How to choose the right sketching matrix S7? [S]

S is a Subsampled Randomized Hadamard Transform
S =P*HD

D is a diagonal matrix with +1, -1 on diagonals
H is the Hadamard matrix: H;; = (-1)<%> /n*
P just chooses a random (small) subset of rows of H*D

S*A can be computed in O(nd log n) time

Why does it work?



Why does this work?

We can again assume columns of A are orthonormal
It suffices to show |SAx|5 = |[PHDAx|5 = 1 + € for all x

HD is a rotation matrix, so |HDAx|5 = |Ax|5 = 1 for any x
Notation: let y = Ax

Flattening Lemma: For any fixed vy,

Pr [|HDy|, = C



Proving the Flattening Lemma

.5
Flattening Lemma: Pr [|HDy|,, = C log n.rSId/S] < %
Let C > 0 be a constant. We will show for a fixed i in [n],
log=® nd/8 5

PrI(HDy);| >cC 2248 < o

If we show this, we can apply a union bound over all i
|(HDy);| = 2 Hi;D;,;y;

(Azuma-Hoeffding) For independent zero-mean random variables Z;:
t2

_(2 ¥, B?) : -
Pr(| X;Z| > t| <2e *%" ,where |Z;| < B; with probability 1
Z] = Hl,]D],JYJ has 0 mean

1Zj] < 24 = B; with probability 1
1
%R =1
2 nd
Clog's(%d)] C log(T) 5
Pr |ijj|> — < Ze 2 Sm



Consequence of the Flattening Lemma

Recall columns of A are orthonormal

HDA has orthonormal columns

log®> nd/&
0.5

with

Flattening Lemma implies |HDAei|, < C
probability 1 — % for a fixed i € [d]

log® nd/$§
05

With probability 1 — 2, |ejHDAe;| < C

d->log> nd/&
05

for all i,j

Given this, |e;HDA| < C

for all

(Can be optimized further)



Matrix Chernoff Bound

Let X4, ..., X5 be independent copies of a symmetric random matrix X € R4xd
with E[X] = 0, |X|, <, and |E[XTX]| < g% LetW = ZIE[S]X For any € > 0,

Y€
Pr[|W|, > €] < 2d- e~SE /(@47
(here |[W[, = sup |Wx|,/|x];)

Let V = HDA, and recall V has orthonormal columns

Suppose P in the S = PHD definition samples s rows uniformly with

\/_

7 and is 0 otherwise

replacement. If row i is sampled in the j-th sample, P;; =

Let Y; be the i-th sampled row of V = HDA

Let X; = Id—n-Y-TYi
EX]]=Ig—n-, ( )vTv Iy — VTV = gdxd

1Xil, < |I4]l, + n - max |e HDA| =1+n-C%log (nd) %: O(dlog (_))



Matrix Chernoff Bound

Recall: let Y; be the i-th sampled row of V = HDA
LetX; =14 —n- Y'Y
EIXTX + I4] =1 + Iq — 2n E[Y{'Y;] + n2E[Y{'Y;Y{ Y;]

= 2lq — 2l + n?Y; (1) vivivlvi = n Y vilv; - [vi]3

Define Z=n ¥, v!v; C?log (nd) == Czdlog( ) I

Note that E[XTX + I4] and Z are real symmetric, with non-negative
eigenvalues

Claim: for all vectors y, we have: yTE[XTX + I4]y < y'Zy
Proof: yTE[X™X + I4]y = n X,y Tviviy |V1|2 =n Y, <v;,y >2 |vi|5 and

nd nd
y1Zy = nZyTV V1YC2108<8> —=d z < v,y >2 C210g<8>
i

Hence, |E[X"X]|, < [E[X"X] +1q|, + |14l = |E[X X+14]], +1

nd
<|Z|, + 1 < C?dlog (F) +1

Hence, |[E[X"X]|, =0 (d log (nd))



Matrix Chernoff Bound

Hence, |E[X"X]|, = 0 (d log (%d))

Recall: (Matrix Chernoff) Let X4, ..., X be independent copies of a

symmetric random matrix X € R¥4 with E[X] = 0, |X|, <y, and |E[XTX]|2 <

ve
o’ LetW = %Zie[s] X;. Forany e > 0, Pr[[W|, > €] < 2d - e €/ *3)

o2 nd
Pr[|ld — (PHDA)T(PHDA) | > e] <2d-e ¢ /@@ log(5)
2

d
1 —
Sets = dlog (“?d)%gs), to make this probability less than g



SRHT Wrapup

Have shown |I; — (PHDA)'(PHDA) |, < e using Matrix

d
log(—=
Chernoff Bound and with s = d log (nsd) OiES) samples
Implies for every unit vector X,
|1—|PHDAx|3| = [xTx —xT(PHDA)T(PHDA)x| < €,
so |PHDAx|4 € 1 + € for all unit vectors x

Considering the column span of A adjoined with b, we can
again solve the regression problem

The time for regression is now only O(nd log n) +

poly (& 1°€g(n)). Nearly optimal in matrix dimensions (n >> d)




Faster Subspace Embeddings S [CW,MM,NN]

CountSketch matrix
Define k x n matrix S, for k = O(d?/2)

S is really sparse: single randomly chosen non-zero
entry per column

001001 00 Can compute
10000000 S-Ain nnz(A)
000-110-10 time!
0-100 00 01

nnz(A) is number of non-zero entries of A



Simple Proof [Nguyen]

Can assume columns of A are orthonormal

Suffices to show |SAXx|, = 1 % € for all unit x
For regression, apply S to [A, b]

SAis a 6d?%/(5€?) x d matrix

Suffices to show | ATST SA— 1|, < |ATSTSA- |- % ¢

Matrix product result shown below:
Pr[|CSTSD — CD|:? < [6/(5(# rows of S))] * |C|? ID|g?] =1 -6

Set C=ATand D =A.
Then |A|]?- = d and (# rows of S) = 6 d?/(d¢€?)



Matrix Product Result [Kane, Nelson]

Show: Pr{|CSTSD — CD|:2 % [6/(5(# rows of S))] * |C|-2 |D|2] = 1 — &

(JL Property) A distribution on matrices S € RX*™ has the (¢, §, ¢)-JL
moment property if for all x € R™ with [x|, = 1,

Es|Isx12 — 1| <€t -5

(From vectors to matrices) For e, 6 € (O, %) let D be a distribution on

matrices S with k rows and n columns that satisfies the (g, §, £)-JL
moment property for some ¢ > 2. Then for A, B matrices with n rows,

Pr “ATSTSB ~A"B| >3 e|A|F|B|F] <8



From Vectors to Matrices

(From vectors to matrices) For g, § € (0, %) let D be a distribution on matrices

S with k rows and n columns that satisfies the (g, 6, #)-JL moment property
for some ¢ > 2. Then for A, B matrices with n rows,

Pr||ATSTSB — ATB|, > 3 elAlsIBls| < 5

Proof: For a random scalar X, let |X|, = (E|X|P)*/P

Sometimes consider X = |T|g for a random matrix T

1Tl 1, = (E[ITIE])""

Can show |.|,isanormifp > 1
Minkowski’'s Inequality: [X + Y|, < [X|, + |Y],

For unit vectors x, y, we will bound [(Sx, Sy) - (x, V)|,



Minkowski’'s Inequality

Minkowski’s Inequality: [X + Y[, < [X], + [Yl,

Proof:
If [X|p, [Y], are finite, then so is [X + Y|,. Why?
f(x) = xP is convex for p = 1, so for any fixed x, y:

|.5x + .5y|P < |.5|x| + .5|y||P <.5|x|P + .5]y|P, so
x +y[P < 2P71([x[P+]y|P)

So, E[IX + YI2] < E[2P1(IX[5 + [Y[2)]

X+ Y5 =[x +yl” du
= [Ix+7y|-|x+y[Pldu

< [ (xl+ lyDIx + y[P~1dp
= [Ixllx+ylP"tdu+ [ Iyllx + y[P~1du

< (7 pawp + (f tyra)?) (f 1x+ y1® 6 Day) ©
= (IXl, + [YI,) X+ Y5~



From Vectors to Matrices

For unit vectors X, y, [(Sx, Sy) - (x, V)|,
= ~|(sxI3-1) + (Isyl3 — 1) — (IS = I3 — Ix — y1DIe

1
=3 (|IsxI% — 1|{,+ ISy 3 — 1|{,+ lISx—y)I3 — |X—Y|%|1,;)
1 1 1 1
<~ (e- 867 +e- 87 + |x —y|5 € 87)
1
< 3e€e-0¢

(SXSY)=xy)le _ o . &
1x]21yl2 —

By linearity, for arbitrary x, v,

Suppose A has d columns and B has e columns. Let the columns of A be
A4, ..., A4 and the columns of B be By, ..., B,

1
|Ail2|Bj]

Define X;; = - ({SA;, SBy) — (A, By)

|ATSTSB — ATB|12: = i XilAil5 - |Bj|§Xi2,j



From Vectors to Matrices

[{(Sx,Sy Y»—(x,y)|»
x|yl

1
Have shown: for arbitrary x, v, <3e-&¢

For Xi,j

A |2| -~ ((SA;, SB;) — (A;, By)): |A"S"SB — ATB|” = 3, %143 - [Bj| X2,

||ATSTSB —ATB| le2 = | 1A 12 - B X11|{,/2
< S TIA LR - B2 Loy
= 5 S IA3 - B[22

< (365%)2 ZiZlei|%|B1|2

2
— (3¢87) |A2[BI2

- TQT TRl TQT 2| ¥/ o i -
Since E“A STSB — A B|F] = ||A STSB — A B|F|{, , by Markov’s inequality,
2

4
1 ¢
Pr “ATSTSB — ATB| > 3e|A|F|B|F] < <3e|A|F|B|F) E[|ATSTSB — ATB|E| < &



Result for Vectors

Show: Pr{|CSTSD — CD|:2 % [6/(5(# rows of S))] * [C|2 D[] = 1 — &

(JL Property) A distribution on matrices S € RK*™ has the (g, §, £)-JL moment
property if for all x € R™ with |x]|, =1,

Es|Isxlz — 1| < ¢f-5

(From vectors to matrices) For e, 6 € (0, %) let D be a distribution on matrices

S with k rows and n columns that satisfies the (g, 9, #)-JL moment property
for some ¢ > 2. Then for A, B matrices with n rows,

Pr[|ATSTSB — ATB|,, > 3 clAlp|Blg| < &

Just need to show that the CountSketch matrix S satisfies JL property and
bound the number k of rows



CountSketch Satisfies the JL Property

(JL Property) A distribution on matrices S € R ™ has the (g, §, £)-JL moment
property if for all x € R™ with |x|, =1,

¢
Es|ISxI3 — 1| <€’-6
We show this property holds with £ = 2. First, let us consider £ = 1

For CountSketch matrix S, let
h:[n] -> [k] be a 2-wise independent hash function
o:[n] = {—1,1} be a 4-wise independent hash function

Let 8(E) = 1 if event E holds, and 6(E) = 0 otherwise

E[Sx13] = e qiq El(Sien b = Doix;)” ]
= Djefk] Zivizern] E[8(h(i1) = j)6(h(i2) = j)0j1 052 ]Xi1Xi2
= Xje[k] Ziern] E[6(h(D) = D?1x

1
- (K) z:J'E[k] ZiE[n] Xiz = |X|§



CountSketch Satisfies the JL Property

E[ISxI3] = E[Sjepqg Zirepg (Ziern S(h(@) = j)GiXi)z (Ziremm 8@ = ]")Gi/Xi,)z] =
) E[0i10i20i30148(h(i;) = j;)8(h(iz) = j;)6(h(iz) = jZ)S(h(iél = jz))]Xil Xj2Xi3Xi4

]1']2 11.12,13,14

We must be able to partition {i;, i,, i3,i4} into equal pairs
Suppose i; =i, = i3 = i,. Then necessarily j; = j,. Obtain Zj%Zixi“ = |x|3

. . . . . 1 2 92 _ 4 4
SUppOSG 11 —_ 12 and 13 —_ 14 but 11 :;t 13. Then get Zjl’jz,il,hﬁxilxig —_ |X|2 - |X|4

Suppose i; =iz and i, =i, buti; # i,. Then necessarily j; = j,. Obtain

1 1 . e . R .
%3 Dy, X1, X, < = |X]3. Obtain same bound if i; = i, and i, = is.

Hence, E[[Sx|4] € [Ix3, [x|3(1 + 9] = [1,1+1]

So, Eg||Sx|3 — 1] ‘< (1 + E) —2+1= E Setting k = %finishes the proof



Where are we?

(JL Property) A distribution on matrices S € RX*™ has the (g, §, £)-JL
moment property if for all x € R™ with |x|, =1,

Es|Isxlz2 —1|" < -5

(From vectors to matrices) For e, 6 € (O, %) let D be a distribution on

matrices S with k rows and n columns that satisfies the (¢, §, #)-JL moment
property for some ¢ > 2. Then for A, B matrices with n rows,

Pr[|ATSTSB — ATB|", = 3 ¢? |AI2|BI] < &

We showed CountSketch has the JL property with £ = 2, and k = =

€28

Matrix product result we wanted was:
Pr[|CSTSD — CD|? % (6/(6k)) * |C|e? ID|2] =1 -6
We are now done with the proof CountSketch is a subspace embedding



Course Outline

Subspace embeddings and least squares regression
Gaussian matrices

Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings

Application to low rank approximation
High precision regression
Leverage score sampling
Distributed low rank approximation
L1 Regression
M-Estimator regression



