Robust Regression

Method of least absolute deviation (I, -regression)
Find x* that minimizes |Ax-b|, = X |b, — <A., x>|
Cost is less sensitive to outliers than least squares

Can solve via linear programming



Solving |, -regression via Linear Programming

Minimize (1,...,1) - (o + o )
Subiject to:
Ax+0o — o =b
o,o =0

Generic linear programming gives poly(nd) time

Want much faster time using sketching!



Well-Conditioned Bases

For an n x d matrix A, can choose an n x d matrix U with orthonormal
columns for which A= UW, and |Ux|, = |x|, for all x

Can we find a U for which A= UW and |Ux|; = |x|; for all x?

Let A= QW where Q has full column rank, and define |z|q; = |Qz|;
|z|g,1 is @ norm

LetC={z € RY: 1z|q1 < 1} be the unit ball of |.|q 4

C is a convex set which is symmetric about the origin

Lowner-John Theorem: can find an ellipsoid E such that: E € C € VdE,
where E={z € R%:zTFz < 1}

(ZTFZ)'5 <|zlg; < \/H(ZTFZ)'S
F = GGT since F defines an ellipsoid

Define U = QG™1



Well-Conditioned Bases

Recall U = QG™! where
(2TFz)” < |zlgq < Vd(z"Fz)” and F = GGT

Uxl, = 1Q6~x, = |Qzl, = [zlq, where 2 = Gx
7z Fz = (XT(G_l)TGTG (G Vx) =xTx = [x|3
So ||, < |Ux|; < Vd[xl,

So 52 < |xl, < |Ux|; < Vd|xl, < Vdlxl,



Net for £, — Ball

Consider the unit #;-ball B = {x € R : |x|; = 1}

Subset N is a y-net if for all x € B, there isay € N, such
that [x —y|; <Yy

Greedy construction of N

While there is a point x € B of distance larger than y
from every point in N, include x in N

The #,-ball of radius y/2 around every point in N is
contained in the #,-ball of radius 1+ y/2 around 09

Further, all such ball are disjoint

Ratio of volume of d-dimensional similar polytopes of
radius 1+ y/2 to radius y/2 is (1 +v/2)4/(y/2)9, so
IN| < (1 +v/2)4/(v/2)°



Net for £; — Subspace

Let A= UW for a well-conditioned basis U
Ix|; < |Ux|; < d|x|, for all x

Let N be a (y/d) —net for the unit £,-ball B

Let M = {Ux | x in N}, so I[M| < (1 +v/(2d))4/(y/(2d))¢

Claim: For every x in B, there is ay in M for which |Ux —y|; <Yy
Proof: Let X’ in B be such that [x — x'|; < y/d

Then |Ux — Ux'|; < d|x —x'|; <, using the
well-conditioned basis property. Sety = UxX’

0(d)
Y



Rough Algorithm Overview

\/y

= min, i, rd [Ux — b4

Miny jn rd |AX-b]4

Sample poly(d/e) rows of Ueb’
proportional to their |,-norm.

Compute po pute well-conditioned
approximation basis
Find x’ such tha Find a basis A=UW so that for all x
|AX’-b|; < poly(d) min, ;, x> in RY,

Let b’ = b-AX be the resroouor X4 /poly(d)< |Ux|; < poly(d) |x

——==( Now generic linear
programming is efﬁment
‘}]

Solve |,-regression on the sample, obtaining vector x, and output x




Will focus on showing how to quickly compute

A poly(d)-approximation

A well-conditioned basis



Sketching Theorem

Theorem

There is a probability space over (d log d) x n matrices
R such that for any nxd matrix A, with probability at least
99/100 we have for all x:

IAX|, < |RAx|, < d log d - |AX|,

Embedding
IS linear
is independent of A
preserves lengths of an infinite number of vectors



Application of Sketching Theorem

Computing a d(log d)-approximation
Compute RA and Rb

Solve x’ = argmin, |RAx-Rb|,

Main theorem applied to A°b implies X’ isa d log d —
approximation

RA, Rb have d log d rows, so can solve |,-regression
efficiently



Application of Sketching Theorem

Computing a well-conditioned basis
Compute RA

Compute W so that RAW is orthonormal (in the I,-sense)
Output U = AW
U = AW is well-conditioned because
|JAWX|, < |[RAWX|, < (d log d)"? [RAWX|, = (d log d)"? |x|, < (d log d)"? |x],
and

IAWX|, = [RAWx|/(d log d) = [RAWx|,/(d log d) = [x|,/(d log d) = |x|, /(d32log d)



Sketching Theorem

Theorem:

There is a probability space over (d log d) x n matrices R such that for any
nxd matrix A, with probability at least 99/100 we have for all x:

IAX|, < |RAX|, <d log d - |AX|,

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)



Cauchy Random Variables

Cauchy FOF

a4

pdf(z) = 1/((1+z?)) forzin (-4 ,4 )

Undefined expectation and
infinite variance

aA

4444444444444

1-stable:
If z,, z,, ..., z, are i.i.d. Cauchy, then fora 5 R",
a,z,+a,-z,+...+a, -z, ~|a|, -z, where z is Cauchy

Can generate as the ratio of two standard normal random variables



Proof of Sketching Theorem

By 1-stability,
For all rows r of R,
<r, Ax> = |Ax|, -Z/ (d log d),
where Z is a Cauchy S .a L

where Z,, ..., Z;,44 @re i.i.d. Cauchy

IRAX[; = |Ax|y 2 |£| / (d log d)
The |Z| are half-Cauchy

2, 1Z] = ©(d log d) with probability 1-exp(-d log d) by Chernoff

But the |Z| are heavy-tailed...



Proof of Sketching Theorem

2, |Z| is heavy-tailed, so |[RAX|; = [Ax|, 2 |Zj| / (d log d) may be large
Each |Z| has c.d.f. asymptotic to 1-©(1/z) for zin [0, 4 )

There exists a well-conditioned basis of A
Suppose w.l.o.g. the basis vectors are A.,, ..., A

IRAl4 = |Asly 72 121 / (d log d)

Let E;; be the event that |Z;;| < d°
Define Z{; = |Z;;| if |Z;| < d®, and Z{; = d* otherwise
E|Z;; | Ei;| = E|Zi; |Eij] = O(logd)

Let E be the event that for all i,j, E;; occurs
PrE] > 1 — =5

What is E|Z{; | E|?




Proof of Sketching Theorem

What is E|Zj; | E|?

E[Ziﬁj |Ei;] = E[Zi’,j |Ei;, E| Pr(E | E;;] + E[Zi’,j |E;j, ~E] Pr[—E | Ej;]
> E -Z, Ei,j' E] Pr[E | Ei,j]

|™1]

_ B[z [E] (Pr[Ei,j|E] Pr[E])

|1)] PI‘[Ei’j]

, logd
ZE[Zi,j|E]-<1— d)

So, E|Zj;|E] = 0(logd)
IRA|1 = |Asly - 25512 7 (d log d)
With constant probability, 2. ; [RA«|, = O(log d) 2, |A«];



Proof of Sketching Theorem

With constant probability, 2. . |RA«|, = O(log d) 2. |A«|

Recall A.4, ..., A is a well-conditioned basis, and we
showed the existence of such a basis earlier

We will use the Auerbach basis which always exists:
For all x, |x|, <|AXx|
2i |Asly = d

2 i IRA|; = O(d log d)
For all x, |RAX|; < % [RA; x| < [x], X |RA],

= |x], O(d log d)
= O(d log d) |Ax|,



Where are we?

Suffices to show for all x with [x|; = 1, that |[Ax|, £ |RAx|, <d log d - |Ax],
We know

d
Y
(2) for any fixed x, |RAx|; = |Ax|; with probability 1 — exp(—dlogd)
(3) for all x, |RAx|; = 0(d log d)|Ax|,

0(d)
(1) there is a y-net M, with [M| < ( ) of the set {Ax such that |x|; = 1}

Sety = 1/(d®logd) so [M| < d°®
By a union bound, for all y in M, |Ry|; = |yl;

Let x with |x|; = 1 be arbitrary. Let y in M satisfy [Ax —y|; <y = 1/(d3logd)

IRAx|; = [Ry|; — |R(Ax —y)|;
> |yl; — O(dlogd)|Ax —yl;
> |yl —0(dlogd)y
1
> |yl — O(ﬁ)
> |yly/2  (why?)



Sketching to solve I,-regression [CW, MM]

Most expensive operation is computing R*A where R is
the matrix of i.i.d. Cauchy random variables

All other operations are in the “smaller space”

Can speed this up by choosing R as follows:

00100100 C,
10000000 . C,
000-110-10 Cs
0-100 00 01

C,



Further sketching improvements [W/Z]

Can show you need a fewer number of sampled rows in
later steps if instead choose R as follows

Instead of diagonal of Cauchy random variables, choose
diagonal of reciprocals of exponential random variables

00100100 1/E,
1000 00 00 . 1/E,
000-110-10 1/E;
0-100 00 01 -

1/E

n



Turnstile Streaming Model

e Underlying n-dimensional vector x initialized to O"
* Long stream of updates x, < x. + A, for A, in {-1,1}

* At end of the stream, x is promised to be in the set {-M, -
M+1, ..., M-1, M}" for some bound M < poly(n)

e Qutput an approximation to f(x) whp

* Goal: use as little space (in bits) as possible
* Massive data: stock transactions, weather data, genomes



Example Problem: Norms

* Suppose you want x| P =Z_," [x[P

* Want Z for which (1-€) [x]| P <Z < (1+€) [x] ° with
probability > 9/10



Example Problem: Euclidean Norm

* Want Z for which (1-€) |x],* < Z < (1+€) |x],?

e Sample a random CountSketch matrix S with 1/€? rows
* Can store S efficiently using limited independence

* If x; < X; + Ajin the stream, then Sx « Sx + A;S,;

- At end of stream, output |Sx|3

» With probability at least 9/10, |Sx|5 = (1 + €)|x|3

e Space complexity is 1/€? words, each word is O(log n) bits



Example Problem: 1-Norm

* Want Z for which (1-€) |x|, <Z < (1+€) |x],

e Sample a random Cauchy matrix S?

e Can store S with % words of space [Kane, Nelson, W]

* If X; < X; + A;in the stream, then Sx « Sx + A;S,

* Space complexity is 1/€? words, each word is O(log n) bits ?
At end of stream, output |Sx|; ?

e Cauchy random variables have no concentration...



1-Norm Estimator

* Probability degsity function f(x) of |C| for a Cauchy random variable
Cisf(x) =

m(1+x2)

e Cumulative distribution function F(z):
z 2
F(z) = j f(x)dx = Earctan(z)
0

* Since tan(mt/4) = 1, F(1) =%, so median(|C|) =1

* If you taker = > independent samples X4, ..., X, from F, and X =
median;X; , then  F(X)in [1/2-€, 1/2+ €] with large probability

e F71(X) = tan (22) € [1 — 4€,1 + 4€]
2



