonal matrix with +1, -1 on diagonals
H is the Hadamard matrix: H;; = (—1/n>)<b>
P just chooses a random (small) subset of rows of H*D

S*A can be computed in O(nd log n) time

Why does it work?



Why does this work?

We can again assume columns of A are orthonormal
It suffices to show |SAx|5 = |[PHDAx|5 = 1 + € for all x

HD is a rotation matrix, so |HDAx|5 = |Ax|5 = 1 for any x
Notation: let y = Ax

Flattening Lemma: For any fixed vy,

Pr [|HDy|, = C



Proving the Flattening Lemma

.5
Flattening Lemma: Pr [|HDy|,, = C log n.rSId/S] < %
Let C > 0 be a constant. We will show for a fixed i in [n],
log=® nd/8 5

PrI(HDy);| >cC 2248 < o

If we show this, we can apply a union bound over all i
|(HDy);| = 2 Hi;D;,;y;

(Azuma-Hoeffding) For independent zero-mean random variables Z;:
t2

_(2 ¥, B?) : -
Pr(| X;Z| > t| <2e *%" ,where |Z;| < B; with probability 1
Z] = Hl,]D],JYJ has 0 mean

1Zj] < 24 = B; with probability 1
1
%R =1
2 nd
Clog's(%d)] C log(T) 5
Pr |ijj|> — < Ze 2 Sm



Consequence of the Flattening Lemma

Recall columns of A are orthonormal

HDA has orthonormal columns

log®> nd/&
0.5

with

Flattening Lemma implies |HDAei|, < C
probability 1 — % for a fixed i € [d]

log® nd/$§
05

With probability 1 — 2, |ejHDAe;| < C

d->log> nd/&
05

for all i,j

Given this, |e;HDA| < C

for all

(Can be optimized further)



Matrix Chernoff Bound

Let X4, ..., X5 be independent copies of a symmetric random matrix X € R4xd
with E[X] = 0, |X|, <, and |E[XTX]| < g% LetW = ZIE[S]X For any € > 0,

Y€
Pr[|W|, > €] < 2d- e~SE /(@47
(here |[W[, = sup |Wx|,/|x];)

Let V = HDA, and recall V has orthonormal columns

Suppose P in the S = PHD definition samples s rows uniformly with

\/_

7 and is 0 otherwise

replacement. If row i is sampled in the j-th sample, P;; =

Let Y; be the i-th sampled row of V = HDA

Let X; = Id—n-Y-TYi
EX]]=Ig—n-, ( )vTv Iy — VTV = gdxd

1Xil, < |I4]l, + n - max |e HDA| =1+n-C%log (nd) %: O(dlog (_))



