CountSketch Satisfies the JL Property

(JL Property) A distribution on matrices S € R ™ has the (g, §, £)-JL moment
property if for all x € R™ with |x|, =1,

2
Es|ISxI3 — 1| <€’-6
We show this property holds with £ = 2. First, let us consider Eg[|Sx|3]

For CountSketch matrix S, let
h:[n] -> [k] be a 2-wise independent hash function
o:[n] — {—1,1} be a 4-wise independent hash function

Let 8(E) = 1 if event E holds, and 6(E) = 0 otherwise
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CountSketch Satisfies the JL Property

E[ISxI3] = E[Sjepqg Zirepg (Ziern S(h(@) = j)GiXi)z (Ziremm 8@ = ]")Gi/Xi,)z] =
) E[0i10i20i30148(h(i;) = j;)8(h(iz) = j;)6(h(iz) = jZ)S(h(iél = jz))]Xil Xj2Xi3Xi4

]1']2 11.12,13,14

We must be able to partition {i;, i,, i3,i4} into equal pairs
Suppose i; =i, = i3 = i,. Then necessarily j; = j,. Obtain Zj%Zixi“ = |x|3

. . . . . 1 2 92 _ 4 4
SUppOSG 11 —_ 12 and 13 —_ 14 but 11 :;t 13. Then get Zjl’jz,il,hﬁxilxig —_ |X|2 - |X|4

Suppose i; =iz and i, =i, buti; # i,. Then necessarily j; = j,. Obtain

1 1 . e . R .
%3 Dy, X1, X, < = |X]3. Obtain same bound if i; = i, and i, = is.

Hence, E[[Sx|4] € [Ix3, [x|3(1 + 9] = [1,1+1]

So, Eg||Sx|3 — 1] ‘< (1 + E) —2+1= E Setting k = %finishes the proof



Where are we?

(JL Property) A distribution on matrices S € RX*™ has the (g, §, £)-JL
moment property if for all x € R™ with |x|, =1,

Es|Isxlz2 —1|" < -5

(From vectors to matrices) For e, 6 € (O, %) let D be a distribution on

matrices S with k rows and n columns that satisfies the (¢, §, #)-JL moment
property for some ¢ > 2. Then for A, B matrices with n rows,

Pr[|ATSTSB — ATB|", = 3 ¢? |AI2|BI] < &

We showed CountSketch has the JL property with £ = 2, and k = =

€28

Matrix product result we wanted was:
Pr[|CSTSD — CD|? % (6/(6k)) * |C|e? ID|2] =1 -6
We are now done with the proof CountSketch is a subspace embedding



Course Outline

Subspace embeddings and least squares regression
Gaussian matrices

Subsampled Randomized Hadamard Transform
CountSketch

Affine embeddings

Application to low rank approximation
High precision regression
Leverage score sampling
Distributed low rank approximation
L1 Regression
M-Estimator regression



Affine Embeddings

Want to solve m)gnIAX — B|3, Alis tall and thin with d columns, but B has a large
number of columns

Can’t directly apply subspace embeddings

Let’s try to show |SAX — SB|g = (1 + €)|AX — B|p for all X and see what properties
we need of S

Can assume A has orthonormal columns
Let B* = AX* — B, where X" is the optimum

IS(AX — B)[§ — ISB*|§ = |SA(X — X*) + S(AX* — B)|§ — |SB*|}
= |SA(X — X*)|# + 2tr[(X — X*)TATSTSB*] (use |C + D|& = |C|% + |D|& + 2Tr(CTD))
€ [SA(X — X")|% £ 2|X — X*|¢|ATSTSB* . (use tr(CD) < |C|¢|Dlg)
€ |[SA(X — X*)|& +2€|X — X*|gIB*|z  (if we have approx. matrix product)
€ [AX = X9)|% + e(JAX = X*)|% + 2|X — X*|¢|B*|) (subspace embedding for A)




Affine Embeddings

We have
ISCAX — B)|§ — ISB*|§ € [AX — X")|§ £ e(JAX — X9 + 2|X — X*|g|B*])

Normal equations imply that
|AX — BI§ = [AX = X")|§ + B[}

IS(AX — B)|2 — |SB*|% — (|AX — B|2 — [B*|2)
€ e(JAX = XM)|E + 2|X — X*|g|B*|p)

e +e(JAK = X)p + [B*]p)°

e +2e(IAX-X)Is* +[B*2 )

= +2¢|AX — B|A

ISB*|2 = (1 + €)|B*|%2 (this holds with constant probability)



Affine Embeddings

Know: |S(AX — B)|% — [SB*|z — (|JAX — B|& — |B*|§) €
+2¢|AX — B
Know: [SB*|2 = (1 + €)|B*|%

IS(AX — B)|% = (1 + 2€)|AX — B2 + €|B*|2
= (1 £ 3¢)|AX — Bl§

Completes proof of affine embedding!



Affine Embeddings: Missing Proofs

Claim: |A + B|2 = |A]: + |B|& + 2Tr(ATB)

Proof: |A + Bl = Yi|A; + B;l3

= Z|Ai|% + Z|Bi|% + 2(Aj, Bj)
' i

1

= |A|% + |B|% + 2Tr(ATB)



Affine Embeddings: Missing Proofs

Claim: Tr(AB) < |A|g|B|g
Proof: Tr(AB) = Y.:(Al, B;) for rows A! and columns B;
< Zi|Ai|2|Bi|2 by Cauchy-Schwarz for each |

1

_ = 1
< (21|A‘|z )2 (X.:|B;|3 )z another Cauchy-Schwarz

= |Alr|Blg



Affine Embeddings: Homework Proof

Claim: |[SB*|4 = (1 + €)|B*| with constant probability if
CountSketch matrix S has k = O(Eiz) rows

Proof is Homework Problem
ISB*|E = X.iISB; |5

By our analysis for CountSketch and linearity of expectation,
E[ISB*|§] = Z;E[ISB{13] = IB*|§



Low rank approximation

Als an n x d matrix
Think of n points in Rd

E.g., Ais a customer-product matrix
A;; = how many times customer i purchased item |

A is typically well-approximated by low rank matrix
E.g., high rank because of noise

Goal: find a low rank matrix approximating A
Easy to store, data more interpretable



What is a good low rank approximation?

Singular Value Decomposition (SVD)
Any matrix A=U 2 fV
» U has orthonormal columns
= 2 Is diagonal with non-increasing positive
entries down the diagonal
* \/ has orthonormal rows

= Rank-k approximation: A, = U, 72, fV,
= rows of V, are the top k principal components

(N [ ) T

A = U, ():;.;)( Vi )-I— E




What is a good low rank approximation?

A-BI-

Ak = argmmrank k matrices B

(ICle = (& Ci,j2)1/2)

Computing A, exactly is expensive




Low rank approximation

Goal: output a rank k matrix A’, so that
ARl % (1+€) [A-A]

Can do this in nnz(A) + (n+d)*poly(k/¢) time [S,CW]
nnz(A) is number of non-zero entries of A



Solution to low-rank approximation [S]

Given n x d input matrix A

Compute S*A using a random matrix S with k/e << n
rows. S*A takes random linear combinations of rows of A

Project rows of A onto SA, then find best rank-k
approximation to points inside of SA.



What is the matrix S?

= S can be a k/s x n matrix of i.i.d. normal random variables

[S] S can be a O(k/e) x n Fast Johnson Lindenstrauss
Matrix

[CW] S can be a poly(k/e) x n CountSketch matrix

00100100 S fA can be
1000 00 00 computed in
000-110-10 nnz(A) time

0-100 00 O 1



Why do these Matrices Work™?

Consider the regression problem mXinIAkX — Alg

Let S be an affine embedding

Then [SA X — SA|gp = (1 + €)|AxX — Alg for all X

By normal equations, arg)r(ninISAkX — SA|p = (SAL)"SA
So, |[AR(SAK)"SA—Alr < (1 +€)|Ax — Al

But Ay (SAL)~SA is a rank-k matrix in the row span of SA!

Let’s formalize why the algorithm works now...



Why do these Matrices Work™?

min _|XSA — AlZ < |Ag(SA)"SA— Al < (14 €)|A — Ayl?

rank—k X

By the normal equations,
|XSA — A|z2 = |[XSA — A(SA)"SA|% + |A(SA)"SA — Al

Hence,
min |XSA A|F—|A(SA) SA — A|F+ rr11<1n |XSA — A(SA)~ SA|F

rank—k

Can write SA = UXVT in its SVD

Then, rr11<1n |XSA — A(SA)"SA| = r111(1n |XUZ — A(SA)~UZ|4
rank-— ra
= min |Y A(SA)"UZ|3

rank—k

Hence, we can just compute the SVD of A(SA)~UZX

But how do we compute A(SA)~UZ quickly?



Caveat: projecting the points onto SA is slow

Current algorithm:
Compute S*A
Project each of the rows onto S*A

Find best rank-k approximation of projected points
inside of rowspace of S*A

minrank-k X |X(SA)R'AR|F2
Bottleneck is step 2
Can solve with affine embeddings

[CW] Approximate the projection
Fast algorithm for approximate regression /
minrank-kX |X(SA)'A|F2

Want nnz(A) + (n+d)*poly(k/€) time



Using Affine Embeddings

We know we can just output arg nil<1n |XSA — A3
rank—

Choose an affine embedding R:
|XSAR — AR|% = (1 + €)|XSA — A% for all X

Note: we can compute AR and SAR in nnz(A) time

Canjust solve min |XSAR — AR|%

rank—k X

min |XSAR — AR|Z = |AR(SAR)™(SAR) — AR|2 + min |XSAR — AR(SAR)™(SAR)|%
rank—k X rank—k X

Compute min |Y AR(SAR)™(SAR)|% using SVD which is (n + d)poly( ) time

rank—-k

Necessarily, Y = XSAR for some X. Output Y(SAR)™SA in factored form. We’re done!



Low Rank Approximation Summary

Compute SA

Compute SAR and AR

Compute min |Y — AR(SAR)™(SAR)|% using SVD
rank—kY

Output Y(SAR)~SA in factored form

Overall time: nnz(A) + (n+d)poly(k/e)



