Robust Regression

Method of least absolute deviation (I₁ -regression)

- Find x* that minimizes $|Ax-b|_1 = \Sigma |b_i \langle A_{i^*}, x \rangle|$
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming

Solving I_1 -regression via Linear Programming

- Minimize $(1,...,1) \cdot (\alpha^+ + \alpha^-)$
- Subject to:

$$A x + \alpha^{+} - \alpha^{-} = b$$
$$\alpha^{+}, \alpha^{-} \ge 0$$

- Generic linear programming gives poly(nd) time
- Want much faster time using sketching!

Well-Conditioned Bases

- For an n x d matrix A, can choose an n x d matrix U with orthonormal columns for which A = UW, and $|Ux|_2 = |x|_2$ for all x
- Can we find a U for which A = UW and $|Ux|_1 \approx |x|_1$ for all x?
- Let A = QW where Q has full column rank, and define $|z|_{0,1} = |Qz|_1$
 - |z|_{Q,1} is a norm
- Let C = $\{z \in \mathbb{R}^d : |z|_{Q,1} \le 1\}$ be the unit ball of $|.|_{Q,1}$
- C is a convex set which is symmetric about the origin
 - Lowner-John Theorem: can find an ellipsoid E such that: $E \subseteq C \subseteq \sqrt{dE}$, where E = {z $\in R^d : z^TFz \leq 1$ }
 - $(z^T F z)^{.5} \leq |z|_{Q,1} \leq \sqrt{d} (z^T F z)^{.5}$
 - $F = GG^T$ since F defines an ellipsoid
- Define $U = QG^{-1}$

Well-Conditioned Bases

• Recall
$$U = QG^{-1}$$
 where

$$(z^TFz)^{.5} \le |z|_{Q,1} \le \sqrt{d}(z^TFz)^{.5}$$
 and $F = GG^T$

•
$$|Ux|_1 = |QG^{-1}x|_1 = |Qz|_1 = |z|_{Q,1}$$
 where $z = G^{-1}x$

•
$$z^{T}Fz = (x^{T}(G^{-1})^{T}G^{T}G(G^{-1})x) = x^{T}x = |x|_{2}^{2}$$

• So
$$|x|_2 \le |Ux|_1 \le \sqrt{d}|x|_2$$

• So
$$\frac{|\mathbf{x}|_1}{\sqrt{d}} \le |\mathbf{x}|_2 \le |\mathbf{U}\mathbf{x}|_1 \le \sqrt{d} |\mathbf{x}|_2 \le \sqrt{d} |\mathbf{x}|_1$$

Net for ℓ_1 – Ball

- Consider the unit ℓ_1 -ball B = {x \in \mathbb{R}^d : |x|_1 = 1}
- Subset N is a γ-net if for all x ∈ B, there is a y ∈ N, such that |x − y|₁ ≤ γ
- Greedy construction of N
 - While there is a point x ∈ B of distance larger than γ from every point in N, include x in N
- The ℓ_1 -ball of radius $\gamma/2$ around every point in N is contained in the ℓ_1 -ball of radius 1+ $\gamma/2$ around 0^d
- Further, all such ball are disjoint
- Ratio of volume of d-dimensional similar polytopes of radius 1+ $\gamma/2$ to radius $\gamma/2$ is $(1 + \gamma/2)^d/(\gamma/2)^d$, so $|N| \leq (1 + \gamma/2)^d/(\gamma/2)^d$

Net for ℓ_1 – Subspace

- Let A = UW for a well-conditioned basis U
 - $|\mathbf{x}|_1 \leq |\mathbf{U}\mathbf{x}|_1 \leq d|\mathbf{x}|_1$ for all \mathbf{x}
- Let N be a (γ/d) –net for the unit ℓ_1 -ball B
- Let M = {Ux | x in N}, so $|M| \le (1 + \gamma/(2d))^d/(\gamma/(2d))^d$
- Claim: For every x in B, there is a y in M for which $|Ux y|_1 \le \gamma$
- Proof: Let x' in B be such that |x − x'|₁ ≤ γ/d Then |Ux − Ux'|₁ ≤ d|x − x'|₁ ≤ γ, using the well-conditioned basis property. Set y = Ux'

$$|\mathsf{M}| \le \left(\frac{\mathrm{d}}{\gamma}\right)^{\mathsf{O}(\mathrm{d})}$$

Rough Algorithm Overview

Will focus on showing how to quickly compute

- 1. A poly(d)-approximation
- 2. A well-conditioned basis

Sketching Theorem

Theorem

 There is a probability space over (d log d) × n matrices R such that for any n×d matrix A, with probability at least 99/100 we have for all x:

 $|Ax|_1 \leq |RAx|_1 \leq d \log d \cdot |Ax|_1$

Embedding

- is linear
- is independent of A
- preserves lengths of an infinite number of vectors

Application of Sketching Theorem

Computing a d(log d)-approximation

- Compute RA and Rb
- Solve x' = argmin_x |RAx-Rb|₁
- Main theorem applied to A^ob implies x' is a d log d approximation
- RA, Rb have d log d rows, so can solve I₁-regression efficiently

Application of Sketching Theorem

Computing a well-conditioned basis

- 1. Compute RA
- 2. Compute W so that RAW is orthonormal (in the l_2 -sense)
- 3. Output U = AW

U = AW is well-conditioned because

 $|AWx|_1 \le |RAWx|_1 \le (d \log d)^{1/2} |RAWx|_2 = (d \log d)^{1/2} |x|_2 \le (d \log d)^{1/2} |x|_1$

and

 $|AWx|_1 \ge |RAWx|_1/(d \log d) \ge |RAWx|_2/(d \log d) = |x|_2/(d \log d) \ge |x|_1/(d^{3/2} \log d)_{13}$

Sketching Theorem

Theorem:

 There is a probability space over (d log d) × n matrices R such that for any n×d matrix A, with probability at least 99/100 we have for all x:

 $|Ax|_1 \leq |RAx|_1 \leq d \log d \cdot |Ax|_1$

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)

Cauchy Random Variables

 Undefined expectation and infinite variance

- 1-stable:
 - If $z_1, z_2, ..., z_n$ are i.i.d. Cauchy, then for a 5 Rⁿ, $a_1 \cdot z_1 + a_2 \cdot z_2 + ... + a_n \cdot z_n \sim |a|_1 \cdot z$, where z is Cauchy
- Can generate as the ratio of two standard normal random variables

- $|RAx|_1 = |Ax|_1 \sum_j |Z_j| / (d \log d)$
 - The |Z_i| are half-Cauchy
- $\sum_{i} |Z_{i}| = \Omega(d \log d)$ with probability 1-exp(-d log d) by Chernoff
- But the |Z_i| are heavy-tailed...

- $\sum_{i} |Z_{i}|$ is heavy-tailed, so $|RAx|_{1} = |Ax|_{1} \sum_{i} |Z_{i}| / (d \log d)$ may be large
- Each $|Z_i|$ has c.d.f. asymptotic to 1- $\Theta(1/z)$ for z in [0, 4)
- There exists a well-conditioned basis of A
 - Suppose w.I.o.g. the basis vectors are A_{*1}, ..., A_{*d}
- $|RA_{*i}|_1 \cong |A_{*i}|_1 f \sum_j |Z_{i,j}| / (d \log d)$
- Let $E_{i,j}$ be the event that $|Z_{i,j}| \le d^3$
 - Define $Z'_{i,j} = |Z_{i,j}|$ if $|Z_{i,j}| \le d^3$, and $Z'_{i,j} = d^3$ otherwise
 - $E[Z_{i,j} | E_{i,j}] = E[Z'_{i,j} | E_{i,j}] = O(\log d)$
- Let E be the event that for all i,j, E_{i,j} occurs

•
$$\Pr[E] \ge 1 - \frac{\log d}{d}$$

What is E[Z'_{i,j} | E]?

- What is $E[Z'_{i,j} | E]$?
- $E[Z'_{i,j}|E_{i,j}] = E[Z'_{i,j}|E_{i,j}, E] Pr[E | E_{i,j}] + E[Z'_{i,j}|E_{i,j}, \neg E] Pr[\neg E | E_{i,j}]$ $\ge E[Z'_{i,j}|E_{i,j}, E] Pr[E | E_{i,j}]$

$$= E[Z'_{i,j}|E] \cdot \left(\frac{\Pr[E_{i,j}|E]\Pr[E]}{\Pr[E_{i,j}]}\right)$$
$$\geq E[Z'_{i,j}|E] \cdot \left(1 - \frac{\log d}{d}\right)$$

- So, $E[Z'_{i,j}|E] = O(\log d)$
- $|RA_{*i}|_1 \cong |A_{*i}|_1 \cdot \sum_{i,j} |Z_{i,j}| / (d \log d)$
- With constant probability, $\sum_{i} |RA_{i}|_{1} = O(\log d) \sum_{i} |A_{i}|_{1}$

- With constant probability, $\sum_{i} |RA_{i}|_{1} = O(\log d) \sum_{i} |A_{i}|_{1}$
- Recall A_{*1}, ..., A_{*d} is a well-conditioned basis, and we showed the existence of such a basis earlier
- We will use the Auerbach basis which always exists:
 - For all x, $|\mathbf{x}|_4 \leq |\mathbf{A}\mathbf{x}|_1$
 - $\sum_i |A_{*i}|_1 = d$
- $\sum_{i} |RA_{*i}|_1 = O(d \log d)$
- For all x, $|RAx|_1 \le \sum_i |RA_{*_i} x_i| \le |x|_4 \sum_i |RA_{*_i}|_1$ = $|x|_4 O(d \log d)$ = $O(d \log d) |Ax|_1$

Where are we?

- Suffices to show for all x with $|x|_1 = 1$, that $|Ax|_1 \le |RAx|_1 \le d \log d \cdot |Ax|_1$
- We know
 - (1) there is a γ -net M, with $|M| \le \left(\frac{d}{\gamma}\right)^{O(d)}$, of the set {Ax such that $|x|_1 = 1$ }
 - (2) for any fixed x, $|RAx|_1 \ge |Ax|_1$ with probability $1 \exp(-d \log d)$
 - (3) for all x, $|RAx|_1 = O(d \log d)|Ax|_1$
- Set $\gamma = 1/(d^3 \log d)$ so $|M| \le d^{O(d)}$
 - By a union bound, for all y in M, $|Ry|_1 \ge |y|_1$
- Let x with $|x|_1 = 1$ be arbitrary. Let y in M satisfy $|Ax y|_1 \le \gamma = 1/(d^3 \log d)$

•
$$|RAx|_1 \ge |Ry|_1 - |R(Ax - y)|_1$$

 $\ge |y|_1 - O(d \log d)|Ax - y|_1$
 $\ge |y|_1 - O(d \log d)\gamma$
 $\ge |y|_1 - O\left(\frac{1}{d^2}\right)$
 $\ge |y|_1/2 \quad (why?)$

Sketching to solve I₁-regression [CW, MM]

- Most expensive operation is computing R*A where R is the matrix of i.i.d. Cauchy random variables
- All other operations are in the "smaller space"
- Can speed this up by choosing R as follows:

Further sketching improvements [WZ]

- Can show you need a fewer number of sampled rows in later steps if instead choose R as follows
- Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables

Turnstile Streaming Model

- Underlying n-dimensional vector x initialized to 0ⁿ
- Long stream of updates $x_i \leftarrow x_i + \Delta_i$ for Δ_i in $\{-1, 1\}$
- At end of the stream, x is promised to be in the set $\{-M, -M+1, ..., M-1, M\}^n$ for some bound $M \le poly(n)$
- Output an approximation to f(x) whp
- Goal: use as little space (in bits) as possible
 - Massive data: stock transactions, weather data, genomes

Example Problem: Norms

- Suppose you want $|x|_p^p = \sum_{i=1}^n |x_i|^p$
- Want Z for which (1-E) $|x|_p^p \le Z \le (1+E) |x|_p^p$ with probability > 9/10

Example Problem: Euclidean Norm

- Want Z for which (1- ϵ) $|x|_2^2 \le Z \le (1+\epsilon) |x|_2^2$
- Sample a random CountSketch matrix S with $1/\epsilon^2$ rows
- Can store S efficiently using limited independence
- If $x_i \leftarrow x_i + \Delta_i$ in the stream, then $Sx \leftarrow Sx + \Delta_i S_{*,i}$
- At end of stream, output |Sx|²₂
- With probability at least 9/10, $|Sx|_2^2 = (1 \pm \epsilon)|x|_2^2$
- Space complexity is $1/\epsilon^2$ words, each word is O(log n) bits

Example Problem: 1-Norm

- Want Z for which (1- \mathcal{E}) $|x|_1 \le Z \le (1+\mathcal{E}) |x|_1$
- Sample a random Cauchy matrix S?
- Can store S with $\frac{1}{\epsilon}$ words of space [Kane, Nelson, W]
- If $x_i \leftarrow x_i + \Delta_i$ in the stream, then $Sx \leftarrow Sx + \Delta_i S_{*,i}$
- Space complexity is $1/\epsilon^2$ words, each word is O(log n) bits ?
- At end of stream, output $|Sx|_1$?
- Cauchy random variables have no concentration ...

1-Norm Estimator

- Probability density function f(x) of |C| for a Cauchy random variable C is $f(x) = \frac{2}{\pi(1+x^2)}$
- Cumulative distribution function F(z):

$$F(z) = \int_0^z f(x) dx = \frac{2}{\pi} \arctan(z)$$

- Since $tan(\pi/4) = 1$, $F(1) = \frac{1}{2}$, so median(|C|) = 1
- If you take $r = \frac{\log(\frac{1}{\delta})}{\epsilon^2}$ independent samples X_1, \dots, X_r from F, and X =median_i X_i , then $\epsilon^2 F(X)$ in [1/2- ϵ , 1/2+ ϵ] with large probability

•
$$F^{-1}(X) = \tan\left(\frac{X\pi}{2}\right) \in [1 - 4\epsilon, 1 + 4\epsilon]$$