1 Recap: Subspace Embeddings for Regression

Given an \(n \times d \) matrix \(A \) where \(n >> d \) and \(n \)-dimensional vector \(b \), we want to find a vector \(x \) such that \(|Ax - b|_2 \) is minimized. Since the deterministic method takes \(O(nd^2) \) time, we turn to Subspace Embeddings. The general outline is as follows

1. Want to find \(x \) such that \(|Ax - b|_2 \leq (1 + \varepsilon) \min_y |Ay - b|_2 \).
2. Consider the \(d + 1 \)-dimensional subspace \(L \) spanned by the columns of \(A \) and \(b \).
3. A matrix \(S \) is called a sketch if \(\forall y \in L \) we have \(|Sy|_2 = (1 \pm \varepsilon)|y|_2 \). This gives us that for all \(x \) we have \(|S(Ax - b)|_2 = (1 \pm \varepsilon)|Ax - b|_2 \).
4. Solve \(\arg\min_y |SAy - Sb|_2 \) using deterministic methods.
5. This takes \(\text{poly}(d/\varepsilon) \) time.

However computing \(SA \) itself takes \(O(nd^2) \) time so this is not an improvement unless we find a way to efficiently compute it. To solve this problem, we select a special matrix \(S \) as described in the next section.

2 Subsampled Randomized Hadamard Transform

We define our sketching matrix as \(S = PHD \) where \(P \), \(H \) and \(D \) are matrices that can be efficiently applied to vectors.

2.1 Description of Matrices

1. \(D \) is an \(n \times n \) diagonal matrix with randomly generated entries. Every element on the diagonal has an equal probability of being 1 or \(-1\). This matrix can be applied to a vector in \(O(n) \) time.
2. \(H \) is an \(n \times n \) dense matrix called the Hadamard matrix and the entries are given by
 \[
 H_{i,j} = \frac{(-1)^{<i,j>}}{\sqrt{n}}
 \]
 WLOG \(n = 2^k \) for some \(k \in \mathbb{N} \) (otherwise \(A \) and \(b \) can be extended with 0s to get to the smallest power of 2 bigger than \(n \)). So we can define \(<i,j> = (\sum_{l=0}^{k-1} i_l \cdot j_l) \mod 2 \) where \(i_l \) is the \(l \)-th bit in the \(k \)-bit binary representation of \(i \).
Claim: H is orthogonal.

Proof: We have

- $\forall i \in [n]$ we have

 $$|H_i|^2 = \sum_{l=0}^{n-1} H_{i,l}^2 = \sum_{l=0}^{n-1} \frac{1}{n} = 1$$

- $\forall i, j \in [n]$ such that $i \neq j$ we have

 $$\langle H_i, H_j \rangle = \sum_{l=0}^{n-1} \frac{1}{n} (-1)^{(i,l)} (-1)^{(j,l)} = \sum_{l=0}^{n-1} \frac{1}{n} (-1)^{(i+j,l)}$$

Now if $i \neq j$ then there is at least one index t where these are different. Therefore at t the binary representation of $i + j \mod 2$ is 1. Now we can pair up every number α with the number that only differs at index t, which we can call β. Now we have $(-1)^{(i+j,\alpha)} + (-1)^{(i+j,\beta)} = 1 + (-1) = 0$ since if one is 1 the other one has to be (-1) and vice-versa. This gives us that the total sum above is also 0 as desired.

Even though this is a dense matrix, it can be applied to any vector in $O(n \log n)$ time using an algorithm similar to the Fast Fourier Transform.

3. P is a $s \times n$ matrix which selects a random subset of s rows of its input. This can be applied to a vector in $O(s)$ time. As we will see later, s is about d.

Therefore the limiting step is applying the Hadamard matrix. If the number of columns of A is d, the overall complexity of computing SA comes out to be $O(nd \log n)$, which is better than our earlier complexity of $O(nd^2)$.

2.2 Flattening Lemma

Before we proceed to use the Matrix Chernoff Bound to prove that $S = PHD$ is a valid sketching matrix, we need to prove a lemma: for any fixed vector y:

$$\Pr[|HDy|_\infty \geq C \sqrt{\frac{\log(nd)}{n}}] \leq \frac{\delta}{2d}$$

where $C > 0$ is a constant.

2.2.1 Proof

We shall prove that for any $i \in [n]$:

$$\Pr[|HDy|_i \geq C \sqrt{\frac{\log(nd)}{n}}] \leq \frac{\delta}{2nd}$$

If we show the above then we can union bound over all the values of i and obtain the Flattening Lemma.

We have $|HDy|_i = \sum_j H_{i,j}D_{j,j}y_j$. Let’s define $Z_j = H_{i,j}D_{j,j}y_j$. This gives us 2 facts:
• We know that $D_{i,j}$ are independent random variables with 0 mean. Therefore Z_j are independent with 0 mean as well.

• $|Z_j| \leq |H_{i,j}| \cdot |D_{i,j}| \cdot |y_j| \leq \frac{1}{\sqrt{n}} \cdot 1 \cdot |y_j| = \frac{|y_j|}{\sqrt{n}}.$

Given that Z_j are independent with 0 mean and an upper bound of $\frac{|y_j|}{\sqrt{n}}$, we can use the Azuma-Hoeffding inequality:

$$\Pr[|\sum_j Z_j| > t] \leq 2e^{-\frac{t^2}{2\sum_j |y_j|^2}} = 2e^{-\frac{n t^2}{4}}$$

Putting in $t = C \sqrt{\log(\frac{nd}{\delta})}$, we get

$$\Pr[|\sum_j Z_j| > C \sqrt{\log(\frac{nd}{\delta})}] \leq 2e^{-\frac{C^2 \log(\frac{nd}{\delta})}{2}} = 2\left(\frac{\delta}{nd}\right)\frac{c^2}{2} \leq \frac{\delta}{2nd}$$

as desired.

2.2.2 Consequences

The Flattening Lemma tells us that all entries in HDA are small and close to $\frac{1}{\sqrt{n}}$ in absolute value.

Claim: $|e_j HDA|_2 \leq \sqrt{\frac{d \log(\frac{nd}{\delta})}{n}}$ for all j with probability $1 - \frac{\delta}{2}$.

Proof: Columns of A are orthonormal. Since both H and D are rotation matrices, HD is also a rotation matrix. Therefore the columns of HDA are also orthonormal. The Flattening Lemma implies that

$$|HDAe_i|_\infty \leq \sqrt{\frac{\log(\frac{nd}{\delta})}{n}}$$

with probability at least $1 - \frac{\delta}{2}$ for a fixed $i \in [d]$. Using the union bound, we get that $|e_j HDAe_i| \leq \sqrt{\frac{\log(\frac{nd}{\delta})}{n}}$ with probability at least $1 - \frac{\delta}{2}$. Since $e_j HDAe_i$ is the (i,j)th entry of the matrix HDA, we get that every entry of the matrix HDA is small in absolute value with high probability.

Finally we get that $|e_j HDA|_2 \leq \sqrt{\frac{d \log(\frac{nd}{\delta})}{n}}$ for all j with probability $1 - \frac{\delta}{2}$ by using the definition of the Euclidean norm and this is what we will use in the Matrix Chernoff Bound.

2.3 Matrix Chernoff Bound

In our sketching matrix $S = PHD$, P samples s rows uniformly with replacement. If row i is sampled in sample j we have $P_{j,i} = \sqrt{\frac{n}{s}}$. All other entries of P are zero.
Definition. The **operator norm** of a matrix \(W \) is defined as \(|W|_2 = \sup_{|x|_2 = 1} |Wx|_2 \). The operator norm is also equal to the maximum singular value of \(W \).

Definition. The **eigendecomposition** of a matrix \(W \) is given by \(QAQ^{-1} \) where the \(i \)th column of \(Q \) is given by the \(i \)th eigenvector and \(\Lambda \) is a diagonal matrix where \(\Lambda_{ii} \) is the \(i \)th eigenvalue. If \(W \) is real and symmetric then \(Q \) is orthogonal and therefore the eigendecomposition can be given as \(QAQ^T \).

2.3.1 Setup

Let’s define \(V = HDA \) and let \(Y_i \) be the \(i \)th sampled row of \(V \). Also define \(X_i = I_d - nY_i^TY_i \) which gives us

\[
|X_i|_2 \leq |I|_2 + n \max_j |e_jHDA|^2 \quad \text{[Triangle Inequality for operator norm]}
\]

\[
= 1 + nC^2 \left(\frac{d \log \left(\frac{nd}{\delta} \right)}{n} \right) \quad \text{[Flattening Lemma]}
\]

\[
= 1 + C^2d \log(\frac{nd}{\delta}) \in O(d \log(\frac{nd}{\delta}))
\]

We also have two matrices of interest: \(E[X^TX + I_d] \) and \(Z = n \sum_i v_i^Tv_i \cdot C^2 \frac{n}{d} \log(\frac{nd}{\delta}) \). The first one can be simplified as follows

\[
E[X^TX + I_d] = E[(I_d - nY_i^TY_i)^T(I_d - nY_i^TY_i) + I_d]
\]

\[
= I_d + I_d - 2nE[Y_i^TY_i] + n^2E[Y_i^TY_iY_i^TY_i]
\]

\[
= 2I_d - 2n \left(\frac{1}{n} I_d \right) + n^2E[Y_i^TY_iY_i^TY_i]
\]

\[
= n^2 \sum_i \frac{1}{n} v_i^Tv_i
\]

\[
= n \sum_i v_i^Tv_i \cdot |v_i|^2
\]

Note that \(C^2 \frac{n}{d} \log(\frac{nd}{\delta}) \) is an upper bound for \(|v_i|^2 \).

Claim: All eigenvalues of \(E[X^TX + I_d] \) and \(Z \) are non-negative. Also for all \(x \) we have \(x^TE[X^TX + I_d]x \geq x^TZx \).

Proof: Since both matrices are real and symmetric, their eigendecomposition is given by \(QAQ^T \). Therefore if \(x \) is an eigenvector of \(E[X^TX + I_d] \) then the corresponding eigenvalue \(\lambda \) is

\[
\lambda = x^T(n \sum_i v_i^Tv_i \cdot |v_i|^2) x
\]

\[
= n \sum_i (v_i^T x)^2 \cdot |v_i|^2 \geq 0
\]

Similarly if \(y \) is an eigenvector of \(Z \) then the corresponding eigenvalue \(\lambda \) is

\[
\lambda = y^T(n \sum_i v_i^Tv_i \cdot C^2 \frac{n}{d} \log(\frac{nd}{\delta})) y
\]

\[
= n \sum_i (v_i^T y)^2 \cdot C^2 \frac{n}{d} \log(\frac{nd}{\delta}) \geq 0
\]
Therefore all the eigenvalues of $\mathbb{E}[X^TX + I_d]$ and Z are non-negative. Also since $C^2 n^2 \log(\frac{nd}{\delta})$ is an upper bound for $|v_i|^2$, the second part of our claim is immediate.

Claim: $|\mathbb{E}[X^TX + I_d]|_2 \leq |Z|_2$.

Proof: Let $y^* = \arg\max_y y^T \mathbb{E}[X^TX + I_d]y$. Then $y^* = |\mathbb{E}[X^TX + I_d]|_2$. But using the claim above we know that $(y^*)^T \mathbb{E}[X^TX + I_d]y^* \leq (y^*)^T Z y^*$. And since $(y^*)^T Z y^* \leq \arg\max_y y^T Z y = |Z|_2$ we obtain the above claim.

This finally gives us the final claim in our setup:

Claim: $|\mathbb{E}[X^TX]|_2 \in O(d \log(\frac{nd}{\delta}))$.

Proof:

\[
|\mathbb{E}[X^TX]|_2 \leq |\mathbb{E}[X^TX] + I_d|_2 + |I_d|_2 \quad [\text{Triangle inequality}]
\]
\[
= |\mathbb{E}[X^TX]|_2 + I_d + 1
\]
\[
\leq |Z|_2 + 1
\]
\[
\leq C^2 d \log(\frac{nd}{\delta}) + 1 \in O(d \log(\frac{nd}{\delta}))
\]

2.3.2 Application

Theorem (Matrix Chernoff Bound): Let $X_1, ..., X_s$ be s independent copies of the symmetric random matrix $X \in \mathbb{R}^{d \times d}$ with $\mathbb{E}[X] = 0$, $|X|_2 \leq \gamma$, and $|\mathbb{E}[X^TX]|_2 \leq \sigma^2$. Let $W = \frac{1}{s} \sum_{i=0}^{s-1} X_i$. For any $\varepsilon > 0$ we have

\[
\Pr[|W|_2 > \varepsilon] \leq 2d \cdot e^{-\varepsilon^2/(\sigma^2 + \gamma^2)}
\]

The symmetric matrix X is the same as the one we used in the previous subsection. Also s is equal to the number of rows that the matrix P samples. Therefore we get

\[
W = \frac{1}{s} \sum_{i=0}^{s-1} X_i
\]
\[
= \frac{1}{s} \sum_{i=0}^{s-1} (I_d - nY_i^TY_i)
\]
\[
= I_d - \frac{n}{s} \sum_{i=0}^{s-1} Y_i^TY_i
\]
\[
= I_d - \sum_{i=0}^{s-1} (Y_i^T \sqrt{\frac{n}{s}} \sqrt{\frac{n}{s}} Y_i)
\]
\[
= I_d - (PHDA)^T (PHDA)
\]

Since Y_i is the ith row that we sampled from HDA and then P performs this sampling step and scales by a factor of $\sqrt{\frac{n}{s}}$.
Finally, since $\sigma \in \Theta(d \log(\frac{nd}{\delta}))$ we get that

$$
\Pr[|I_d - (PHDA)^T (PHDA)|_2 > \varepsilon] \leq 2d \cdot e^{-\frac{n\varepsilon^2}{2\Theta(d \log(\frac{nd}{\delta}))}}
$$

Therefore setting $s = \Theta(d \log(\frac{nd}{\delta} \log(d/\delta) \varepsilon^2))$, we get that

$$
\Pr[|I_d - (PHDA)^T (PHDA)|_2 > \varepsilon] \leq \frac{\delta}{2}
$$

which is equivalent to

$$
\Pr[|I_d - (PHDA)^T (PHDA)|_2 \leq \varepsilon] \geq 1 - \frac{\delta}{2}
$$

2.4 Satisfying preconditions for subspace embeddings

Using the definition of the operator norm, for any unit vector x we get

$$
\varepsilon \geq |I_d - (PHDA)^T (PHDA)|_2 \geq |x^T (I_d - (PHDA)^T (PHDA)) x| = |x^T x - (PHDAx)^T (PHDAx)| = |1 - |PHDAx|_2^2|
$$

which gives us that $|PHDAx|_2^2 \in (1 \pm \varepsilon)$ for all unit x with probability at least $1 - \frac{\delta}{2}$. This means that $S = PHD$ is a valid sketching matrix and we can use it for regression. Since computing SA now takes $O(nd \log n)$ time, the entire algorithm takes $O(nd \log n) + poly(\frac{d \log n}{\varepsilon})$ time which is nearly optimal if $n >> d$ and the matrix A is dense.