Outline

1. Information Theory Concepts

2. Distances Between Distributions

3. An Example Communication Lower Bound – Randomized 1-way Communication Complexity of the INDEX problem
Discrete Distributions

- Consider distributions \(p \) over a finite support of size \(n \):
 - \(p = (p_1, p_2, p_3, \ldots, p_n) \)
 - \(p_i \in [0,1] \) for all \(i \)
 - \(\sum_i p_i = 1 \)

- \(X \) is a random variable with distribution \(p \) if \(\text{Pr}[X = i] = p_i \)
Entropy

• Let X be a random variable with distribution p on n items.

• (Entropy) $H(X) = \sum_i p_i \log_2 (1/p_i)$

 • If $p_i = 0$ then $p_i \log_2 \left(\frac{1}{p_i} \right) = 0$

 • $H(X) \leq \log_2 n$. Equality holds when $p_i = \frac{1}{n}$ for all i.

 • Entropy measures “uncertainty” of X.

• (Binary Input) If B is a bit with bias p, then

 $$H(B) = p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1-p}$$

 (symmetric)
Conditional and Joint Entropy

• Let X and Y be random variables

• (Conditional Entropy)

 $H(X \mid Y) = \sum_y H(X \mid Y = y) \Pr[Y = y]$

• (Joint Entropy)

 $H(X, Y) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \log(1/\Pr[(X,Y) = (x,y)])$
Chain Rule for Entropy

• (Chain Rule) $H(X,Y) = H(X) + H(Y \mid X)$

• Proof:

$H(X,Y) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \log \left(\frac{1}{\Pr((X,Y)=(x,y))} \right)$

$= \sum_{x,y} \Pr[X = x] \Pr[Y = y \mid X = x] \log \left(\frac{1}{\Pr(X=x) \Pr(Y=y \mid X=x)} \right)$

$= \sum_{x,y} \Pr[X = x] \Pr[Y = y \mid X = x] (\log \left(\frac{1}{\Pr(X=x)} \right) + \log \left(\frac{1}{\Pr[Y=y \mid X=x]} \right))$

$= H(X) + H(Y \mid X)$
Conditioning Cannot Increase Entropy

• Let X and Y be random variables. Then $H(X|Y) \leq H(X)$.

• To prove this, we need Jensen’s inequality:
 Let f be a continuous, concave function, and let $p_1, ..., p_n$ be non-negative reals that sum to 1. For any $x_1, ..., x_n$,
 $\sum_{i=1}^{n} p_i f(x_i) \leq f(\sum_{i=1}^{n} p_i x_i)$

• Recall that f is concave if $f\left(\frac{a+b}{2}\right) \geq \frac{f(a)}{2} + \frac{f(b)}{2}$ and $f(x) = \log x$ is concave
Conditioning Cannot Increase Entropy

• Proof:

\[
H(X \mid Y) - H(X) = \sum_{x,y} \Pr(Y = y) \Pr(X = x \mid Y = y) \log \left(\frac{1}{\Pr(X = x \mid Y = y)} \right) \\
- \sum_x \Pr(X = x) \log \left(\frac{1}{\Pr(X = x)} \right) \sum_y \Pr(Y = y \mid X = x) \\
= \sum_{x,y} \Pr(X = x, Y = y) \log \left(\frac{\Pr(X = x)}{\Pr(\mathcal{X} = x \mid \mathcal{Y} = y)} \right) \\
= \sum_{x,y} \Pr(X = x, Y = y) \log \left(\frac{\Pr(X = x)}{\Pr(\mathcal{X} = x)} \Pr(\mathcal{Y} = y) \right) \\
\leq \log \left(\sum_{x,y} \Pr(X = x, Y = y) \cdot \frac{\Pr(X = x)}{\Pr(\mathcal{X} = x)} \Pr(\mathcal{Y} = y) \right) \\
= 0
\]

where the inequality follows by Jensen's inequality.

If X and Y are independent, \(H(X \mid Y) = H(X) \).
Mutual Information

• (Mutual Information) \(I(X ; Y) = H(X) - H(X | Y) \)
 \(= H(Y) - H(Y | X) \)
 \(= I(Y ; X) \)

Note: \(I(X ; X) = H(X) - H(X | X) = H(X) \)

• (Conditional Mutual Information)
 \(I(X ; Y | Z) = H(X | Z) - H(X | Y, Z) \)

Is \(I(X ; Y | Z) \geq I(X ; Y) \) or is \(I(X ; Y | Z) \leq I(X ; Y) \)? Neither!
Mutual Information

• Claim: For certain X, Y, Z, we can have $I(X ; Y \mid Z) \leq I(X ; Y)$

• Consider $X = Y = Z$

• Then,
 • $I(X ; Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z) = 0 - 0 = 0$
 • $I(X ; Y) = H(X) - H(X \mid Y) = H(X) - 0 = H(X)$

• Intuitively, Y only reveals information that Z has already revealed, and we are conditioning on Z
Mutual Information

• Claim: For certain X, Y, Z, we can have \(I(X ; Y | Z) \geq I(X ; Y) \)

• Consider \(X = Y + Z \mod 2 \), where X and Y are uniform in \{0,1\}

• Then,
 • \(I(X ; Y | Z) = H(X | Z) - H(X | Y, Z) = 1 - 0 = 1 \)
 • \(I(X ; Y) = H(X) - H(X | Y) = 1 - 1 = 0 \)

• Intuitively, Y only reveals useful information about X after also conditioning on Z
Chain Rule for Mutual Information

• $I(X, Y ; Z) = I(X ; Z) + I(Y ; Z \mid X)$

• Proof: $I(X, Y ; Z) = H(X, Y) - H(X, Y \mid Z)$

 $= H(X) + H(Y \mid X) - H(X \mid Z) - H(Y \mid X, Z)$

 $= I(X ; Z) + I(Y; Z \mid X)$

By induction, $I(X_1, \ldots, X_n; Z) = \sum_i I(X_i; Z \mid X_1, \ldots, X_{i-1})$
Fano’s Inequality

• For any estimator $X': X \rightarrow Y \rightarrow X'$ with $P_e = \Pr[X' \neq X]$, we have
 \[H(X \mid Y) \leq H(P_e) + P_e \cdot \log(|X| - 1) \]

Here $X \rightarrow Y \rightarrow X'$ is a Markov Chain, meaning X' and X are independent given Y.

“Past and future are conditionally independent given the present”

To prove Fano’s Inequality, we need the data processing inequality
Data Processing Inequality

• Suppose \(X \rightarrow Y \rightarrow Z \) is a Markov Chain. Then,
\[
I(X ; Y) \geq I(X ; Z)
\]
• That is, no clever combination of the data can improve estimation

\[
I(X ; Y, Z) = I(X ; Z) + I(X ; Y | Z) = I(X ; Y) + I(X ; Z | Y)
\]
• So, it suffices to show \(I(X ; Z | Y) = 0 \)
• \(I(X ; Z | Y) = H(X | Y) - H(X | Y, Z) \)
• But given \(Y \), then \(X \) and \(Z \) are independent, so \(H(X | Y, Z) = H(X | Y) \).

• Data Processing Inequality implies \(H(X | Y) \leq H(X | Z) \)
Proof of Fano’s Inequality

• For any estimator X' such that $X \rightarrow Y \rightarrow X'$ with $P_e = \Pr[X \neq X']$, we have $H(X | Y) \leq H(P_e) + P_e(\log_2|X| - 1)$.

Proof: Let $E = 1$ if X' is not equal to X, and $E = 0$ otherwise.

$$H(E, X | X') = H(X | X') + H(E | X, X') = H(X | X')$$

$$H(E, X | X') = H(E | X') + H(X | E, X') \leq H(P_e) + H(X | E, X')$$

But $H(X | E, X') = \Pr(E = 0)H(X | X', E = 0) + \Pr(E = 1)H(X | X', E = 1)$

$$\leq (1 - P_e) \cdot 0 + P_e \cdot \log_2(|X| - 1)$$

Combining the above, $H(X | X') \leq H(P_e) + P_e \cdot \log_2(|X| - 1)$

By Data Processing, $H(X | Y) \leq H(X | X') \leq H(P_e) + P_e \cdot \log_2(|X| - 1)$
Tightness of Fano’s Inequality

- Suppose the distribution p of X satisfies $p_1 \geq p_2 \geq \ldots \geq p_n$

- Suppose Y is a constant, so $I(X ; Y) = H(X) - H(X | Y) = 0$.

- Best predictor X' of X is $X = 1$.

- $P_e = \Pr[X' \neq X] = 1 - p_1$

- $H(X | Y) \leq H(p_1) + (1 - p_1) \log_2 (n - 1)$ predicted by Fano’s inequality

- But $H(X) = H(X | Y)$ and if $p_2 = p_3 = \ldots = p_n = \frac{1-p_1}{n-1}$ the inequality is tight
Tightness of Fano’s Inequality

• For X from distribution $(p_1, \frac{1-p_1}{n-1}, \ldots, \frac{1-p_1}{n-1})$

• $H(X) = \sum_i p_i \log\left(\frac{1}{p_i}\right)$

 $$= p_1 \log\left(\frac{1}{p_1}\right) + \sum_{i>1} \frac{1-p_1}{n-1} \log\left(\frac{n-1}{1-p_1}\right)$$

 $$= p_1 \log\left(\frac{1}{p_1}\right) + (1 - p_1) \log\left(\frac{1}{1-p_1}\right) + (1 - p_1) \log (n - 1)$$

 $$= H(p_1) + (1 - p_1) \log (n - 1)$$
Talk Outline

1. Information Theory Concepts

2. Distances Between Distributions

3. An Example Communication Lower Bound – Randomized 1-way Communication Complexity of the INDEX problem
Distances Between Distributions

- Let p and q be two distributions with the same support

- (Total Variation Distance) $D_{TV}(p, q) = \frac{1}{2} |p - q|_1 = \frac{1}{2} \sum_i |p_i - q_i|$
 - $D_{TV}(p, q) = \max_{\text{events } E} |p(E) - q(E)|$

- Sometimes abuse notation and say $D_{TV}(X, Y)$ to mean $D_{TV}(p, q)$ where X has distribution p and Y has distribution q

- (Hellinger Distance)
 - Define $\sqrt{p} = (\sqrt{p_1}, \sqrt{p_2}, ..., \sqrt{p_n})$, $\sqrt{q} = (\sqrt{q_1}, \sqrt{q_2}, ..., \sqrt{q_n})$
 - Note that \sqrt{p} and \sqrt{q} are unit vectors
 - $h(p, q) = \frac{1}{\sqrt{2}} |\sqrt{p} - \sqrt{q}|_2 = \frac{1}{\sqrt{2}} \left(\sum_i (\sqrt{p_i} - \sqrt{q_i})^2 \right)^{.5}$

- **Note:** $D_{TV}(p, q)$ and $h(p, q)$ satisfy the triangle inequality
Why Hellinger Distance?

- Useful for independent distributions

- Suppose X and Y are independent random variables with distributions p and q, respectively
 \[
 \Pr[(X, Y) = (x, y)] = p(x) \cdot q(y)
 \]

- Suppose A and B are independent random variables with distributions p' and q', respectively
 \[
 \Pr[(A, B) = (a, b)] = p'(a) \cdot q'(b)
 \]

- (Product Property)
 \[
 h^2((X, Y), (A, B)) = 1 - (1 - h^2(X, A)) \cdot (1 - h^2(Y, B))
 \]
 No easy product structure for variation distance
Product Property of Hellinger Distance

\[h^2((p, q), (p', q')) = \frac{1}{2} \left| \sqrt{p}q - \sqrt{p'}q' \right|^2 \]

\[= \frac{1}{2} \left(1 + 1 - 2 \langle \sqrt{p}, \sqrt{p'}, \sqrt{q}, \sqrt{q'} \rangle \right) \]

\[= 1 - \sum_{i,j} \sqrt{p_i \sqrt{q_j} \sqrt{p'_i \sqrt{q'_j}}} \]

\[= 1 - \sum_{i} \sqrt{p_i} \cdot \sum_{j} \sqrt{q_j} \cdot \sqrt{p'_i} \cdot \sqrt{q'_j} \]

\[= 1 - (1 - h^2(p, p')) \cdot (1 - h^2(q, q')) \]
Jensen-Shannon Distance

- (Kullback-Leibler Divergence) $KL(p, q) = \sum_i p_i \log \left(\frac{p_i}{q_i} \right)$
 - $KL(p, q)$ can be infinite!

- (Jensen-Shannon Distance) $JS(p, q) = \frac{1}{2} (KL(p, r) + KL(q, r))$, where $r = (p+q)/2$ is the average distribution

- Why Jensen-Shannon Distance?

- (Jensen-Shannon Lower Bounds Information) Suppose X, B are possibly dependent random variables and B is a uniform bit. Then,
 $I(X; B) \geq JS(X \mid B = 0, X \mid B = 1)$
Relations Between Distance Measures

\(JS(p, q) \geq h^2(p, q) \)

\(h^2(p, q) \geq D^2_{TV}(p, q) \)

If you can distinguish distribution \(p \) from \(q \) with a sample w.pr. \(\frac{1}{2} + \delta/2 \),

\(D_{TV}(p, q) \geq \delta \)
Talk Outline

1. Information Theory Concepts

2. Distances Between Distributions

3. An Example Communication Lower Bound – Randomized 1-way Communication Complexity of the INDEX problem
Randomized 1-Way Communication Complexity

- Alice sends a single message M to Bob
- Bob, given M and j, should output x_j with probability at least $2/3$
- **Note:** The probability is over the coin tosses, not inputs
- Prove that for some inputs and coin tosses, M must be $\Omega(n)$ bits long...
1-Way Communication Complexity of Index

• Consider a uniform distribution \(\mu \) on \(X \)
• Alice sends a single message \(M \) to Bob
• We can think of Bob’s output as a guess \(X'_j \) to \(X_j \)
• For all \(j \), \(\Pr[X'_j = X_j] \geq \frac{2}{3} \)

• By Fano’s inequality, for all \(j \),

\[
H(X_j \mid M) \leq H\left(\frac{2}{3}\right) + \frac{1}{3} (\log_2 2 - 1) = H\left(\frac{1}{3}\right)
\]
1-Way Communication of Index Continued

• Consider the mutual information $I(M \; ; X)$
• By the chain rule,
 \[I(X \; ; M) = \sum_i I(X_i \; ; M \mid X_{<i}) \]
 \[= \sum_i H(X_i \mid X_{<i}) - H(X_i \mid M, X_{<i}) \]
• Since the coordinates of X are independent bits, $H(X_i \mid X_{<i}) = H(X_i) = 1$.
• Since conditioning cannot increase entropy,
 \[H(X_i \mid M, X_{<i}) \leq H(X_i \mid M) \]

So, $I(X \; ; M) \geq n - \sum_i H(X_i|M) \geq n - H\left(\frac{1}{3}\right)n$

So, $|M| \geq H(M) \geq I(X \; ; M) = \Omega(n)$
Typical Communication Reduction

Lower Bound Technique
1. Run Streaming Alg on s(a), transmit state of Alg(s(a)) to Bob
2. Bob computes Alg(s(a), s(b))
3. If Bob solves g(a,b), space complexity of Alg at least the 1-way communication complexity of g
Example: Distinct Elements

• Give \(a_1, \ldots, a_m\) in \([n]\), how many distinct numbers are there?

• Index problem:
 • Alice has a bit string \(x\) in \(\{0, 1\}^n\)
 • Bob has an index \(i\) in \([n]\)
 • Bob wants to know if \(x_i = 1\)

• Reduction:
 • \(s(a) = i_1, \ldots, i_r\), where \(i_j\) appears if and only if \(x_{i_j} = 1\)
 • \(s(b) = i\)
 • If \(\text{Alg}(s(a), s(b)) = \text{Alg}(s(a)) + 1\) then \(x_i = 0\), otherwise \(x_i = 1\)

• Space complexity of Alg at least the 1-way communication complexity of Index
Strengthening Index: Augmented Indexing

- Augmented-Index problem:
 - Alice has $x \in \{0, 1\}^n$
 - Bob has $i \in [n]$, and x_1, \ldots, x_{i-1}
 - Bob wants to learn x_i

- Similar proof shows $\Omega(n)$ bound
- $I(M ; X) = \sum_i I(M ; X_i | X_{<i})$
 \[= n - \sum_i H(X_i | M, X_{<i}) \]

- By Fano’s inequality, $H(X_i | M, X_{<i}) \leq H(\delta)$ if Bob can predict X_i with probability $\geq 1 - \delta$ from $M, X_{<i}$
- $\text{CC}_\delta(\text{Augmented-Index}) \geq I(M ; X) \geq n(1-H(\delta))$
Log n Bit Lower Bound for Estimating Norms

- Alice has $x \in \{0, 1\}^{\log n}$ as an input to Augmented Index
- She creates a vector v with a single coordinate equal to $\sum_j 10^j x_j$
- Alice sends to Bob the state of the data stream algorithm after feeding in the input v
- Bob has i in $[\log n]$ and $x_{i+1}, x_{i+2}, \ldots, x_{\log n}$
- Bob creates vector $w = \sum_{j>i} 10^j x_j$
- Bob feeds $-w$ into the state of the algorithm
- If the output of the streaming algorithm is at least $10^i/2$, guess $x_i = 1$, otherwise guess $x_i = 0$
\[\frac{1}{\epsilon^2} \] Bit Lower Bound for Estimating Norms

- Gap Hamming Problem: Hamming distance \(\Delta(x,y) > n/2 + 2\epsilon n \) or \(\Delta(x,y) < n/2 + \epsilon n \)
- Lower bound of \(\Omega(\epsilon^{-2}) \) for randomized 1-way communication [Indyk, W], [W], [Jayram, Kumar, Sivakumar]
- Gives \(\Omega(\epsilon^{-2}) \) bit lower bound for approximating any norm
- Same for 2-way communication [Chakrabarti, Regev]
Gap-Hamming From Index [JKS]

Public coin = r¹, …, rᵗ, each in \{0,1\}ᵗ

\[t = \Theta(\epsilon^{-2}) \]

\[x \in \{0,1\}ᵗ \]

\[a \in \{0,1\}ᵗ \]

\[a_k = \text{Majority}_j \text{ such that } x_j = 1 \]

\[b \in \{0,1\}ᵗ \]

\[b_k = r^k_i \]

\[E[\Delta(a,b)] = \frac{t}{2} + x_i \cdot t^{1/2} \]
Aspects of 1-Way Communication of Index

• Alice has $x \in \{0,1\}^n$
• Bob has $i \in [n]$
• Alice sends a (randomized) message M to Bob
• $I(M ; X \mid R) = \sum_i I(M ; X_i \mid X_{<i}, R)$
 \[\geq \sum_i I(M ; X_i \mid R) \]
 \[= n - \sum_i H(X_i \mid M, R) \]
• Fano: $H(X_i \mid M, R) \leq H(\delta)$ if Bob can guess X_i with probability $> 1 - \delta$
• $CC_\delta(\text{Index}) \geq I(M ; X \mid R) \geq n(1 - H(\delta))$

The same lower bound applies if the protocol is only correct on average over x and i drawn independently from a uniform distribution.
Distributional Communication Complexity

- \((X, Y) \sim \mu\)

- \(\mu\)-distributional complexity \(D_\mu(f)\): the minimum communication cost of a protocol which outputs \(f(X,Y)\) with probability \(2/3\) for \((X,Y) \sim \mu\)
 - Yao’s minimax principle: \(R(f) = \max_\mu D_\mu(f)\)

- 1-way communication: Alice sends a single message \(M(X)\) to Bob
Indexing is Universal for Product Distributions [Kremer, Nisan, Ron]

- Communication matrix A_f of a Boolean function $f: X \times Y \to \{0,1\}$ has (x,y)-th entry equal to $f(x,y)$

- $\max_{\text{product } \mu} D_\mu(f) = \Theta(VC - \text{dimension})$ of A_f

- Implies a reduction from Index is optimal for product distributions

$$
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
$$
Indexing with Low Error

- Index Problem with 1/3 error probability and 0 error probability both have $\Omega(n)$ communication

- Sometimes, want lower bounds in terms of error probability

- Indexing on Large Alphabets:
 - Alice has $x \in \{0,1\}^{n/\delta}$ with $\text{wt}(x) = n$, Bob has $i \in [n/\delta]$
 - Bob wants to decide if $x_i = 1$ with error probability δ
 - [Jayram, W] 1-way communication is $\Omega(n \log(1/\delta))$
 - Can be used to get an $\Omega\left(\log\left(\frac{1}{\delta}\right)\right)$ bound for norm estimation
 - We’ve seen an $\Omega\left(\log n + \epsilon^{-2} + \log\left(\frac{1}{\delta}\right)\right)$ lower bound for norm estimation
 - There is an $\Omega\left(\epsilon^{-2} \log\frac{1}{\delta} \log n\right)$ bit lower bound
Beyond Product Distributions

Although $R(f) = \max_{\mu} D_{\mu}(f)$, it may be that
$\max_{\mu} D_{\mu}(f) \gg \max_{\text{product } \mu} D_{\mu}(f)$, so one often can’t get good lower bounds by looking at product distributions…

Example: set disjointness
Non-Product Distributions

• Needed for stronger lower bounds

• Example: approximate $|x|_\infty$ up to a multiplicative factor of B in a stream
 – Lower bounds for p-norms

 \[
 \text{Gap}_\infty (x,y) \leq 1 \quad \text{or} \quad |x - y|_\infty \geq B
 \]

• Hard distribution non-product

• $\Omega(n/B^2)$ lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]
Direct Sums

• Gap$_\infty$ (x,y) doesn’t have a hard product distribution, but has a hard distribution $\mu = \lambda^n$ in which the coordinate pairs $(x_1, y_1), \ldots, (x_n, y_n)$ are independent

 – w.pr. 1-1/n, (x_i, y_i) random subject to $|x_i - y_i| \leq 1$

 – w.pr. 1/n, (x_i, y_i) random subject to $|x_i - y_i| \geq B$

• **Direct Sum**: solving Gap$_\infty$(x,y) requires solving n single-coordinate sub-problems g

• In g, Alice and Bob have $J, K \in \{0, \ldots, B\}$, and want to decide if $|J-K| \leq 1$ or $|J-K| \geq B$
Direct Sum Theorem

• Let M be the message from Alice to Bob

• For (X, Y) ∼ μ, I(M ; X, Y) = H(X,Y) – H(X,Y | M) is the information cost of the protocol

• [BJKS]: why not measure I(M ; X, Y) when (X,Y) satisfy |X – Y|∞ ≤ 1?
 – Is I(M ; X, Y) large?
 – Let us go back to protocols correct on each X, Y w.h.p.

• Define μ = λ^n, where (X_i, Y_i) ∼ λ is random subject to |X_i-Y_i| ≤ 1

• IC(g) = inf_ψ I(ψ ; J, K), where ψ ranges over all 2/3-correct 1-way protocols for g, and J,K ∼ λ

 \[\text{Is } I(M ; X, Y) = \Omega(n) \cdot IC(g)? \]
The Embedding Step

- \(I(M ; X, Y) \)

- We need to show \(I(M ; X_i, Y_i) \) for each \(i \).

Suppose Alice and Bob could fill in the remaining coordinates \(j \) of \(X, Y \) so that \((X_j, Y_j) \sim \lambda\). Then we get a correct protocol for \(g! \).
Conditional Information Cost

• \((X_j, Y_j) \sim \lambda\) is not a product distribution

• [BJKS] Define \(D = ((P_1, V_1), \ldots, (P_n, V_n))\):
 - \(P_j\) uniform on \{Alice, Bob\}
 - \(V_j\) uniform on \{1, \ldots, B\} if \(P_j = Alice\)
 - \(V_j\) uniform on \{0, \ldots, B-1\} if \(P_j = Bob\)
 - If \(P_j = Alice\), then \(Y_j = V_j\) and \(X_j\) is uniform on \{\(V_j-1, V_j\}\)
 - If \(P_j = Bob\), then \(X_j = V_j\) and \(Y_j\) is uniform on \{\(V_j, V_j+1\)\}

 \(X\) and \(Y\) are independent conditioned on \(D\)!

• \(I(M ; X, Y \mid D) = \Omega(n) \cdot IC(g \mid (P, V))\) holds now!

• \(IC(g \mid (P, V)) = \inf_{\psi} I(\psi ; J, K \mid (P, V))\), where \(\psi\) ranges over all 2/3-correct protocols for \(g\), and \(J, K \sim \lambda\)
Primitive Problem

- Need to lower bound $\text{IC}(g \mid (P,V))$

- For fixed $P = \text{Alice}$ and $V = v$, this is $I(\psi ; K)$ where K is uniform over $v-1$, v

- From previous lecture: $I(\psi ; K) \geq D_{JS}(\psi_{v-1,v}, \psi_{v,v})$

- $\text{IC}(g \mid (P,V)) \geq E_v [D_{JS}(\psi_{v-1,v}, \psi_{v,v}) + D_{JS}(\psi_{v,v}, \psi_{v,v+1})]/2$

Forget about distributions, let’s move to unit vectors!
Hellinger Distance

- For distribution μ, let $\sqrt{\mu}$ be the vector with coordinate i equal to $\mu_i^{1/2}$

- $D_{JS}(\psi_{v-1,v}, \psi_{v,v}) \geq h(\psi_{v-1,v}, \psi_{v,v})^2$

(*) $IC(g \mid (P,V)) \geq E_v [h(\psi_{v-1,v}, \psi_{v,v})^2 + h(\psi_{v,v}, \psi_{v,v+1})^2]/2$

- Properties
 - (Correctness) $h(\psi_{0,0}, \psi_{0,b})^2 = \Omega(1)$
 - (1-way Protocol) $\psi_{a,b}(m, out) = p_a(m) \cdot q_{b,m}(out)$
 - (Pythagorean) $h^2(\psi_{a,b}, \psi_{c,d}) \geq \frac{1}{2} (h^2(\psi_{a,b}, \psi_{a,d}) + h^2(\psi_{c,b}, \psi_{c,a}))$
Pythagorean Property

\[
\frac{1}{2}(1 - h^2(\psi_{a,b}, \psi_{a,d}) + 1 - h^2(\psi_{c,b}, \psi_{c,d}))
\]

\[
= \frac{1}{2} \sum_{m,b} \left(\sqrt{p_a(m)} \cdot \sqrt{q_{b,m}(\text{out})} \sqrt{p_a(m)} \sqrt{q_{d,m}(\text{out})} + \sqrt{p_c(m)} \sqrt{q_{b,m}(\text{out})} \sqrt{p_c(m)} \sqrt{q_{d,m}(\text{out})} \right)
\]

\[
= \sum_{m,b} \frac{p_a(m)^2 + p_c(m)^2}{2} \left(\sqrt{q_{b,m}(\text{out})} \sqrt{q_{d,m}(\text{out})} \right)
\]

\[
\geq \sum_{m,b} \sqrt{p_a(m)} \sqrt{p_c(m)} \sqrt{q_{b,m}(\text{out})} \sqrt{q_{d,m}(\text{out})}
\]

\[
= 1 - h^2(\psi_{a,b}, \psi_{c,d})
\]
Lower Bounding the Primitive Problem

- $\text{IC}(f \mid (P,V))$
 \[\geq \mathbb{E}_v \left[h(\psi_{v,v}, \psi_{v,v+1})^2 + h(\psi_{v,v}, \psi_{v+1,v})^2 \right] / 2 \]
 \[\geq 1/(2B) \sum_v \left| \sqrt{\psi_{v-1,v}} - \sqrt{\psi_{v,v}} \right|^2 + \left| \sqrt{\psi_{v,v}} - \sqrt{\psi_{v,v+1}} \right|^2 \]
 \[\geq 1/(2B^2) \left(\sum_v \left| \sqrt{\psi_{v-1,v}} - \sqrt{\psi_{v,v}} \right| + \left| \sqrt{\psi_{v,v}} - \sqrt{\psi_{v,v+1}} \right| \right)^2 (1/2) \]
 \[\geq 1/(2B^2) \left(\sum_v \left| \sqrt{\psi_{v,v}} - \sqrt{\psi_{v+1,v+1}} \right| \right)^2 (1/2) \]
 \[\geq 1/(2B^2) \left(\sqrt{\psi_{0,0}} - \sqrt{\psi_{B,B}} \right)^2 (1/2) \]
 \[\geq 1/(4B^2) \left(\left| \sqrt{\psi_{0,0}} - \sqrt{\psi_{0,B}} \right|^2 + \left| \sqrt{\psi_{B,0}} - \sqrt{\psi_{B,B}} \right|^2 \right)^2 (1/2) \]
 \[= \Omega(1/B^2) \]
Direct Sum Wrapup

- $\Omega(n/B^2)$ bound for $\text{Gap}_\infty(x,y)$

- Similar argument gives $\Omega(n)$ bound for disjointness [BJKS]

- [Molinaro, Yaroslavtsev, W] Sometimes can “beat” a direct sum: solving all n copies simultaneously with constant probability as hard as solving each copy with probability $1-1/n$
 - E.g., 1-way communication complexity of Equality

- Direct sums are nice, but often a problem can’t be split into simpler smaller problems, e.g., no known embedding step in gap-Hamming