CountSketch Satisfies the JL Property

- (JL Property) A distribution on matrices $S \in \mathrm{R}^{\mathrm{kxn}}$ has the (ϵ, δ, ℓ)-JL moment property if for all $x \in R^{n}$ with $|x|_{2}=1$,

$$
\left.\mathrm{E}_{S}| | \mathrm{Sx}\right|_{2} ^{2}-\left.1\right|^{\ell} \leq \epsilon^{\ell} \cdot \delta
$$

- We show this property holds with $\ell=2$. First, let us consider $\mathrm{E}_{S}\left[|\mathrm{Sx}|_{2}^{2}\right]$
- For CountSketch matrix S, let
- $\mathrm{h}:[\mathrm{n}]->[\mathrm{k}]$ be a 2 -wise independent hash function
- $\sigma:[n] \rightarrow\{-1,1\}$ be a 4 -wise independent hash function
- Let $\delta(\mathrm{E})=1$ if event E holds, and $\delta(\mathrm{E})=0$ otherwise
- $E\left[|S x|_{2}^{2}\right]=\sum_{j \in[k]} E\left[\left(\sum_{i \in[n]} \delta(h(i)=j) \sigma_{i} x_{i}\right)^{2}\right]$

$$
\begin{aligned}
& =\sum_{j \in[k]} \sum_{i 1, i 2 \in[n]} E\left[\delta(h(i 1)=j) \delta(h(i 2)=j) \sigma_{i 1} \sigma_{i 2}\right] x_{i 1} x_{i 2} \\
& =\sum_{j \in[k]} \sum_{i \in[n]} E\left[\delta(h(i)=j)^{2}\right] x_{i}^{2} \\
& =\left(\frac{1}{k}\right) \sum_{j \in[k]} \sum_{i \in[n]} x_{i}^{2}=|x|_{2}^{2}
\end{aligned}
$$

CountSketch Satisfies the JL Property

- $E\left[|S x|_{2}^{4}\right]=E\left[\sum_{j \in[k]} \sum_{\mathrm{j}^{\prime} \in[\mathrm{k}]} \quad\left(\sum_{\mathrm{i} \in[\mathrm{n}]} \delta(\mathrm{h}(\mathrm{i})=\mathrm{j}) \sigma_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right)^{2}\left(\sum_{\mathrm{i} \in \in[\mathrm{n}]} \delta\left(\mathrm{h}\left(\mathrm{i}^{\prime}\right)=\mathrm{j}^{\prime}\right) \sigma_{\mathrm{i}^{\prime}, \mathrm{X}_{\mathrm{i}}}\right)^{2}\right]=$ $\sum_{\mathrm{j}_{1} \mathrm{j}_{2}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{i}_{4}} \mathrm{E}\left[\sigma_{\mathrm{i} 1} \sigma_{\mathrm{i} 2} \sigma_{\mathrm{i} 3} \sigma_{\mathrm{i} 4} \delta\left(\mathrm{~h}\left(\mathrm{i}_{1}\right)=\mathrm{j}_{1}\right) \delta\left(\mathrm{h}\left(\mathrm{i}_{2}\right)=\mathrm{j}_{1}\right) \delta\left(\mathrm{h}\left(\mathrm{i}_{3}\right)=\mathrm{j}_{2}\right) \delta\left(\mathrm{h}\left(\mathrm{i}_{4}=\mathrm{j}_{2}\right)\right)\right] \mathrm{x}_{\mathrm{i} 1} \mathrm{x}_{\mathrm{i} 2} \mathrm{x}_{\mathrm{i} 3} \mathrm{x}_{\mathrm{i} 4}$
- We must be able to partition $\left\{\mathrm{i}_{1}, \dot{i}_{2}, \dot{i}_{3}, \mathrm{i}_{4}\right\}$ into equal pairs
- Suppose $\mathrm{i}_{1}=\mathrm{i}_{2}=\mathrm{i}_{3}=\mathrm{i}_{4}$. Then necessarily $\mathrm{j}_{1}=\mathrm{j}_{2}$. Obtain $\sum_{\mathrm{j}} \frac{1}{\mathrm{k}} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{4}=|\mathrm{x}|_{4}^{4}$
- Suppose $i_{1}=i_{2}$ and $i_{3}=i_{4}$ but $i_{1} \neq i_{3}$. Then get $\sum_{j_{1}, j_{2}, i_{1}, i_{3}} \frac{1}{k^{2}} x_{i_{1}}^{2} x_{i_{3}}^{2}=|x|_{2}^{4}-|x|_{4}^{4}$
- Suppose $i_{1}=i_{3}$ and $i_{2}=i_{4}$ but $i_{1} \neq i_{2}$. Then necessarily $j_{1}=j_{2}$. Obtain $\sum_{j} \frac{1}{\mathrm{k}^{2}} \sum_{\mathrm{i}_{1}, \mathrm{i}_{2}} \mathrm{x}_{\mathrm{i}_{1}}^{2} \mathrm{X}_{\mathrm{i}_{2}}^{2} \leq \frac{1}{\mathrm{k}}|\mathrm{x}|_{2}^{4}$. Obtain same bound if $\mathrm{i}_{1}=\mathrm{i}_{4}$ and $\mathrm{i}_{2}=\mathrm{i}_{3}$.
- Hence, $\mathrm{E}\left[|\mathrm{Sx}|_{2}^{4}\right] \in\left[|\mathrm{x}|_{2}^{4},|\mathrm{x}|_{2}^{4}\left(1+\frac{2}{\mathrm{k}}\right)\right]=\left[1,1+\frac{2}{\mathrm{k}}\right]$
- So, $\left.\mathrm{E}_{\mathrm{S}}| | \mathrm{Sx}\right|_{2} ^{2}-\left.1\right|^{2} \leq\left(1+\frac{2}{\mathrm{k}}\right)-2+1=\frac{2}{\mathrm{k}}$. Setting $\mathrm{k}=\frac{2}{\epsilon^{2} \delta}$ finishes the proof

Where are we?

- (JL Property) A distribution on matrices $S \in \mathrm{R}^{\mathrm{kx}} \mathrm{n}$ has the (ϵ, δ, ℓ)-JL moment property if for all $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ with $|\mathrm{x}|_{2}=1$,

$$
\left.\mathrm{E}_{\mathrm{S}}| | \mathrm{Sx}\right|_{2} ^{2}-\left.1\right|^{\ell} \leq \epsilon^{\ell} \cdot \delta
$$

- (From vectors to matrices) For $\epsilon, \delta \in\left(0, \frac{1}{2}\right)$, let D be a distribution on matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ)-JL moment property for some $\ell \geq 2$. Then for A, B matrices with n rows,

$$
\underset{S}{\operatorname{Pr}}\left[\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{2} \geq 3 \epsilon^{2}|A|_{F}^{2}|B|_{F}^{2}\right] \leq \delta
$$

- We showed CountSketch has the JL property with $\ell=2$, and $\mathrm{k}=\frac{2}{\epsilon^{2} \delta}$
- Matrix product result we wanted was:
$\operatorname{Pr}\left[\left.\left|\mathrm{CS}^{\top} \mathrm{SD}-\mathrm{CD}\right|_{\mathrm{F}}{ }^{2} \%(6 /(\delta \mathrm{k})){ }^{*}\left|\mathrm{C}_{\mathrm{F}}{ }^{2}\right| \mathrm{D}\right|_{\mathrm{F}}{ }^{2}\right] \geq 1-\delta$
- We are now done with the proof CountSketch is a subspace embedding

Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression

Affine Embeddings

- Want to solve $\min _{X}|A X-B|_{F}^{2}, A$ is tall and thin with d columns, but B has a large number of columns
- Can’t directly apply subspace embeddings
- Let's try to show $|S A X-S B|_{F}=(1 \pm \epsilon)|A X-B|_{F}$ for all X and see what properties we need of S
- Can assume A has orthonormal columns
- Let $B^{*}=A X^{*}-B$, where X^{*} is the optimum
- $|S(A X-B)|_{F}^{2}-\left|S B^{*}\right|_{F}^{2}=\left|S A\left(X-X^{*}\right)+S\left(A X^{*}-B\right)\right|_{F}^{2}-\left|S B^{*}\right|_{F}^{2}$

$$
=\left|S \mathrm{SA}\left(\mathrm{X}-\mathrm{X}^{*}\right)\right|_{\mathrm{F}}^{2}+2 \operatorname{tr}\left[\left(\mathrm{X}-\mathrm{X}^{*}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{SB}^{*}\right]\left(\text { use }|\mathrm{C}+\mathrm{D}|_{\mathrm{F}}^{2}=|\mathrm{C}|_{\mathrm{F}}^{2}+|\mathrm{D}|_{\mathrm{F}}^{2}+2 \operatorname{Tr}\left(\mathrm{C}^{\mathrm{T}} \mathrm{D}\right)\right)
$$

$$
\in\left|S A\left(X-X^{*}\right)\right|_{\mathrm{F}}^{2} \pm 2\left|X-X^{*}\right|_{\mathrm{F}}\left|\mathrm{~A}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{SB}^{*}\right|_{\mathrm{F}}\left(\text { use } \operatorname{tr}(\mathrm{CD}) \leq|\mathrm{C}|_{\mathrm{F}}|\mathrm{D}|_{\mathrm{F}}\right)
$$

$$
\in\left|S A\left(X-X^{*}\right)\right|_{F}^{2} \pm 2 \epsilon\left|X-X^{*}\right|_{F}\left|B^{*}\right|_{F} \quad \text { (if we have approx. matrix product) }
$$

$$
\in\left|\mathrm{A}\left(\mathrm{X}-\mathrm{X}^{*}\right)\right|_{\mathrm{F}}^{2} \pm \epsilon\left(\left|\mathrm{A}\left(\mathrm{X}-\mathrm{X}^{*}\right)\right|_{\mathrm{F}}^{2}+2\left|\mathrm{X}-\mathrm{X}^{*}\right|_{\mathrm{F}}\left|\mathrm{~B}^{*}\right|\right) \text { (subspace embedding for } \mathrm{A}^{53} \text {) }
$$

Affine Embeddings

- We have $|S(A X-B)|_{F}^{2}-\left|S B^{*}\right|_{F}^{2} \in\left|A\left(X-X^{*}\right)\right|_{F}^{2} \pm \epsilon\left(\left|A\left(X-X^{*}\right)\right|_{F}^{2}+2\left|X-X^{*}\right|_{F}\left|B^{*}\right|\right)$
- Normal equations imply that

$$
|A X-B|_{\mathrm{F}}^{2}=\left|\mathrm{A}\left(\mathrm{X}-\mathrm{X}^{*}\right)\right|_{\mathrm{F}}^{2}+\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}
$$

" $|S(A X-B)|_{F}^{2}-\left|S B^{*}\right|_{F}^{2}-\left(|A X-B|_{F}^{2}-\left|B^{*}\right|_{F}^{2}\right)$
$\in \epsilon\left(\left|A\left(X-X^{*}\right)\right|_{F}^{2}+2\left|X-X^{*}\right|_{F}\left|B^{*}\right|_{F}\right)$
$\in \pm \epsilon\left(\left|A\left(X-X^{*}\right)\right|_{F}+\left|B^{*}\right|_{F}\right)^{2}$
$\in \pm 2 \epsilon\left(\left|\mathrm{~A}\left(\mathrm{X}-\mathrm{X}^{*}\right)\right|_{\mathrm{F}}^{2}+\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}\right)$
$= \pm 2 \epsilon|\mathrm{AX}-\mathrm{B}|_{\mathrm{F}}^{2}$

- $\left|S B^{*}\right|_{F}^{2}=(1 \pm \epsilon)\left|\mathrm{B}^{*}\right|_{F}^{2}$ (this holds with constant probability)

Affine Embeddings

- Know: $|S(A X-B)|_{F}^{2}-\left|S B^{*}\right|_{F}^{2}-\left(|A X-B|_{F}^{2}-\left|B^{*}\right|_{F}^{2}\right) \in$ $\pm 2 \epsilon|A X-B|_{F}^{2}$
- Know: $\left|\mathrm{SB}^{*}\right|_{\mathrm{F}}^{2}=(1 \pm \epsilon)\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}$
- $|S(A X-B)|_{F}^{2}=(1 \pm 2 \epsilon)|A X-B|_{F}^{2} \pm \epsilon\left|B^{*}\right|_{F}^{2}$
$=(1 \pm 3 \epsilon)|A X-B|_{F}^{2}$
- Completes proof of affine embedding!

Affine Embeddings: Missing Proofs

- Claim: $|\mathrm{A}+\mathrm{B}|_{\mathrm{F}}^{2}=|\mathrm{A}|_{\mathrm{F}}^{2}+|\mathrm{B}|_{\mathrm{F}}^{2}+2 \operatorname{Tr}\left(\mathrm{~A}^{\mathrm{T}} \mathrm{B}\right)$
- Proof: $|\mathrm{A}+\mathrm{B}|_{\mathrm{F}}^{2}=\sum_{\mathrm{i}}\left|\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}\right|_{2}^{2}$

$$
\begin{aligned}
& =\sum_{\mathrm{i}}\left|\mathrm{~A}_{\mathrm{i}}\right|_{2}^{2}+\sum_{\mathrm{i}}\left|\mathrm{~B}_{\mathrm{i}}\right|_{2}^{2}+2\left\langle\mathrm{~A}_{\mathrm{i}}, \mathrm{~B}_{\mathrm{i}}\right\rangle \\
& =|\mathrm{A}|_{\mathrm{F}}^{2}+|\mathrm{B}|_{\mathrm{F}}^{2}+2 \operatorname{Tr}\left(\mathrm{~A}^{T} \mathrm{~B}\right)
\end{aligned}
$$

Affine Embeddings: Missing Proofs

- Claim: $\operatorname{Tr}(\mathrm{AB}) \leq|\mathrm{A}|_{\mathrm{F}}|\mathrm{B}| \mathrm{F}$
- Proof: $\operatorname{Tr}(A B)=\sum_{i}\left\langle A^{i}, B_{i}\right\rangle$ for rows A^{i} and columns B_{i}
$\leq \sum_{\mathrm{i}}\left|\mathrm{A}^{\mathrm{i}}\right|_{2}\left|\mathrm{~B}_{\mathrm{i}}\right|_{2}$ by Cauchy-Schwarz for each i

$$
\begin{aligned}
& \leq\left(\sum_{\mathrm{i}}\left|\mathrm{~A}^{\mathrm{i}}\right|_{2}^{2}\right)^{\frac{1}{2}}\left(\sum_{\mathrm{i}}\left|\mathrm{~B}_{\mathrm{i}}\right|_{2}^{2}\right)^{\frac{1}{2}} \text { another Cauchy-Schwarz } \\
& =|\mathrm{A}|_{\mathrm{F}}|\mathrm{~B}|_{\mathrm{F}}
\end{aligned}
$$

Affine Embeddings: Homework Proof

- Claim: $\left|\mathrm{SB}^{*}\right|_{\mathrm{F}}^{2}=(1 \pm \epsilon)\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}$ with constant probability if CountSketch matrix S has $k=O\left(\frac{1}{\epsilon^{2}}\right)$ rows
- Proof is Homework Problem
- $\left|S B^{*}\right|_{\mathrm{F}}^{2}=\sum_{\mathrm{i}}\left|\mathrm{SB}_{\mathrm{i}}^{*}\right|_{2}^{2}$
- By our analysis for CountSketch and linearity of expectation, $\mathrm{E}\left[|\mathrm{SB}|_{\mathrm{F}}^{*}\right]=\sum_{\mathrm{i}} \mathrm{E}\left[\left|\mathrm{SB}_{\mathrm{i}}^{*}\right|_{2}^{2}\right]=\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}$

Low rank approximation

- A is an $n x d$ matrix
- Think of n points in R^{d}
- E.g., A is a customer-product matrix
- $A_{i, j}=$ how many times customer i purchased item j
- A is typically well-approximated by low rank matrix
- E.g., high rank because of noise
- Goal: find a low rank matrix approximating A
- Easy to store, data more interpretable

What is a good low rank approximation?

Singular Value Decomposition (SVD)
Any matrix A $=\mathrm{U} f \Sigma f \mathrm{~V}$

- U has orthonormal columns
- Σ is diagonal with non-increasing positive entries down the diagonal
- V has orthonormal rows
- Rank-k approximation: $\mathrm{A}_{\mathrm{k}}=\mathrm{U}_{\mathrm{k}} f \Sigma_{\mathrm{k}} f \mathrm{~V}_{\mathrm{k}}$
- rows of V_{k} are the top k principal components

$$
\left(\begin{array}{l}
\mathbf{A} \\
\end{array}\right)=\left(\mathbf{U}_{k}\right)\left(\Sigma_{k}\right)\left(\begin{array}{ll}
& \mathbf{V}_{k}
\end{array}\right)+\left(\begin{array}{l}
\mathbf{E}
\end{array}\right)
$$

What is a good low rank approximation?

$$
\begin{aligned}
& A_{k}=\operatorname{argmin}_{\text {rank k matrices } B}|A-B|_{F} \\
& \left(|C|_{F}=\left(\Sigma_{i, j} C_{i, j}^{2}\right)^{1 / 2}\right)
\end{aligned}
$$

Computing A_{k} exactly is expensive

$$
\left(\begin{array}{l}
\mathbf{A} \\
\end{array}\right)=\left(\mathbf{U}_{k}\right)\left(\Sigma_{k}\right)\left(\begin{array}{ll}
& \mathbf{V}_{k}
\end{array}\right)+\left(\begin{array}{l}
\mathbf{E}
\end{array}\right)
$$

Low rank approximation

- Goal: output a rank k matrix A^{\prime}, so that

$$
\left|A-A^{\prime}\right|_{F} \%(1+\varepsilon)\left|A-A_{k}\right|_{F}
$$

- Can do this in nnz(A) + (n+d)*poly(k/E) time [S,CW]
- $n n z(A)$ is number of non-zero entries of A

Solution to low-rank approximation [S]

- Given $n \times d$ input matrix A
- Compute $\mathrm{S}^{*} \mathrm{~A}$ using a random matrix S with $\mathrm{k} / \varepsilon \ll \mathrm{n}$ rows. S*A takes random linear combinations of rows of A

SA

- Project rows of A onto SA, then find best rank-k approximation to points inside of SA.

What is the matrix S ?

- S can be a $k / \varepsilon \times n$ matrix of i.i.d. normal random variables
- [S] S can be a $\widetilde{\mathrm{O}}(\mathrm{k} / \varepsilon) \times \mathrm{n}$ Fast Johnson Lindenstrauss Matrix
- [CW] S can be a poly(k/E) x n CountSketch matrix

S fA can be computed in nnz(A) time

Why do these Matrices Work?

- Consider the regression problem $\min _{\mathrm{X}}\left|\mathrm{A}_{\mathrm{k}} \mathrm{X}-\mathrm{A}\right|_{\mathrm{F}}$
- Let S be an affine embedding
- Then $\left|S A_{k} X-S A\right|_{F}=(1 \pm \epsilon)\left|A_{k} X-A\right|_{F}$ for all X
- By normal equations, $\underset{\mathrm{X}}{\operatorname{argmin}}\left|\mathrm{SA}_{\mathrm{k}} \mathrm{X}-\mathrm{SA}\right|_{\mathrm{F}}=\left(\mathrm{SA}_{\mathrm{k}}\right)^{-} \mathrm{SA}$
- So, $\left|A_{k}\left(S A_{k}\right)^{-} \mathrm{SA}-\mathrm{A}\right|_{\mathrm{F}} \leq(1+\epsilon)\left|\mathrm{A}_{\mathrm{k}}-\mathrm{A}\right|_{\mathrm{F}}$
- But $A_{k}\left(S A_{k}\right)^{-} S A$ is a rank-k matrix in the row span of $S A$!
- Let's formalize why the algorithm works now...

Why do these Matrices Work?

- $\min _{\operatorname{rank}-\mathrm{k} X}|\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2} \leq\left|\mathrm{A}_{\mathrm{k}}\left(\mathrm{SA} \mathrm{A}_{\mathrm{k}}\right)^{-} \mathrm{SA}-\mathrm{A}\right|_{\mathrm{F}}^{2} \leq(1+\epsilon)\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}^{2}$
- By the normal equations,

$$
|\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2}=\left|\mathrm{XSA}-\mathrm{A}(\mathrm{SA})^{-} \mathrm{SA}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}(\mathrm{SA})^{-} \mathrm{SA}-\mathrm{A}\right|_{\mathrm{F}}^{2}
$$

- Hence,

$$
\min _{\operatorname{rank}-\mathrm{kX}}|X S A-A|_{F}^{2}=\left|A(S A)^{-} S A-A\right|_{F}^{2}+\min _{\operatorname{rank}-\mathrm{kX}}\left|X S A-A(S A)^{-} S A\right|_{F}^{2}
$$

- Can write $S A=U \Sigma V^{T}$ in its SVD
- Then, $\min _{\operatorname{rank}-\mathrm{k} X}\left|X S A-A(S A)^{-} S A\right|_{F}^{2}=\min _{\operatorname{rank}-\mathrm{k} X}\left|X U \Sigma-A(S A)^{-} U \Sigma\right|_{F}^{2}$

$$
=\min _{\text {rank }-\mathrm{k}}\left|\mathrm{Y}-\mathrm{A}(\mathrm{SA})^{-} U \Sigma\right|_{\mathrm{F}}^{2}
$$

- Hence, we can just compute the SVD of $A(S A)^{-}$U Σ
- But how do we compute $\mathrm{A}(\mathrm{SA})^{-} \mathrm{U} \Sigma$ quickly?

Caveat: projecting the points onto SA is slow

- Current algorithm:

1. Compute S*A
2. Project each of the rows onto $S^{*} A$
3. Find best rank-k approximation of projected points inside of rowspace of $S^{*} \mathrm{~A}$

- Bottleneck is step 2

$$
\min _{\text {rank-k }}|X(S A) R-A R|_{F}^{2}
$$

Can solve with affine embeddings
" [CW] Approximate the projection

- Fast algorithm for approximate regression

$$
\min _{\text {rank-k }}|X(S A)-A|_{F}^{2}
$$

- Want nnz(A) + (n+d)*poly(k/ع) time

Using Affine Embeddings

- We know we can just output $\arg _{\operatorname{rank}-\mathrm{k} X}|\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2}$
- Choose an affine embedding R :

$$
|\mathrm{XSAR}-\mathrm{AR}|_{\mathrm{F}}^{2}=(1 \pm \epsilon)|\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2} \text { for all } \mathrm{X}
$$

- Note: we can compute AR and SAR in nnz(A) time
- Can just solve $\min _{\text {rank-k }}|X S A R-A R|_{F}^{2}$
- $\min _{\operatorname{rank-k} \mathrm{X}}|\mathrm{XSAR}-\mathrm{AR}|_{\mathrm{F}}^{2}=\left|\mathrm{AR}(\mathrm{SAR})^{-}(\mathrm{SAR})-\mathrm{AR}\right|_{\mathrm{F}}^{2}+\min _{\operatorname{rank-kX}}\left|\mathrm{XSAR}-\mathrm{AR}(\mathrm{SAR})^{-}(\mathrm{SAR})\right|_{\mathrm{F}}^{2}$
- Compute $\min _{\text {rank }-\mathrm{k} Y}\left|\mathrm{Y}-\mathrm{AR}(\mathrm{SAR})^{-}(\mathrm{SAR})\right|_{\mathrm{F}}^{2}$ using SVD which is $(\mathrm{n}+\mathrm{d})$ poly $\left(\frac{\mathrm{k}}{\epsilon}\right)$ time
- Necessarily, $Y=$ XSAR for some X. Output $Y(S A R)^{-}$SA in factored form. We're done

Low Rank Approximation Summary

1. Compute SA
2. Compute SAR and AR
3. Compute $\min _{\operatorname{rank}-\mathrm{k} Y}\left|\mathrm{Y}-\mathrm{AR}(\mathrm{SAR})^{-}(\mathrm{SAR})\right|_{\mathrm{F}}^{2}$ using SVD
4. Output $Y(S A R)^{-}$SA in factored form

Overall time: $n n z(A)+(n+d) p o l y(k / \varepsilon)$

