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Robust Regression

Method of least absolute deviation (l1 -regression)

 Find x* that minimizes |Ax-b|1 =  |bi – <Ai*, x>|

 Cost is less sensitive to outliers than least squares

 Can solve via linear programming
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Solving l1 -regression via Linear Programming

 Minimize (1,…,1) ∙ ( +  )
 Subject to: 

A x   = b
 , ≥ 0

 Generic linear programming gives poly(nd) time

 Want much faster time using sketching!

+

-

+ -

+

-
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Well-Conditioned Bases
 For an n x d matrix A, can choose an n x d matrix U with orthonormal 

columns for which A = UW, and Ux x for all x

 Can we find a U for which A = UW and Ux x for all x?

 Let A = QW where Q has full column rank, and define z , Qz
 z , is a norm

 Let C = {z ∈ R ∶ z , 1 be the unit ball of |. | ,

 C is a convex set which is symmetric about the origin
 Lowner-John Theorem: can find an ellipsoid E such that: E ⊆ C ⊆ dE, 

where E = {z ∈ R ∶ z Fz	 1

 z Fz . z , d z Fz .

 F GG since F defines an ellipsoid

 Define U QG 	
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 Recall U QG 	 where 

z Fz . z , d z Fz . and F GG

 Ux QG x Qz z , where z G x

 z Fz x G G G	 G x x x x 	

 So x Ux d x

 So x Ux| d x| d x

Well-Conditioned Bases
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 Consider the unit ℓ -ball B = x	 ∈ R ∶ x 1
 Subset N is a γ-net if for all x ∈ B, there is a y ∈ N, such 

that x y γ
 Greedy construction of N
 While there is a point x ∈ B of distance larger than γ

from every point in N, include x in N
 The ℓ -ball of radius γ/2 around every point in N is 

contained in the ℓ -ball of radius 1+ γ/2 around 0
 Further, all such ball are disjoint
 Ratio of volume of d-dimensional similar polytopes of 

radius 1+ γ/2 to radius /2 is 1 γ/2 / γ/2 , so 
N 1 γ/2 / γ/2

Net for Ball
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Net for 

 Let A = UW for a well-conditioned basis U
 x Ux d x for all x

 Let N be a γ/d net for the unit ℓ -ball B

 Let M = {Ux | x in N}, so	 M 1 γ/ 2d / γ/ 2d

 Claim: For every x in B, there is a y in M for which Ux y γ

 Proof: Let x’ in B be such that x x γ/d
Then Ux Ux′ d x x γ, using the 
well-conditioned basis property. Set y = Ux’

 M
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Rough Algorithm Overview

Compute poly(d)-
approximation

Compute well-conditioned
basis

Sample rows from the 
well-conditioned basis and 
the residual of the poly(d)-

approximation

Solve l1-regression on the sample, obtaining vector x, and output x

Takes nnz(A) time Takes poly(d/ε) time

Find x’ such that
|Ax’-b|1 poly(d) minx in Rd |Ax-b|1

Let b’ = b-Ax’ be the residual poly(d) |x|1

Find a basis A=UW so that for all x 
in Rd, 

|x|1/poly(d) |Ux|1 poly(d) |x|1

minx in Rd |Ax-b|1 = minx in Rd |Ux – b’|1

Sample poly(d/ε) rows of U◦b’ 
proportional to their l1-norm.

Now generic linear 
programming is efficient
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Will focus on showing how to quickly compute

1. A poly(d)-approximation

2. A well-conditioned basis
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Sketching Theorem

Theorem
 There is a probability space over (d log d)  n matrices 

R such that for any nd matrix A, with probability at least 
99/100 we have for all x:

|Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1

Embedding
 is linear
 is independent of A
 preserves lengths of an infinite number of vectors
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Application of Sketching Theorem

Computing a d(log d)-approximation

 Compute RA and Rb

 Solve x’ = argminx |RAx-Rb|1

 Main theorem applied to A◦b implies x’ is a d log d –
approximation

 RA, Rb have d log d rows, so can solve l1-regression 
efficiently
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Application of Sketching Theorem

Computing a well-conditioned basis

1. Compute RA

2. Compute W so that RAW is orthonormal (in the l2-sense)

3. Output U = AW

U = AW is well-conditioned because

|AWx|1 |RAWx|1 (d log d)1/2 |RAWx|2 = (d log d)1/2 |x|2 (d log d)1/2 |x|1

and

|AWx|1 	|RAWx|1/(d log d) � |RAWx|2/(d log d) = |x|2/(d log d) 	|x|1 /(d3/2 log d)
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Theorem:
 There is a probability space over (d log d)  n matrices R such that for any 

nd matrix A, with probability at least 99/100 we have for all x:

|Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)

Sketching Theorem
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Cauchy Random Variables

 pdf(z) = 1/(π(1+z2)) for z in (-� , � )

 Undefined expectation and 
infinite variance

 1-stable:
 If z1, z2, …, zn are i.i.d. Cauchy, then for a � Rn,

a1⋅z1 + a2 ⋅	z2 + … + an ⋅	zn �∼	|a|1 ⋅	z, where z is Cauchy

 Can generate as the ratio of two standard normal random variables

z
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Proof of Sketching Theorem

 By 1-stability,
 For all rows r of R,

 <r, Ax> = |Ax|1 ⋅Z / (d log d), 
where Z is a Cauchy

 RAx =�(|Ax|1 ⋅	Z1, …, |Ax|1 ⋅ Zd log d) / (d log d),
where Z1, …, Zd log d are i.i.d. Cauchy

 |RAx|1 = |Ax|1 j |Zj| / (d log d)
 The |Zj| are half-Cauchy

 j |Zj| = (d log d) with probability 1-exp(-d log d) by Chernoff

 But the |Zj| are heavy-tailed…

z
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Proof of Sketching Theorem 
 j |Zj| is heavy-tailed, so |RAx|1 = |Ax|1 j |Zj| / (d log d) may be large

 Each |Zj| has c.d.f. asymptotic to 1-Θ(1/z) for z in [0, � )

 There exists a well-conditioned basis of A 
 Suppose w.l.o.g. the basis vectors are A*1, …, A*d

 |RA*i|1 �= |A*i|1 �j |Zi,j| / (d log d)

 Let E , be the event that |Z , | d
 Define Z , |Z , | if |Z , | d , and Z , d otherwise
 E Z , 	|	E , E Z , 	 E , O log d 	

 Let E be the event that for all i,j, E , occurs
 Pr E 1 	

 What is E Z , 	|	E ?
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Proof of Sketching Theorem

 What is E Z , 	|	E ?

 E Z , E , E Z , E , , E Pr E	 E , E Z , E , , E Pr E	 E ,

																			 E Z , E , , E Pr E	 E ,

E Z , E ⋅
E , E

,

E Z , E ⋅ 1
log	d
d

 So, E Z , E O log d 	
 |RA*i|1 �= |A*i|1 ⋅ i,j |Zi,j| / (d log d)
 With constant probability,  i |RA*i|1 = O(log d)  i |A*i|1
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Proof of Sketching Theorem 

 With constant probability,  i |RA*i|1 = O(log d)  i |A*i|1

 Recall A*1, …, A*d is a well-conditioned basis, and we 
showed the existence of such a basis earlier

 We will use the Auerbach basis which always exists:
 For all x, |x|� |Ax|1
 i |A*i|1 = d

  i |RA*i|1 = O(d log d)

 For all x, |RAx|1 i |RA*i xi|	 |x|� i |RA*i|1
= |x|� O(d log d) 
= O(d log d) |Ax|1
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 Suffices to show for all x with x 1, that |Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1
 We know

 (1) there is a γ-net M, with M , of the set {Ax such that x 1}

 (2) for any fixed x, RAx Ax with probability 1 exp	 d log d
 (3) for all x, RAx O d	log	d Ax

 Set γ 1/ d log d so M d
 By a union bound, for all y in M, Ry y

 Let x with x 1 be arbitrary. Let y in M satisfy Ax y γ 	1/ d log d

 RAx Ry R Ax y
y O d log d Ax y
y 	 O d log d γ

y 	 O

y /2 (why?)

Where are we?
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Sketching to solve l1-regression [CW, MM]

 Most expensive operation is computing R*A where R is 
the matrix of i.i.d. Cauchy random variables

 All other operations are in the “smaller space”

 Can speed this up by choosing R as follows:

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

C1
C2

C3
…

Cn
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Further sketching improvements [WZ] 

 Can show you need a fewer number of sampled rows in 
later steps if instead choose R as follows

 Instead of diagonal of Cauchy random variables, choose 
diagonal of reciprocals of exponential random variables

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

1/E1
1/E2

1/E3
…

1/En



Turnstile Streaming Model

• Underlying n‐dimensional vector x initialized to 0n

• Long stream of updates xi←	xi + Δi for Δi in {‐1,1}

• At end of the stream, x is promised to be in the set  {‐M, ‐
M+1, …, M‐1, M}n for some bound M  	poly(n)

• Output an approximation to f(x) whp

• Goal: use as little space (in bits) as possible
• Massive data: stock transactions, weather data, genomes



Example Problem: Norms

• Suppose you want |x|pp = Ʃi=1n |xi|p

• Want Z for which (1‐Ɛ) |x|pp 	Z  	(1+Ɛ) |x|pp with 
probability > 9/10
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Example Problem: Euclidean Norm

• Want Z for which (1‐Ɛ) |x|22 	Z  	(1+Ɛ) |x|22

• Sample a random CountSketch matrix S with 1/ϵ rows

• Can store S efficiently using limited independence

• If xi ←	xi + Δi in the stream, then Sx ← Sx Δ S∗,

• At end of stream, output Sx

• With probability at least 9/10,  Sx 1 ϵ x

• Space complexity is 1/ϵ words, each word is O(log n) bits
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Example Problem: 1‐Norm

• Want Z for which (1‐Ɛ) |x|1 	Z  	(1+Ɛ) |x|1

• Sample a random Cauchy matrix S?

• Can store S with  words of space [Kane, Nelson, W]

• If xi ←	xi + Δi in the stream, then Sx ← Sx Δ S∗,

• Space complexity is 1/ϵ words, each word is O(log n) bits ?

• At end of stream, output Sx ?

• Cauchy random variables have no concentration…
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1‐Norm Estimator

• Probability density function f(x) of |C| for a Cauchy random variable 
C is f x

• Cumulative distribution function F(z):

F z 	 f x dx
2
π arctan z

• Since tan(π/4 1, F(1) = ½, so median(|C|) = 1

• If you take r 	 independent samples X ,… , X from F, and X
median X 	, then     F(X) in [1/2‐ϵ, 1/2+ ϵ with large probability

• F X tan ∈ 1 4ϵ, 1 4ϵ


