
49

CountSketch Satisfies the JL Property

 (JL Property) A distribution on matrices S ∈ R 	 has the ϵ, δ, ℓ -JL moment 
property if for all x ∈ R with x 1,

E Sx 1 	ℓ ϵℓ ⋅ δ

 We	show	this	property	holds	with	ℓ 2.	First,	let	us	consider	E Sx

 For	CountSketch matrix	S,	let	
 h: n 	‐ 	 k 	be	a	2‐wise	independent	hash	function
 σ: n → 1,1 be	a	4‐wise	independent	hash	function

 Let	δ E 1 if	event	E	holds,	and	δ E 0 otherwise

 E Sx ∑ E ∑ δ h i j σ x∈∈

	∑ ∑ E δ h i1 j δ h i2 j σ σ x x, ∈∈

	∑ ∑ E δ h i j x∈∈

	 ∑ ∑ x∈∈ 	 x
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 E Sx E ∑ ∑ ∈ ∑ δ h i j σ x∈∈ ∑ δ h i′ j′ σ x∈ 	

∑ E σ σ σ σ δ h i j δ h i j δ h i j δ h i j x 	x x x, , . , ,

 We must be able to partition i , i , i , i into equal pairs

 Suppose i i i i . Then necessarily j j . Obtain ∑ ∑ x x

 Suppose i i and i i but i i . Then get ∑ , , , x x x x

 Suppose i i and i i but i i . Then necessarily j j . Obtain 
∑ ∑ x x x, . Obtain same bound if i i and i i .

 Hence, E Sx ∈ x , x 1 1, 1 	

 So, E Sx 1 	 1 2 1 .	Setting k 	finishes the proof 

CountSketch Satisfies the JL Property
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Where are we?

 (JL Property) A distribution on matrices S ∈ R 	 has the ϵ, δ, ℓ -JL 
moment property if for all x ∈ R with x 1,

E Sx 1 	ℓ ϵℓ ⋅ δ

 (From vectors to matrices) For ϵ, δ ∈ 0, ,	let D be a distribution on 
matrices S with k rows and n columns that satisfies the ϵ, δ, ℓ -JL moment 
property for some ℓ 2. Then for A, B matrices with n rows, 

Pr A S SB	 A B 3	ϵ 	 A B δ

 We showed CountSketch has the JL property with ℓ 2, and	k

 Matrix product result we wanted was:
Pr[|CSTSD – CD|F2 � (6/( k)) * |C|F2 |D|F2 1

 We are now done with the proof CountSketch is a subspace embedding
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Course Outline
 Subspace embeddings and least squares regression
 Gaussian matrices
 Subsampled Randomized Hadamard Transform
 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression
 Leverage score sampling
 Distributed low rank approximation
 L1 Regression
 M-Estimator regression
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Affine Embeddings
 Want to solve min AX B , A is tall and thin with d columns, but B has a large 

number of columns

 Can’t directly apply subspace embeddings

 Let’s try to show SAX SB 1 ϵ AX B for all X and see what properties 
we need of S

 Can assume A has orthonormal columns

 Let B∗ AX∗ B, where X∗	is the optimum

 S AX B 	 SB∗ SA X X∗ S AX∗ B SB∗

SA X X∗ 2tr X X∗ A S SB∗ (use C D C D 2Tr C D )
∈ SA X X∗ 2 X X∗ A S SB∗ (use tr CD C D )

∈ SA X X∗ 2ϵ X X∗ B∗ (if we have approx. matrix product)
∈ A X X∗ ϵ A X X∗ 2 X X∗ B∗ (subspace embedding for A)
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 We have  
S AX B 	 SB∗ ∈ A X X∗ ϵ A X X∗ 2 X X∗ B∗

 Normal equations imply that
AX B A X X∗ B∗

 S AX B 	 SB∗ AX B B∗

∈ 	ϵ A X X∗ 2 X X∗ B∗

					∈ 	 ϵ A X X∗ B∗

					∈ 	 2ϵ A X X∗ B∗ 	
					 	 2ϵ AX B

 SB∗ 1 ϵ B∗ (this holds with constant probability)

Affine Embeddings
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 Know: S AX B 	 SB∗ AX B B∗ 		∈
	 2ϵ AX B

 Know: SB∗ 1 ϵ B∗

 S AX B 1 2ϵ AX B 	 	ϵ B∗

1 3ϵ AX B

 Completes proof of affine embedding!

Affine Embeddings
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 Claim: A B A B 2Tr A B

 Proof: A B ∑ A B

A B 2〈A , B 〉

A B 2Tr A B

Affine Embeddings: Missing Proofs 
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Affine Embeddings: Missing Proofs 

 Claim: Tr AB A B

 Proof: Tr AB ∑ 〈A , B 〉 for rows A and columns B

																				 ∑ A B by Cauchy-Schwarz for each i

																			 ∑ A 	 ∑ B 	 another Cauchy-Schwarz

A B
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Affine Embeddings: Homework Proof

 Claim: SB∗ 1 ϵ B∗ with constant probability if 
CountSketch matrix S has k 	O rows 

 Proof is Homework Problem

 SB∗ ∑ SB∗

 By our analysis for CountSketch and linearity of expectation, 
E SB∗ ∑ E SB∗ B∗
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Low rank approximation 

 A is an n x d matrix
 Think of n points in Rd 

 E.g., A is a customer-product matrix
 Ai,j = how many times customer i purchased item j

 A is typically well-approximated by low rank matrix
 E.g., high rank because of noise

 Goal: find a low rank matrix approximating A
 Easy to store, data more interpretable
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What is a good low rank approximation? 

Singular Value Decomposition (SVD)
Any matrix A = U �Σ �V
 U has orthonormal columns
 Σ is diagonal with non-increasing positive 
entries down the diagonal
 V has orthonormal rows

 Rank-k approximation: Ak = Uk �Σk �Vk
 rows of Vk are the top k principal components
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What is a good low rank approximation? 

Ak = argminrank k matrices B |A-B|F

(|C|F = (Σi,j Ci,j2)1/2 )

Computing Ak exactly is expensive 
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Low rank approximation 

 Goal: output a rank k matrix A’, so that
|A-A’|F � (1+ε) |A-Ak|F

 Can do this in nnz(A) + (n+d)*poly(k/ε) time [S,CW]
 nnz(A) is number of non-zero entries of A
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Solution to low-rank approximation [S]

 Given n x d input matrix A
 Compute S*A using a random matrix S with k/ε << n 

rows. S*A takes random linear combinations of rows of A

SA

A

 Project rows of A onto SA, then find best rank-k 
approximation to points inside of SA. 
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What is the matrix S?

 S can be a k/ε x n matrix of i.i.d. normal random variables

 [S] S can be a O k/ε) x n Fast Johnson Lindenstrauss
Matrix

 [CW] S can be a poly(k/ε) x n CountSketch matrix

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

S �A can be 
computed in 
nnz(A) time
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 Consider the regression problem min A X A

 Let S be an affine embedding

 Then SA X SA 1 ϵ A X	 A for all X

 By normal equations, argmin SA X	 SA SA SA

 So, A SA SA A 1 ϵ A A

 But A SA SA is a rank-k matrix in the row span of SA!

 Let’s formalize why the algorithm works now…

Why do these Matrices Work?
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 min
	
XSA A 	 A SA SA A| 1 ϵ A A |

 By the normal equations, 
XSA A XSA	 A SA SA A SA SA	 A

 Hence, 
min

	
XSA A A SA SA	 A min

	
	 XSA A SA SA

 Can write SA U	ΣV in its SVD

 Then, min
	
	 XSA A SA SA 	 min

	
	 XUΣ A SA UΣ

																																									 min
	
Y A SA UΣ

 Hence, we can just compute the SVD of A SA UΣ

 But how do we compute A SA UΣ quickly?

Why do these Matrices Work?
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Caveat: projecting the points onto SA is slow 

 Current algorithm: 
1. Compute S*A 
2. Project each of the rows onto S*A
3. Find best rank-k approximation of projected points 

inside of rowspace of S*A 

 Bottleneck is step 2 

 [CW] Approximate the projection
 Fast algorithm for approximate regression 

minrank-k X |X(SA)-A|F2

 Want nnz(A) + (n+d)*poly(k/ε) time

minrank-k X |X(SA)R-AR|F2

Can solve with affine embeddings
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Using Affine Embeddings

 We know we can just output arg min
	
XSA A 	

 Choose an affine embedding R:
XSAR AR 1 ϵ XSA A for all X

 Note: we can compute AR and SAR in nnz(A) time

 Can just solve min
	
XSAR AR 	

 min
	
XSAR AR 	 AR SAR SAR AR min

	
XSAR AR SAR SAR 	

 Compute min
	
Y AR SAR SAR 	 using SVD which is n d poly time

 Necessarily, Y XSAR for some X. Output Y SAR SA in factored form. We’re done! 
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Low Rank Approximation Summary

1. Compute SA

2. Compute SAR and AR

3. Compute min
	
Y AR SAR SAR 	 using SVD

4. Output Y SAR SA in factored form

Overall time: nnz(A) + (n+d)poly(k/ε)


