1 Problem 1

In lecture #3, we saw that any matrix $S \in \mathbb{R}^{r \times n}$ which satisfies the following three properties is good enough for an affine embedding with probability $2/3$.

1. For a fixed matrix B, we have $\|SB\|_F = (1 \pm \epsilon)\|B\|_F$ with probability $99/100$.

2. For matrices C, D, we have approximate matrix product:

$$\Pr[\|CS^TSD - CD\|_F \geq \epsilon\|C\|_F\|D\|_F] > 99/100$$

3. For a fixed matrix $A \in \mathbb{R}^{n \times d}$, S is a ϵ-subspace embedding for A with probability $99/100$: for all $x \in \mathbb{R}^d$:

$$\|SAx\|_2^2 = (1 \pm \epsilon)\|Ax\|_2^2$$

By the problem statement, 1), holds with $\Omega(1/\epsilon^2)$ rows of s. From Lecture 2, properties 2 and therefore 3 hold with $\Omega(d^2/\epsilon^2)$ rows of s. So $s = \Omega(d^2/\epsilon^2)$.

1.1 1.2

First generate a count-sketch $S \in \mathbb{R}^{r \times n}$, where $r = \text{poly}(k/\epsilon)$. Observe that we can compute SA in $\text{nnz}(A)$ time, and now $SA \in \mathbb{R}^{r \times n}$, so we can compute $(SA)B$ in $\text{nnz}(B) \cdot r$ time, and finally we can compute $(SAB)C$ in $\text{nnz}(C) \cdot r$ time. Thus we compute $SABC$ in at most $(\text{nnz}(A) + \text{nnz}(B) + \text{nnz}(C))\text{poly}(k/\epsilon)$ time. As seen in class, we now know that there exists a good (meaning $(1 + \epsilon)$ approx.) rank-k approximation in the row span of $SABC$. The remaining steps are nearly identical to the steps taken in class for LRA. So we now want to approximately project the rows of ABC onto the row span of $SABC$. Note that the optimal projection is given by $XSABC$ where X is the optimizer to $\min_{\text{rank-}k } X \|XSABC - ABC\|_F$, thus our observation can be summarized by:

$$\min_{\text{rank-}k } X \|XSABC - ABC\|_F \leq (1 + \epsilon)\|\text{[ABC]}_k - ABC\|_F$$

This projection is too costly to compute, so instead we generate an affine embedding (say count-sketch) $R \in \mathbb{R}^{d \times r}$ for $(SABC)$. Note that we only need $r = \text{poly}(k/\epsilon)$, because S only has $\text{poly}(k/\epsilon)$ rows. We then compute $(SABC)R$ in $\text{poly}(k/\epsilon)$ time, and also compute and $ABCR$ and $(SABCR)^-$. Note that since R is count-sketch, by the same argument as above, we can compute $ABCR$ in $(\text{nnz}(A) + \text{nnz}(B) + \text{nnz}(C))k$ time. Now we just solve

$$\min_{\text{rank-}k } Y \|ABCR(SABCR)^-SABCR - Y\|_F^2$$

But now $ABCR(SABCR)^-SABCR$ is size $n \times \text{poly}(k/\epsilon)$, so we can solve for the optimizer Y above in $O(n\text{poly}(k/\epsilon))$ time. We can then output $Y(SABCR)^-SABCR$ in factored form.
2 Problem 2

Fix some $\epsilon_0 = \Theta(1)$. Let $S \in \mathbb{R}^{t \times n}$ be a count-sketch with $r = \Theta(d^2/\epsilon_0^2) = \Theta(d^2)$ columns. Then S is a $(1 + \epsilon_0)$ SE for $A \in \mathbb{R}^{n \times d}$ with probability 99/100. Let S_i be the i-th row of S, and let $\Omega_i = \{ j \in [n] \mid S_{i,j} \neq 0 \}$, i.e. Ω_i is the set of non-zero entries in the i-th row of S. Then the i-th row of SA is just $S_iA_{\Omega_i}$, where A_{Ω_i} is the $[\Omega_i] \times d$ submatrix of A with rows in Ω_i. By assumption, we can compute $S_iA_{\Omega_i}$ in time $T\frac{\Omega_i|d}{nd}$, thus we can compute SA in time

$$\sum_{i=1}^{r} T\frac{|\Omega_i|d}{nd} = T$$

which follows because the Ω_i’s partition $[n]$. We then compute the QR decomposition $SA = QR^{-1}$ in time $\text{poly}(d)$, and compute $R \in \mathbb{R}^{d \times d}$ in time $\text{poly}(d)$. As seen in class: $\kappa(AR) \leq (1 + \epsilon_0)/(1 - \epsilon_0)$, since $(1 - \epsilon_0)\|ARx\|_2 \leq \|SARx\|_2 = 1$, and $(1 + \epsilon_0)\|ARx\|_2 \geq \|SARx\|_2 = 1$. So now we know that AR is $O(1)$-well conditioned. Given SA, we can compute SAR and Sb in $n + \text{poly}(d)$ time, and solve

$$x_0 = \arg\min_x \|SARx - Sb\|_2$$

in $\text{poly}(d)$ time. Then we know that x_0 is a $(1 + \epsilon_0)$ optimal solution to $\min_x \|ARx - b\|_2$. We now apply gradient descent, setting $x_i \leftarrow x_{i-1} + R^TA^T(b - ARx_{i-1})$. As argued in lecture 4 (see slides for proof), if $x^* = \arg\min_x \|ARx - b\|_2$, after each step we have $\|AR(x_i - x^*)\|_2 = O(\epsilon_0)\|AR(x_i - x^*)\|_2$. Moreover, $\|ARx_{i-1} - b\|_2^2 = \|AR(x_i - x^*)\|_2^2 + \|ARx^* - b\|_2$. Now note that $\|ARx^* - b\|_2 = \min_x \|Ax - b\|_2$, since AR and A have the same column span. Thus after t steps, if $\epsilon_0 < 1/2$, we have

$$\|ARx_{i-1} - b\|_2^2 \leq 2^{-t}\|AR(x_0 - x^*)\|_2^2 + OPT$$

Now since x_0 was a constant factor solution, we have $\|ARx - b\| \leq O(1) \cdot OPT$, thus setting $t = O(\log(1/\epsilon))$, we have $\|ARx_i - b\|_2^2 \leq \epsilon OPT + OPT$ as desired. For the runtime of this portion, note that compute ARx_{i-1} can be done by first computing Rx_{i-1} in $\text{poly}(d)$. Then ARx_{i-1} and $A^T(b - ARx_{i})$ can be computed in $O(T)$ time as seen above, and the last matrix vector product is $\text{poly}(d)$ time.

3 Problem 3

3.1 3.1

Let $V^T \in \mathbb{R}^{d \times d}$ be a basis for the row span of A with orthonormal rows. Since A is full rank, it follows that V^T is full rank, and thus all the singular values of V^T are 1, so V^T must also have orthonormal columns. Thus $\ell_i(A) = 1$ for $i = 1, 2, \ldots, d$

3.2 3.2

Note that

$$\ell_i(A) = \sup_{Ax \neq 0} \frac{|c_i^T Ax|^2}{\|Ax\|_2^2}$$

Indeed, writing $Ax = Uy$, $\frac{|c_i^T Ax|^2}{\|Ax\|_2^2} = \frac{|c_i^T Uy|^2}{\|Uy\|_2^2} = \frac{|c_i^T Uy|_2^2}{\|Uy\|_2^2} \leq \frac{\|c_i^T U\|_2^2}{\|y\|_2^2} \|y\|_2^2 = \ell_i(A)$
and the supremum is witnessed by the vector $x = A^{-1}e_i$, since
\[\ell_i(A) = \|e_i^TU\|_2^2 = e_i^TU^T e_i = \frac{|e_i^TU^T e_i|^2}{e_i^TU^T e_i} = \frac{|e_i^T A A^{-1} e_i|^2}{\|A A^{-1} e_i\|_2^2} \leq \sup_{Ax \neq 0} \frac{|e_i^T A x|^2}{\|Ax\|_2^2}. \]

Note then that
\[\frac{|e_i^T A x|^2}{\|Ax\|_2^2} = \frac{|e_i^T A' x|^2}{\|A'x\|_2^2} \leq \frac{|e_i^T A' x|^2}{\|A'x\|_2^2} \]
if $Ax \neq 0$, and otherwise if $Ax = 0$ but $A'x \neq 0$,
\[\frac{|e_i^T A' x|^2}{\|A'x\|_2^2} = \frac{|e_i^T A x|^2}{\|A x\|_2^2} = 0. \]

Then taking suprema on both sides yields $\ell_i(A') \leq \ell_i(A)$ as desired.

3.3 3.3

As the problem suggests, we consider $D = [A, \sqrt{\lambda}I_n]$ and sample according to $\bar{\ell}_i(D) = \ell_i(D)$ for $i = 1, 2, \ldots, d$, and $\bar{\ell}_i(D) = 1$ for $i > d$. First note that $\ell_i(D) = \tau_i(A)$ for $i = 1, 2, \ldots, d$. To see this, first note via block-matrix multiplication that $DD^T = [A, \sqrt{\lambda}I][A, \sqrt{\lambda}I]^T = AA^T + \lambda I$. Using the alternative definition of leverage scores, we have $\ell_i(D) = a_i^T(DD^T)^{-1}a_i = a_i^T(AA^T + \lambda I)^{-1}a_i = \tau_i(A)$. Secondly, note that $\ell_i(D) \leq 1$ for all i, since leverage scores are upper bounded by 1, from which it follows that $\bar{\ell}_i \geq \ell_i(D)$ for $i > d$.

In class, we saw that for a $n \times d$ matrix A with $d > n$, if we sample $O(n \log(n)/\epsilon^2)$ columns $C = DS$ of D according to probabilities $\bar{\ell}_i \geq \beta \ell_i(D)$, we will obtain $(1 - \epsilon)CC^T \preceq DD^T \preceq (1 + \epsilon)CC^T$ with probability $9/10$, giving
\[(1 - \epsilon)CC^T \preceq AA^T + \lambda I_n \preceq (1 + \epsilon)CC^T. \]

Observe that our distribution $\bar{\ell}_i$ satisfies this property with $\beta = 1$. So we sample according to $\bar{\ell}_i$, and obtain the above result with probability $9/10$. We can write $C = DS = [AS_1, \sqrt{\lambda}IS_2]$, where S_1, S_2 are column sampling matrices. Now note that the probability that a given sample is from a column in A is at most $\frac{\sum_{i \leq d} \ell_i(D)}{\sum_{i \leq d} \ell_i(D)} = \frac{\sum_{i \leq d} \tau_i(A)}{\sum_{i \leq d} \ell_i(D)} \leq \frac{\sqrt{k}}{n}$ (here we use the fact that sum of all the leverage scores is at most n). Thus, taking $O(n \log(n)/\epsilon^2)$ samples, the expected number of columns of AS_1 is $O(k \log(n)/\epsilon^2)$, and is $O(k \log(n)/\epsilon^2)$ with probability $1 - 1/n$ by a Chernoff bound.

Now note $CC^T = (AS_1)(AS_1)^T + \lambda(I_nS_2)(I_nS_2)^T$, so it will suffice to show that
\[\|(I_nS_2)(I_nS_2)^T - I_n\|_2 \leq \epsilon \tag{1} \]
But note that 1) the leverage scores for I_n are uniform and 2), S_2 is uniformly sampling $O(n \log(n)/\epsilon^2)$ columns. Thus the same matrix Chernoff bound for leverage score sampling applies, and we obtain $\|I_n\|_2$ right away. Given this, we have $\lambda(I_nS_2)(I_nS_2)^T(1 - \epsilon) \leq \lambda I_n \leq \lambda(I_nS_2)(I_nS_2)^T(1 + \epsilon)$, so
\[(1 - \epsilon)(AS_1)(AS_1)^2 - \epsilon \lambda I_n \leq AA^T \preceq (1 + \epsilon)(AS_1)(AS_1)^2 + \epsilon \lambda I_n \]
as needed.