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How to choose the right sketching matrix S? [S] 

 S is a Subsampled Randomized Hadamard Transform
 S = P*H*D

 D is a diagonal matrix with +1, -1 on diagonals

 H is the Hadamard matrix: H , 1 , /	n.

 P just chooses a random (small) subset of rows of H*D

 S*A can be computed in O(nd log n) time

Why does it work?
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Why does this work?

 We can again assume columns of A are orthonormal

 It suffices to show SAx PHDAx 1 ϵ for all x

 HD is a rotation matrix, so HDAx Ax 1 for any x
 Notation: let y = Ax

 Flattening Lemma: For any fixed y, 

Pr [ HDy C
.

.
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 Flattening Lemma: Pr [ HDy C
. /
.

 Let C > 0 be a constant. We will show for a fixed i in [n], 

Pr [ HDy C
. /
.

 If we show this, we can apply a union bound over all i
 HDy ∑ H , D , y
 (Azuma-Hoeffding) For independent zero-mean random variables Z : 

	Pr | ∑ Z | t 2e ∑ ,	where |Z | β with probability 1
 Z H , D , y has 0 mean

 |Z | | |
. β with probability 1

 ∑ β

 Pr | ∑ Z |
	 .

. 2e 	

Proving the Flattening Lemma
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Consequence of the Flattening Lemma

 Recall columns of A are orthonormal
 HDA has orthonormal columns 

 Flattening Lemma implies HDAe C
. /
. with 

probability 1 for a fixed i ∈ d

 With probability 1 , e HDAe C
. /
. for all i,j

 Given this, e HDA C
. . /

. for all j

(Can be optimized further)
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Matrix Chernoff Bound

 Let X ,… , X be independent copies of a symmetric random matrix X ∈ R
with E X 0, X γ, and E X X . Let W ∑ X∈ .	 For any ϵ 0,

Pr W ϵ 2d ⋅ e /

(here W sup	 Wx / x

 Let V = HDA, and recall V has orthonormal columns

 Suppose P in the S = PHD definition samples s rows uniformly with 
replacement. If row i is sampled in the j-th sample, P, √

, and is 0 otherwise

 Let Y be the i-th sampled row of V = HDA

 Let X I n ⋅ Y Y

 E X I n ⋅ ∑ V V I V V 0 	 	

 X I n ⋅ max	 e HDA 1 n ⋅ C 	log ⋅ Θ d log
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Matrix Chernoff Bound
 Recall: let Y be the i-th sampled row of V = HDA
 Let X I n ⋅ Y Y
 E X X I I 	 I 2n	E Y Y n E Y Y Y Y

2I 2I n ∑ ⋅ v v v v n∑ v v ⋅ v

 Define Z n	 ∑ v v C 	log ⋅ C dlog 	I

 Note that E[X X I ] and Z are real symmetric, with non-negative 
eigenvalues

 Claim: for all vectors y, we have: y E X X I y	 y Zy	
 Proof: y E X X I 	y n	 ∑ y v v y	 v n	 ∑ v , y v and  

y Zy n y v v y	C log
nd
δ ⋅

d
n d	 v , y C log

nd
δ

 Hence, E X X E X X I I |E X X I | 1

Z 1 C d log
nd
δ 1

 Hence, E X X O d	log
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Matrix Chernoff Bound

 Hence, E X X O d	log

 Recall: (Matrix Chernoff) Let X ,… , X be independent copies of a 
symmetric random matrix X ∈ R with E X 0, X γ, and E X X

. Let W ∑ X∈ .	 For any ϵ 0, Pr W ϵ 2d ⋅ e /

Pr |I PHDA PHDA ϵ 2d ⋅ e 	 / 	

 Set s d	log ,	to make this probability less than 
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SRHT Wrapup

 Have shown  |I PHDA PHDA | ϵ using Matrix 

Chernoff Bound and with s d	log samples

 Implies for every unit vector x, 
|1 PHDAx | x x	 x PHDA PHDA x ϵ	,

so PHDAx ∈ 1 ϵ for all unit vectors x

 Considering the column span of A adjoined with b, we can 
again solve the regression problem

 The time for regression is now only O(nd log n) + 
poly . Nearly optimal in matrix dimensions (n >> d)
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Faster Subspace Embeddings S [CW,MM,NN] 

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

 CountSketch matrix

 Define k x n matrix S, for k = O(d2/ε2)

 S is really sparse: single randomly chosen non-zero 
entry per column

Can compute
S ⋅ A in nnz(A) 

time!

 nnz(A) is number of non-zero entries of A
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Simple Proof [Nguyen]

 Can assume columns of A are orthonormal

 Suffices to show |SAx|2 = 1 ± ε for all unit x
 For regression, apply S to [A, b]

 SA is a 6d2/(δε2) x d matrix

 Suffices to show | ATST SA – I|2 ≤ |ATST SA – I|F � ε

 Matrix product result shown below:
Pr[|CSTSD – CD|F2 ≤ [6/( (# rows of S))] * |C|F2 |D|F2 1 δ

 Set C = AT and D = A. 
 Then |A|2F = d and (# rows of S) = 6 d2/(δε2)
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Matrix Product Result [Kane, Nelson]

 Show: Pr[|CSTSD – CD|F2 � [6/(δ(# rows of S))] * |C|F2 |D|F2 1 δ

 (JL Property) A distribution on matrices S ∈ R 	 has the ϵ, δ, ℓ -JL 
moment property if for all x ∈ R with x 1,

E Sx 1 	ℓ ϵℓ ⋅ δ

 (From vectors to matrices) For ϵ, δ ∈ 0, ,	let D be a distribution on 
matrices S with k rows and n columns that satisfies the ϵ, δ, ℓ -JL 
moment property for some ℓ 2. Then for A, B matrices with n rows, 

Pr A S SB	 A B 3	ϵ A B δ
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From Vectors to Matrices

 (From vectors to matrices) For ϵ, δ ∈ 0, ,	let D be a distribution on matrices 
S with k rows and n columns that satisfies the ϵ, δ, ℓ -JL moment property 
for some ℓ 2. Then for A, B matrices with n rows, 

Pr A S SB	 A B 3	ϵ A B δ

 Proof: For a random scalar X, let X E X / 	
 Sometimes consider X T for a random matrix T

 |	 T 	| E T /

 Can show |. | is a norm if p 1	
 Minkowski’s Inequality: X Y X Y

 For unit vectors x, y, we will bound |〈Sx, Sy〉 - 〈x, y〉|ℓ
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Minkowski’s Inequality

 Minkowski’s Inequality: X Y X Y
 Proof: 

 If X , Y are finite, then so is X Y .	Why?
 f x x is convex for p 1,	so for any fixed x, y:

.5x .5y .5 x| 	 .5 y | .5|x| .5 y , so 
x y 2 x y

 So, E X Y E 2 X Y 	

 X Y x y dμ
x y ⋅ x y dμ
x y x y 	dμ
x x y 	dμ y x y dμ

x dμ y dμ x y dμ

X Y X Y
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From Vectors to Matrices
 For unit vectors x, y, |〈Sx, Sy〉 - 〈x, y〉|ℓ

	 Sx 1 Sy 1 S x y x y |ℓ	

	 Sx 1 ℓ Sy 1 ℓ S x y x y ℓ 	

	 ϵ ⋅ δℓ ϵ ⋅ δℓ x y 	ϵ ⋅ δℓ 	

3	ϵ ⋅ δℓ	

 By linearity, for arbitrary x, y, , 	 , ℓ 3	ϵ ⋅ δℓ

 Suppose A has d columns and B has e columns. Let the columns of A be 
A ,… , A and the columns of B be B ,… , B

 Define X , ⋅ SA , SB A , B

 A S SB	 A B ∑ ∑ A ⋅ B X , 	
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 Have shown: for arbitrary x, y, , 	 , ℓ 3	ϵ ⋅ δℓ

 For X , ⋅ SA , SB A , B : A S SB	 A B ∑ ∑ A ⋅ B X , 	

 | A S SB	 A B |ℓ/ ∑ ∑ A ⋅ B X , 	 ℓ/

∑ ∑ A ⋅ B |X , 	|ℓ/

∑ ∑ A ⋅ B X , ℓ

3ϵδℓ 	∑ ∑ A B

3	ϵδℓ A B

 Since E A S SB	 A B ℓ A S SB A B ℓ

ℓ/
		, by Markov’s inequality,

 Pr A S SB A B 3ϵ A B
ℓ
E |A S SB A B|ℓ δ

From Vectors to Matrices



48

Result for Vectors
 Show: Pr[|CSTSD – CD|F2 � [6/( (# rows of S))] * |C|F2 |D|F2 1

 (JL Property) A distribution on matrices S ∈ R 	 has the ϵ, δ, ℓ -JL moment 
property if for all x ∈ R with x 1,

E Sx 1 	ℓ ϵℓ ⋅ δ

 (From vectors to matrices) For ϵ, δ ∈ 0, ,	let D be a distribution on matrices 
S with k rows and n columns that satisfies the ϵ, δ, ℓ -JL moment property 
for some ℓ 2. Then for A, B matrices with n rows, 

Pr A S SB	 A B 3	ϵ A B δ

 Just need to show that the CountSketch matrix S satisfies JL property and 
bound the number k of rows
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CountSketch Satisfies the JL Property

 (JL Property) A distribution on matrices S ∈ R 	 has the ϵ, δ, ℓ -JL moment 
property if for all x ∈ R with x 1,

E Sx 1 	ℓ ϵℓ ⋅ δ

 We	show	this	property	holds	with	ℓ 2.	First,	let	us	consider	ℓ 1

 For	CountSketch matrix	S,	let	
 h: n 	‐ 	 k 	be	a	2‐wise	independent	hash	function
 σ: n → 1,1 be	a	4‐wise	independent	hash	function

 Let	δ E 1 if	event	E	holds,	and	δ E 0 otherwise

 E Sx ∑ E ∑ δ h i j σ x∈∈

	∑ ∑ E δ h i1 j δ h i2 j σ σ x x, ∈∈

	∑ ∑ E δ h i j x∈∈

	 ∑ ∑ x∈∈ 	 x
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 E Sx E ∑ ∑ ∈ ∑ δ h i j σ x∈∈ ∑ δ h i′ j′ σ x∈ 	

∑ E σ σ σ σ δ h i j δ h i j δ h i j δ h i j x 	x x x, , . , ,

 We must be able to partition i , i , i , i into equal pairs

 Suppose i i i i . Then necessarily j j . Obtain ∑ ∑ x x

 Suppose i i and i i but i i . Then get ∑ , , , x x x x

 Suppose i i and i i but i i . Then necessarily j j . Obtain 
∑ ∑ x x x, . Obtain same bound if i i and i i .

 Hence, E Sx ∈ x , x 1 1, 1 	

 So, E Sx 1 	 1 2 1 .	Setting k 	finishes the proof 

CountSketch Satisfies the JL Property
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Where are we?

 (JL Property) A distribution on matrices S ∈ R 	 has the ϵ, δ, ℓ -JL 
moment property if for all x ∈ R with x 1,

E Sx 1 	ℓ ϵℓ ⋅ δ

 (From vectors to matrices) For ϵ, δ ∈ 0, ,	let D be a distribution on 
matrices S with k rows and n columns that satisfies the ϵ, δ, ℓ -JL moment 
property for some ℓ 2. Then for A, B matrices with n rows, 

Pr A S SB	 A B 3	ϵ 	 A B δ

 We showed CountSketch has the JL property with ℓ 2, and	k

 Matrix product result we wanted was:
Pr[|CSTSD – CD|F2 � (6/( k)) * |C|F2 |D|F2 1

 We are now done with the proof CountSketch is a subspace embedding
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Course Outline
 Subspace embeddings and least squares regression
 Gaussian matrices
 Subsampled Randomized Hadamard Transform
 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression
 Leverage score sampling
 Distributed low rank approximation
 L1 Regression
 M-Estimator regression


