Robust Regression

Method of least absolute deviation (l_{1}-regression)

- Find x^{*} that minimizes $|A x-b|_{1}=\Sigma\left|b_{i}-<A_{i^{*}}, x>\right|$
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming

Solving I_{1}-regression via Linear Programming

- Minimize $(1, \ldots, 1) \cdot\left(\alpha^{+}+\alpha^{-}\right)$
- Subject to:

$$
\begin{aligned}
\mathrm{Ax}+\alpha^{+}-\alpha^{-} & =\mathrm{b} \\
\alpha^{+}, \alpha^{-} & \geq 0
\end{aligned}
$$

- Generic linear programming gives poly(nd) time
- Want much faster time using sketching!

Well-Conditioned Bases

- For an $n \times d$ matrix A, can choose an $n \times d$ matrix U with orthonormal columns for which $A=U W$, and $|U x|_{2}=|x|_{2}$ for all x
- Can we find a U for which $A=U W$ and $|U x|_{1} \approx|x|_{1}$ for all x ?
- Let $A=Q W$ where Q has full column rank, and define $|z|_{Q, 1}=|Q z|_{1}$
- $|z|_{Q, 1}$ is a norm
- Let $C=\left\{z \in R^{d}:|z|_{Q, 1} \leq 1\right\}$ be the unit ball of $|\cdot|_{Q, 1}$
- \quad C is a convex set which is symmetric about the origin
- Lowner-John Theorem: can find an ellipsoid E such that: $E \subseteq C \subseteq \sqrt{d} E$, where $E=\left\{z \in R^{d}: z^{T} F z \leq 1\right\}$
- $\left(\mathrm{z}^{\mathrm{T}} \mathrm{Fz}\right)^{.5} \leq|\mathrm{z}|_{\mathrm{Q}, 1} \leq \sqrt{\mathrm{d}}\left(\mathrm{z}^{\mathrm{T}} \mathrm{Fz}\right)^{-5}$
- $F=G G^{T}$ since F defines an ellipsoid
- Define $U=Q^{-1}$

Well-Conditioned Bases

- Recall $U=Q^{-1}$ where

$$
\left(\mathrm{z}^{\mathrm{T}} \mathrm{Fz}\right)^{.5} \leq|\mathrm{z}|_{\mathrm{Q}, 1} \leq \sqrt{\mathrm{d}}\left(\mathrm{z}^{\mathrm{T}} \mathrm{Fz}\right)^{.5} \text { and } \mathrm{F}=\mathrm{GG}^{\mathrm{T}}
$$

- $|\mathrm{Ux}|_{1}=\left|\mathrm{QG}^{-1} \mathrm{x}\right|_{1}=|\mathrm{Qz}|_{1}=|\mathrm{z}|_{\mathrm{Q}, 1}$ where $\mathrm{z}=\mathrm{G}^{-1} \mathrm{x}$
- $z^{T} F z=\left(x^{T}\left(G^{-1}\right)^{T} G^{T} G\left(G^{-1}\right) x\right)=x^{T} X=|x|_{2}^{2}$
- So $|x|_{2} \leq|U x|_{1} \leq \sqrt{\mathrm{d}}|\mathrm{x}|_{2}$
- So $\frac{|\mathrm{x}|_{1}}{\sqrt{\mathrm{~d}}} \leq|\mathrm{x}|_{2} \leq|\mathrm{Ux}|_{1} \leq \sqrt{\mathrm{d}}|\mathrm{x}|_{2} \leq \sqrt{\mathrm{d}}|\mathrm{x}|_{1}$

Net for $\ell_{1}-$ Ball

- Consider the unit ℓ_{1}-ball $B=\left\{x \in R^{d}:|x|_{1}=1\right\}$
- Subset N is a γ-net if for all $x \in B$, there is a $y \in N$, such that $|x-y|_{1} \leq \gamma$
- Greedy construction of N
- While there is a point $x \in B$ of distance larger than γ from every point in N, include x in N
- The ℓ_{1}-ball of radius $\gamma / 2$ around every point in N is contained in the ℓ_{1}-ball of radius $1+\gamma / 2$ around 0^{d}
- Further, all such ball are disjoint
- Ratio of volume of d-dimensional similar polytopes of radius $1+\gamma / 2$ to radius $\gamma / 2$ is $(1+\gamma / 2)^{d} /(\gamma / 2)^{d}$, so $|\mathrm{N}| \leq(1+\gamma / 2)^{\mathrm{d}} /(\gamma / 2)^{\mathrm{d}}$

Net for ℓ_{1} - Subspace

- Let $\mathrm{A}=\mathrm{UW}$ for a well-conditioned basis U
- $|\mathrm{x}|_{1} \leq|\mathrm{Ux}|_{1} \leq \mathrm{d}|\mathrm{x}|_{1}$ for all x
- Let N be a (γ / d)-net for the unit ℓ_{1}-ball B
- Let $M=\{U x \mid x$ in $N\}$, so $|M| \leq(1+\gamma /(2 d))^{d} /(\gamma /(2 d))^{d}$
- Claim: For every x in B , there is a y in M for which $|\mathrm{Ux}-\mathrm{y}|_{1} \leq \gamma$
- Proof: Let x^{\prime} in B be such that $\left|x-x^{\prime}\right|_{1} \leq \gamma / d$ Then $|\mathrm{Ux}-\mathrm{Ux}|_{1} \leq \mathrm{d}\left|\mathrm{x}-\mathrm{x}^{\prime}\right|_{1} \leq \gamma$, using the well-conditioned basis property. Set $y=U x^{\prime}$
- $|\mathrm{M}| \leq\left(\frac{\mathrm{d}}{\gamma}\right)^{\mathrm{O}(\mathrm{d})}$

Rough Algorithm Overview

Will focus on showing how to quickly compute

1. A poly(d)-approximation
2. A well-conditioned basis

Sketching Theorem

Theorem

- There is a probability space over ($\mathrm{d} \log \mathrm{d}$) $\times \mathrm{n}$ matrices R such that for any $n \times d$ matrix A, with probability at least 99/100 we have for all x :

$$
|A x|_{1} \leq|R A x|_{1} \leq d \log d \cdot|A x|_{1}
$$

Embedding

- is linear
- is independent of A
- preserves lengths of an infinite number of vectors

Application of Sketching Theorem

Computing a d(log d)-approximation

- Compute RA and Rb
- Solve $x^{\prime}=\operatorname{argmin}_{x}|R A x-R b|_{1}$
- Main theorem applied to A•b implies x' is a d log dapproximation
- RA, Rb have d log d rows, so can solve I_{1}-regression efficiently

Application of Sketching Theorem

Computing a well-conditioned basis

1. Compute RA
2. Compute W so that RAW is orthonormal (in the I_{2}-sense)
3. Output U = AW
$\mathrm{U}=\mathrm{AW}$ is well-conditioned because
$|A W x|_{1} \leq|R A W x|_{1} \leq(d \log d)^{1 / 2}|\operatorname{RAWx}|_{2}=(d \log d)^{1 / 2}|x|_{2} \leq(d \log d)^{1 / 2}|x|_{1}$
and
$|A W x|_{1} \geq|R A W x|_{1} /(d \log d) \gtrless|R A W x|_{2} /(d \log d)=|x|_{2} /(d \log d) \geq|x|_{1} /\left(d^{3 / 2} \log d\right)_{13}$

Sketching Theorem

Theorem:

- There is a probability space over ($\mathrm{d} \log \mathrm{d}$) $\times \mathrm{n}$ matrices R such that for any $n \times d$ matrix A, with probability at least $99 / 100$ we have for all x :

$$
|A x|_{1} \leq|R A x|_{1} \leq d \log d \cdot|A x|_{1}
$$

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by $1 /(\mathrm{d} \log \mathrm{d})$

Cauchy Random Variables

- $\operatorname{pdf}(z)=1 /\left(\pi\left(1+z^{2}\right)\right)$ for z in $(-4,4)$
- Undefined expectation and infinite variance
- 1-stable:

- If $z_{1}, z_{2}, \ldots, z_{n}$ are i.i.d. Cauchy, then for a $5 R^{n}$,

$$
a_{1} \cdot z_{1}+a_{2} \cdot z_{2}+\ldots+a_{n} \cdot z_{n} \approx|a|_{1} \cdot z \text {, where } z \text { is Cauchy }
$$

- Can generate as the ratio of two standard normal random variables

Proof of Sketching Theorem

- By 1-stability,
- For all rows r of R,
- $<r, A x>=|A x|_{1} \cdot Z /(d \log d)$, where Z is a Cauchy

- $R A x=\left(|A x|_{1} \cdot Z_{1}, \ldots,|A x|_{1} \cdot Z_{d \log d}\right) /(d \log d)$, where $Z_{1}, \ldots, Z_{d \log d}$ are i.i.d. Cauchy
- $|R A x|_{1}=|A x|_{1} \sum_{j}\left|Z_{j}\right| /(d \log d)$
- The $\left|Z_{j}\right|$ are half-Cauchy
- $\quad \sum_{j}\left|Z_{j}\right|=\Omega(\mathrm{d} \log \mathrm{d})$ with probability 1-exp(-d log d) by Chernoff
- But the $\left|Z_{j}\right|$ are heavy-tailed...

Proof of Sketching Theorem

- $\sum_{\mathrm{j}}\left|\mathrm{Z}_{\mathrm{j}}\right|$ is heavy-tailed, so $|\mathrm{RAx}|_{1}=|\mathrm{Ax}|_{1} \sum_{\mathrm{j}}\left|\mathrm{Z}_{\mathrm{j}}\right| /(\mathrm{d}$ log d) may be large
- Each $\left|Z_{j}\right|$ has c.d.f. asymptotic to $1-\Theta(1 / z)$ for z in $[0,4$)
- There exists a well-conditioned basis of A
- Suppose w.l.o.g. the basis vectors are $A_{* 1}, \ldots, A_{*_{d}}$
- $\left.\left|\mathrm{RA}_{\left.\mathrm{*}_{\mathrm{i}}\right|_{1}} \cong\right| \mathrm{A}_{\mathrm{i} \cdot}\right|_{1} f \sum_{\mathrm{j}}\left|\mathrm{Z}_{\mathrm{i}, \mathrm{j}}\right| /(\mathrm{d} \log \mathrm{d})$
- Let $\mathrm{E}_{\mathrm{i}, \mathrm{j}}$ be the event that $\left|\mathrm{Z}_{\mathrm{i}, \mathrm{j}}\right| \leq \mathrm{d}^{3}$
" Define $Z_{i, j}^{\prime}=\left|Z_{i, j}\right|$ if $\left|Z_{i, j}\right| \leq d^{3}$, and $Z_{i, j}^{\prime}=d^{3}$ otherwise
" $E\left[Z_{i, j} \mid E_{i, j}\right]=E\left[Z_{i, j}^{\prime} \mid E_{i, j}\right]=0(\log d)$
- Let E be the event that for all $\mathrm{i}, \mathrm{j}, \mathrm{E}_{\mathrm{i}, \mathrm{j}}$ occurs
- $\operatorname{Pr}[E] \geq 1-\frac{\log \mathrm{d}}{\mathrm{d}}$
- What is $E\left[Z_{i, j}^{\prime} \mid E\right]$?

Proof of Sketching Theorem

- What is $\mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}\right]$?
- $E\left[Z_{i, j}^{\prime} \mid E_{i, j}\right]=E\left[Z_{i, j}^{\prime} \mid E_{i, j}, E\right] \operatorname{Pr}\left[E \mid E_{i, j}\right]+E\left[Z_{i, j}^{\prime} \mid E_{i, j} \neg E\right] \operatorname{Pr}\left[\neg E \mid E_{i, j}\right]$

$$
\begin{aligned}
& \geq \mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}_{\mathrm{i}, \mathrm{j}} \mathrm{E}\right] \operatorname{Pr}\left[\mathrm{E} \mid \mathrm{E}_{\mathrm{i}, \mathrm{j}}\right] \\
& =\mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}\right] \cdot\left(\frac{\operatorname{Pr}\left[\mathrm{E}_{\mathrm{i}, \mathrm{j}} \mathrm{E}\right] \operatorname{Pr}[\mathrm{E}]}{\operatorname{Pr}\left[\mathrm{E}_{\mathrm{i}, \mathrm{j}}\right]}\right) \\
& \geq \mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}\right] \cdot\left(1-\frac{\log \mathrm{d}}{\mathrm{~d}}\right)
\end{aligned}
$$

- So, $E\left[Z_{i, j}^{\prime} \mid E\right]=O(\log d)$
- $\left|R A_{*_{i}}\right|_{1} \cong\left|A_{*_{i j}}\right|_{1} \cdot \sum_{\mathrm{i}, \mathrm{j}}\left|Z_{\mathrm{i}, \mathrm{j}}\right|$ (d log d)
- With constant probability, $\sum_{i}\left|\mathrm{RA}_{* i}\right|_{1}=\mathrm{O}(\log \mathrm{d}) \sum_{i}\left|\mathrm{~A}_{*_{i}}\right|_{1}$

Proof of Sketching Theorem

- With constant probability, $\sum_{i}\left|\mathrm{RA}_{* i}\right|_{1}=\mathrm{O}(\log \mathrm{d}) \sum_{\mathrm{i}}\left|\mathrm{A}_{*_{i}}\right|_{1}$
- Recall $A_{*_{1}}, \ldots, A_{*_{d}}$ is a well-conditioned basis, and we showed the existence of such a basis earlier
- We will use the Auerbach basis which always exists:
- For all $\mathrm{x},|\mathrm{x}|_{4} \leq|\mathrm{Ax}|_{1}$
- $\sum_{i}\left|A_{*}\right|_{1}=d$
- $\sum_{i}\left|\operatorname{RA}_{* i}\right|_{1}=O(d \log d)$
- For all $\mathrm{x},|\mathrm{RAx}|_{1} \leq \sum_{\mathrm{i}}\left|\mathrm{RA}_{*_{\mathrm{i}}} \mathrm{x}_{\mathrm{i}}\right| \leq|\mathrm{x}|_{4} \quad \sum_{\mathrm{i}}\left|\mathrm{RA}_{\mathrm{xi}}\right|_{1}$

$$
\begin{aligned}
& =|x|_{4} O(d \log d) \\
& =O(d \log d)|A x|_{1}
\end{aligned}
$$

Where are we?

- Suffices to show for all x with $|x|_{1}=1$, that $|A x|_{1} \leq|R A x|_{1} \leq d \log d \cdot|A x|_{1}$
- We know
- (1) there is a γ-net M, with $|M| \leq\left(\frac{d}{\gamma}\right)^{O(d)}$, of the set $\left\{A x\right.$ such that $\left.|x|_{1}=1\right\}$
- (2) for any fixed $x,|R A x|_{1} \geq|A x|_{1}$ with probability $1-\exp (-d \log d)$
- (3) for all $x,|R A x|_{1}=O(d \log d)|A x|_{1}$
- Set $\gamma=1 /\left(d^{3} \log d\right)$ so $|M| \leq d^{0(d)}$
- By a union bound, for all y in $\mathrm{M},|\mathrm{Ry}|_{1} \geq|y|_{1}$
- Let x with $|x|_{1}=1$ be arbitrary. Let y in M satisfy $|A x-y|_{1} \leq \gamma=1 /\left(d^{3} \log d\right)$
- $|R A x|_{1} \geq|R y|_{1}-|R(A x-y)|_{1}$

$$
\geq|y|_{1}-O(d \log d)|A x-y|_{1}
$$

$$
\geq|y|_{1}-O(d \log d) \gamma
$$

$$
\geq|y|_{1}-0\left(\frac{1}{d^{2}}\right)
$$

$\geq|y|_{1} / 2 \quad$ (why?)

Sketching to solve I_{1}-regression [CW, MM]

- Most expensive operation is computing $R^{*} A$ where R is the matrix of i.i.d. Cauchy random variables
- All other operations are in the "smaller space"
- Can speed this up by choosing R as follows:

Further sketching improvements [WZ]

- Can show you need a fewer number of sampled rows in later steps if instead choose R as follows
- Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables

Turnstile Streaming Model

- Underlying n -dimensional vector x initialized to 0^{n}
- Long stream of updates $\mathrm{x}_{\mathrm{i}} \leftarrow \mathrm{x}_{\mathrm{i}}+\Delta_{\mathrm{i}}$ for Δ_{i} in $\{-1,1\}$
- At end of the stream, x is promised to be in the set $\{-M,-$ $M+1, \ldots, M-1, M\}^{n}$ for some bound $M \leq \operatorname{poly}(n)$
- Output an approximation to $f(x)$ whp
- Goal: use as little space (in bits) as possible
- Massive data: stock transactions, weather data, genomes

Example Problem: Norms

- Suppose you want $|x|_{p}{ }^{p}=\Sigma_{i=1}{ }^{n}\left|x_{i}\right|^{p}$
- Want Z for which (1- $\varepsilon)|x|_{p}^{p} \leq Z \leq(1+\varepsilon)|x|_{p}^{p}$ with probability > 9/10

Example Problem: Euclidean Norm

- Want Z for which $(1-\varepsilon)|x|_{2}{ }^{2} \leq Z \leq(1+\varepsilon)|x|_{2}{ }^{2}$
- Sample a random CountSketch matrix S with $1 / \epsilon^{2}$ rows
- Can store S efficiently using limited independence
- If $\mathrm{x}_{\mathrm{i}} \leftarrow \mathrm{x}_{\mathrm{i}}+\Delta_{\mathrm{i}}$ in the stream, then $\mathrm{Sx} \leftarrow \mathrm{Sx}+\Delta_{\mathrm{i}} \mathrm{S}_{*, \mathrm{i}}$
- At end of stream, output $|S x|_{2}^{2}$
- With probability at least $9 / 10,|S x|_{2}^{2}=(1 \pm \epsilon)|x|_{2}^{2}$
- Space complexity is $1 / \epsilon^{2}$ words, each word is $O(\log n)$ bits

Example Problem: 1-Norm

- Want Z for which (1- $\varepsilon)|x|_{1} \leq Z \leq(1+\varepsilon)|x|_{1}$
- Sample a random Cauchy matrix S?
- Can store S with $\frac{1}{\epsilon}$ words of space [Kane, Nelson, W]
- If $\mathrm{x}_{\mathrm{i}} \leftarrow \mathrm{x}_{\mathrm{i}}+\Delta_{\mathrm{i}}$ in the stream, then $\mathrm{Sx} \leftarrow \mathrm{Sx}+\Delta_{\mathrm{i}} \mathrm{S}_{*, \mathrm{i}}$
- Space complexity is $1 / \epsilon^{2}$ words, each word is $O(\log n)$ bits ?
- At end of stream, output $|S x|_{1}$?
- Cauchy random variables have no concentration...

1-Norm Estimator

- Probability density function $f(x)$ of $|C|$ for a Cauchy random variable C is $\mathrm{f}(\mathrm{x})=\frac{2}{\pi\left(1+\mathrm{x}^{2}\right)}$
- Cumulative distribution function $\mathrm{F}(\mathrm{z})$:

$$
\mathrm{F}(\mathrm{z})=\int_{0}^{\mathrm{z}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{2}{\pi} \arctan (\mathrm{z})
$$

- Since $\tan (\pi / 4)=1, F(1)=1 / 2$, so median $(|C|)=1$
- If you take $r=\frac{\log \left(\frac{1}{\delta}\right)}{\epsilon^{2}}$ independent samples X_{1}, \ldots, X_{r} from F, and $X=$ median $_{i} X_{i}$, then ${ }^{\epsilon} F(X)$ in $[1 / 2-\epsilon, 1 / 2+\epsilon]$ with large probability
- $\mathrm{F}^{-1}(\mathrm{X})=\tan \left(\frac{\mathrm{X} \pi}{2}\right) \in[1-4 \epsilon, 1+4 \epsilon]$

