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Robust Regression

Method of least absolute deviation (l1 -regression)

 Find x* that minimizes |Ax-b|1 =  |bi – <Ai*, x>|

 Cost is less sensitive to outliers than least squares

 Can solve via linear programming
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Solving l1 -regression via Linear Programming

 Minimize (1,…,1) ∙ ( +  )
 Subject to: 

A x   = b
 , ≥ 0

 Generic linear programming gives poly(nd) time

 Want much faster time using sketching!

+

-

+ -

+

-



105

Well-Conditioned Bases
 For an n x d matrix A, can choose an n x d matrix U with orthonormal 

columns for which A = UW, and Ux ଶ ൌ x ଶ for all x

 Can we find a U for which A = UW and Ux ଵ ൎ x ଵ for all x?

 Let A = QW where Q has full column rank, and define z ୕,ଵ ൌ Qz ଵ
 z ୕,ଵ is a norm

 Let C = {z ∈ Rୢ ∶ z ୕,ଵ ൑ 1ሽ be the unit ball of |. |୕,ଵ

 C is a convex set which is symmetric about the origin
 Lowner-John Theorem: can find an ellipsoid E such that: E ⊆ C ⊆ dE, 

where E = {z ∈ Rୢ ∶ z୘Fz	 ൑ 1ሽ

 z୘Fz .ହ ൑ z ୕,ଵ ൑ d z୘Fz .ହ

 F ൌ GG୘ since F defines an ellipsoid

 Define U ൌ QGିଵ	
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 Recall U ൌ QGିଵ	 where 

z୘Fz .ହ ൑ z ୕,ଵ ൑ d z୘Fz .ହ and F ൌ GG୘

 Ux ଵ ൌ QGିଵx ଵ ൌ Qz ଵ ൌ z ୕,ଵ where z ൌ Gିଵx

 z୘Fz ൌ x୘ሺGିଵ ୘G୘G	 Gିଵ xሻ ൌ x୘x ൌ x ଶ
ଶ	

 So x ଶ ൑ Ux ଵ ൑ d x ଶ

 So ୶ భ
ୢ
൑ x ଶ ൑ Ux|ଵ ൑ d x|ଶ ൑ d x ଵ

Well-Conditioned Bases
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 Consider the unit ℓଵ-ball B = ሼx	 ∈ Rୢ ∶ x ଵ ൌ 1ሽ
 Subset N is a γ-net if for all x ∈ B, there is a y ∈ N, such 

that x െ y ଵ ൑ γ
 Greedy construction of N
 While there is a point x ∈ B of distance larger than γ

from every point in N, include x in N
 The ℓଵ-ball of radius γ/2 around every point in N is 

contained in the ℓଵ-ball of radius 1+ γ/2 around 0ୢ

 Further, all such ball are disjoint
 Ratio of volume of d-dimensional similar polytopes of 

radius 1+ γ/2 to radius 2/ߛ is 1 ൅ γ/2 ୢ/ሺγ/2ሻୢ, so 
N ൑ 1 ൅ γ/2 ୢ/ሺγ/2ሻୢ

Net for ଵ Ball
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Net for ଵ

 Let A = UW for a well-conditioned basis U
 x ଵ ൑ Ux ଵ ൑ d x ଵ for all x

 Let N be a ሺγ/dሻ െnet for the unit ℓଵ-ball B

 Let M = {Ux | x in N}, so	 M ൑ 1 ൅ γ/ሺ2dሻ ୢ/ሺγ/ሺ2dሻሻୢ

 Claim: For every x in B, there is a y in M for which Ux െ y ଵ ൑ γ

 Proof: Let x’ in B be such that x െ xᇱ ଵ ൑ γ/d
Then Ux െ Ux′ ଵ ൑ d x െ xᇱ ଵ ൑ γ, using the 
well-conditioned basis property. Set y = Ux’

 M ൑ ୢ
ஓ

୓ሺୢሻ
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Rough Algorithm Overview

Compute poly(d)-
approximation

Compute well-conditioned
basis

Sample rows from the 
well-conditioned basis and 
the residual of the poly(d)-

approximation

Solve l1-regression on the sample, obtaining vector x, and output x

Takes nnz(A) time Takes poly(d/ε) time

൑
Find x’ such that

|Ax’-b|1 ൑ poly(d) minx in Rd |Ax-b|1
Let b’ = b-Ax’ be the residual ൑ ൑ poly(d) |x|1

Find a basis A=UW so that for all x 
in Rd, 

|x|1/poly(d) ൑ |Ux|1 ൑ poly(d) |x|1

minx in Rd |Ax-b|1 = minx in Rd |Ux – b’|1

Sample poly(d/ε) rows of U◦b’ 
proportional to their l1-norm.

Now generic linear 
programming is efficient
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Will focus on showing how to quickly compute

1. A poly(d)-approximation

2. A well-conditioned basis
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Sketching Theorem

Theorem
 There is a probability space over (d log d)  n matrices 

R such that for any nd matrix A, with probability at least 
99/100 we have for all x:

|Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1

Embedding
 is linear
 is independent of A
 preserves lengths of an infinite number of vectors
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Application of Sketching Theorem

Computing a d(log d)-approximation

 Compute RA and Rb

 Solve x’ = argminx |RAx-Rb|1

 Main theorem applied to A◦b implies x’ is a d log d –
approximation

 RA, Rb have d log d rows, so can solve l1-regression 
efficiently
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Application of Sketching Theorem

Computing a well-conditioned basis

1. Compute RA

2. Compute W so that RAW is orthonormal (in the l2-sense)

3. Output U = AW

U = AW is well-conditioned because

|AWx|1 ൑ |RAWx|1 ൑ (d log d)1/2 |RAWx|2 = (d log d)1/2 |x|2 ൑ (d log d)1/2 |x|1

and

|AWx|1 ൒	|RAWx|1/(d log d) �൒ |RAWx|2/(d log d) = |x|2/(d log d) ൒	|x|1 /(d3/2 log d)
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Theorem:
 There is a probability space over (d log d)  n matrices R such that for any 

nd matrix A, with probability at least 99/100 we have for all x:

|Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)

Sketching Theorem
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Cauchy Random Variables

 pdf(z) = 1/(π(1+z2)) for z in (-� , � )

 Undefined expectation and 
infinite variance

 1-stable:
 If z1, z2, …, zn are i.i.d. Cauchy, then for a � Rn,

a1⋅z1 + a2 ⋅	z2 + … + an ⋅	zn �∼	|a|1 ⋅	z, where z is Cauchy

 Can generate as the ratio of two standard normal random variables

z
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Proof of Sketching Theorem

 By 1-stability,
 For all rows r of R,

 <r, Ax> = |Ax|1 ⋅Z / (d log d), 
where Z is a Cauchy

 RAx =�(|Ax|1 ⋅	Z1, …, |Ax|1 ⋅ Zd log d) / (d log d),
where Z1, …, Zd log d are i.i.d. Cauchy

 |RAx|1 = |Ax|1 j |Zj| / (d log d)
 The |Zj| are half-Cauchy

 j |Zj| = (d log d) with probability 1-exp(-d log d) by Chernoff

 But the |Zj| are heavy-tailed…

z
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Proof of Sketching Theorem 
 j |Zj| is heavy-tailed, so |RAx|1 = |Ax|1 j |Zj| / (d log d) may be large

 Each |Zj| has c.d.f. asymptotic to 1-Θ(1/z) for z in [0, � )

 There exists a well-conditioned basis of A 
 Suppose w.l.o.g. the basis vectors are A*1, …, A*d

 |RA*i|1 �= |A*i|1 �j |Zi,j| / (d log d)

 Let E୧,୨ be the event that |Z୧,୨| ൑ dଷ

 Define Z୧,୨ᇱ ൌ |Z୧,୨| if |Z୧,୨| ൑ dଷ, and Z୧,୨ᇱ ൌ dଷ otherwise
 E Z୧,୨ 	|	E୧,୨ ൌ E Z୧,୨ᇱ 	 E୧,୨ሿ ൌ Oሺlog dሻ	

 Let E be the event that for all i,j, E୧,୨ occurs
 Pr E ൒ 1 െ ୪୭୥	ୢ

ୢ

 What is E Z୧,୨ᇱ 	|	E ?
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Proof of Sketching Theorem

 What is E Z୧,୨ᇱ 	|	E ?

 E Z୧,୨ᇱ E୧,୨ ൌ E Z୧,୨ᇱ E୧,୨, E Pr E	 E୧,୨ሿ ൅ E Z୧,୨ᇱ E୧,୨, ൓E Pr ൓E	 E୧,୨ሿ

																			൒ E Z୧,୨ᇱ E୧,୨, E Pr E	 E୧,୨ሿ

ൌ E Z୧,୨ᇱ E ⋅
୔୰ E୧,୨ E ୔୰ ୉

୔୰ ୉౟,ౠ

൒ E Z୧,୨ᇱ E ⋅ 1 െ
log	d
d

 So, E Z୧,୨ᇱ E ൌ Oሺlog dሻ	
 |RA*i|1 �= |A*i|1 ⋅ i,j |Zi,j| / (d log d)
 With constant probability,  i |RA*i|1 = O(log d)  i |A*i|1



119

Proof of Sketching Theorem 

 With constant probability,  i |RA*i|1 = O(log d)  i |A*i|1

 Recall A*1, …, A*d is a well-conditioned basis, and we 
showed the existence of such a basis earlier

 We will use the Auerbach basis which always exists:
 For all x, |x|� ൑|Ax|1
 i |A*i|1 = d

  i |RA*i|1 = O(d log d)

 For all x, |RAx|1 ൑ i |RA*i xi|	൑ |x|� i |RA*i|1
= |x|� O(d log d) 
= O(d log d) |Ax|1
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 Suffices to show for all x with x ଵ ൌ 1, that |Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1
 We know

 (1) there is a γ-net M, with M ൑ ୢ
ஓ

୓ሺୢሻ
, of the set {Ax such that x ଵ ൌ 1}

 (2) for any fixed x, RAx ଵ ൒ Ax ଵ with probability 1 െ exp	ሺെd log dሻ
 (3) for all x, RAx ଵ ൌ O d	log	d Ax ଵ

 Set γ ൌ 1/ሺdଷ log dሻ so M ൑ d୓ሺୢሻ

 By a union bound, for all y in M, Ry ଵ ൒ y ଵ

 Let x with x ଵ ൌ 1 be arbitrary. Let y in M satisfy Ax െ y ଵ ൑ γ ൌ 	1/ሺdଷ log dሻ

 RAx ଵ ൒ Ry ଵ െ R Ax െ y ଵ

൒ y ଵ െ O d log d Ax െ y ଵ

൒ y ଵ 	െ O d log d γ

൒ y ଵ 	െ O ଵ
ୢమ

൒ y ଵ/2 (why?)

Where are we?
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Sketching to solve l1-regression [CW, MM]

 Most expensive operation is computing R*A where R is 
the matrix of i.i.d. Cauchy random variables

 All other operations are in the “smaller space”

 Can speed this up by choosing R as follows:

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

C1
C2

C3
…

Cn
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Further sketching improvements [WZ] 

 Can show you need a fewer number of sampled rows in 
later steps if instead choose R as follows

 Instead of diagonal of Cauchy random variables, choose 
diagonal of reciprocals of exponential random variables

0 0 1 0  0 1  0 0 
1 0 0 0  0 0  0 0
0 0 0 -1 1 0 -1 0
0-1 0 0  0 0  0 1

1/E1
1/E2

1/E3
…

1/En



Turnstile Streaming Model

• Underlying n‐dimensional vector x initialized to 0n

• Long stream of updates xi←	xi + Δi for Δi in {‐1,1}

• At end of the stream, x is promised to be in the set  {‐M, ‐
M+1, …, M‐1, M}n for some bound M ൑	poly(n)

• Output an approximation to f(x) whp

• Goal: use as little space (in bits) as possible
• Massive data: stock transactions, weather data, genomes



Example Problem: Norms

• Suppose you want |x|pp = Ʃi=1n |xi|p

• Want Z for which (1‐Ɛ) |x|pp൑	Z ൑	(1+Ɛ) |x|pp with 
probability > 9/10
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Example Problem: Euclidean Norm

• Want Z for which (1‐Ɛ) |x|22 ൑	Z ൑	(1+Ɛ) |x|22

• Sample a random CountSketch matrix S with 1/ϵଶ rows

• Can store S efficiently using limited independence

• If xi ←	xi + Δi in the stream, then Sx ← Sx ൅ Δ୧S∗,୧

• At end of stream, output Sx ଶ
ଶ

• With probability at least 9/10,  Sx ଶ
ଶ ൌ 1 േ ϵ x ଶ

ଶ

• Space complexity is 1/ϵଶ words, each word is O(log n) bits
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Example Problem: 1‐Norm

• Want Z for which (1‐Ɛ) |x|1൑	Z ൑	(1+Ɛ) |x|1

• Sample a random Cauchy matrix S?

• Can store S with ଵ
஫
words of space [Kane, Nelson, W]

• If xi ←	xi + Δi in the stream, then Sx ← Sx ൅ Δ୧S∗,୧

• Space complexity is 1/ϵଶ words, each word is O(log n) bits ?

• At end of stream, output Sx ଵ ?

• Cauchy random variables have no concentration…
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1‐Norm Estimator

• Probability density function f(x) of |C| for a Cauchy random variable 
C is f x ൌ ଶ

஠ ଵା୶మ

• Cumulative distribution function F(z):

F z ൌ න	
଴

୸
f x dx ൌ

2
π arctan z

• Since tan(π/4ሻ ൌ 1, F(1) = ½, so median(|C|) = 1

• If you take r ൌ 	
୪୭୥ భ

ಌ
஫మ

independent samples Xଵ,… , X୰ from F, and X ൌ
median୧X୧	, then     F(X) in [1/2‐ϵ, 1/2+ ϵሿ with large probability

• Fିଵ X ൌ tan ଡ଼஠
ଶ

∈ 1 െ 4ϵ, 1 ൅ 4ϵ


