Outline

- Quick recap of ℓ_1-regression, and how to speed it up
- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model
L_1 Regression Algorithm Recap

- Compute poly(d)-approximation
- Compute well-conditioned basis
- Sample rows from the well-conditioned basis and the residual of the poly(d)-approximation
- Solve l_1-regression on the sample, obtaining vector x, and output x

We saw how to solve the above problems by sketching by a matrix of i.i.d. Cauchy random variables
Sketching to solve l_1-regression [CW, MM]

- Most expensive operation is computing R^*A where R is the matrix of i.i.d. Cauchy random variables
- All other operations are in the “smaller space”
- Can speed this up by choosing R as follows:

For all x, \[
\left(\frac{1}{d^2 \log^2 d}\right) |Ax|_1 \leq |RAx|_1 \leq O(d \log d) |Ax|_1
\]
- Overall time for l_1-regression is $\text{nnz}(A) + \text{poly}(d/\epsilon)$
Fun Fact about Cauchy Random Variables

- Suppose you have i.i.d. copies R_1, \ldots, R_n of a random variable with mean 0 and variance σ^2

- What is the distribution of $\frac{\sum_i R_i}{n}$?

- By Central Limit Theorem, this approaches a normal random variable $N(0, \sigma^2/n)$

- Intuitively, the variance is decreasing and the average is approaching its expectation

- Now suppose you have i.i.d. copies R_1, \ldots, R_n of a standard Cauchy random variable

- What is the distribution of $\frac{\sum_i R_i}{n}$?

- It’s still a standard Cauchy random variable!
Outline

- Quick recap of ℓ_1-regression, and how to speed it up
- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model
Turnstile Streaming Model

- Underlying n-dimensional vector x initialized to 0^n

- Long stream of updates $x_i \leftarrow x_i + \Delta_i$ for Δ_i in \{-M, -M+1, ..., M-1, M\}
 - $M \leq \text{poly}(n)$

- Throughout the stream, x is promised to be in \{-M, -M+1, ..., M-1, M\}^n

- Output an approximation to $f(x)$ with high probability over our coin tosses

- **Goal**: use as little space (in bits) as possible
 - Massive data: stock transactions, weather data, genomes
Testing if $x = 0^n$

• How can we test, with probability at least 9/10, over our random coin tosses, if the underlying vector $x = 0^n$?

• Can we use $O(\log n)$ bits of space?

• We saw that for any fixed vector x, if S is a CountSketch matrix with $O\left(\frac{1}{\epsilon^2}\right)$ rows, then $|Sx|_2^2 = (1 \pm \epsilon)|x|_2^2$ with probability at least 9/10

• If we set $\epsilon = \frac{1}{2}$, we use $O(\log n)$ bits of space to store the $O(1)$ entries of Sx

• We can store the hash function and sign function defining S using $O(\log n)$ bits
Testing if $x = 0^n$

• Is there a deterministic, i.e., zero-error, streaming algorithm to test if the underlying vector $x = 0^n$ with $o(n \log n)$ bits of space?

• **Theorem:** any deterministic algorithm requires $\Omega(n \log n)$ bits of space

• Suppose the first half of the stream corresponds to updates to a vector a in $\{0, 1, 2, \ldots, \text{poly}(n)\}^n$

• Let $S(a)$ be the state of the algorithm after reading the first half of the stream
 • If $|S(a)| = o(n \log n)$, there exist $a \neq a'$ for which $S(a) = S(a')$

• Suppose the second half of the stream corresponds to updates to a vector b in $\{0, -1, -2, \ldots, -\text{poly}(n)\}^n$

• The algorithm must output the same answer on $a+b$ and $a'+b$, so it errs in one case
Example: Recovering a k-Sparse Vector

• Suppose we are promised that x has at most k non-zero entries at the end of the stream.

• k is often small – maybe we see all coordinates of a vector a followed by all coordinates of a similar vector b, and $a - b$ only has k non-zero entries.

• Can we recover the indices and values of the k non-zero entries with high probability?

• Can we use $k \text{ poly}(\log n)$ bits of space?

• Can we do it deterministically?
Example: Recovering a k-Sparse Vector

• Suppose A is an $s \times n$ matrix such that any $2k$ columns are linearly independent

• Maintain $A \cdot x$ in the stream

• Claim: from $A \cdot x$ you can recover the subset S of k non-zero entries and their values

• Proof: suppose there were vectors x and y each with at most k non-zero entries and $A \cdot x = A \cdot y$

• Then $A(x-y) = 0$. But $x-y$ has at most $2k$ non-zero entries, and any $2k$ columns of A are linearly independent. So $x-y = 0$, i.e., $x = y$.

• Algorithm is deterministic given A. But do such matrices A exist with a small number s of rows?
Example: Recovering a k-Sparse Vector

- Vandermonde matrix A with $s = 2k$ rows and n columns. $A_{i,j} = j^{i-1}$

\[
\begin{bmatrix}
1 & 1 & 1 & \ldots \\
1 & 2 & 3 & \ldots \\
1 & 4 & 9 & \ldots \\
1 & 8 & 27 & \ldots \\
\end{bmatrix}
\]

- Determinant of $2k \times 2k$ submatrix of A with set of columns equal to $\{i_1, \ldots, i_{2k}\}$ is: $\prod_j i_j \prod_{j < j'} (i_j - i_{j'}) \neq 0$, so any $2k$ columns of A are linearly independent.

- But entries of A are exponentially increasing – how to store A and $A \cdot x$?

- Just store $A \cdot x \mod p$ for a large enough prime $p = \text{poly}(n)$.
Outline

• Quick recap of ℓ_1-regression, and how to speed it up

• Introduction to the Streaming Model

• Estimating Norms in the Streaming Model
Example Problem: Norms

• Suppose you want $|x|_p^p = \sum_{i=1}^n |x_i|^p$

• Want Z for which $(1-\varepsilon) |x|_p^p \leq Z \leq (1+\varepsilon) |x|_p^p$ with probability $> 9/10$

• $p = 1$ corresponds to total variation distance between distributions

• $p = 2$ useful for geometric and linear algebraic problems

• $p = \infty$ is the value of the maximum entry, useful for anomaly detection, etc.
Example Problem: Euclidean Norm

- Want Z for which $(1-\varepsilon) \|x\|_2^2 \leq Z \leq (1+\varepsilon) \|x\|_2^2$

- Sample a random CountSketch matrix S with $1/\varepsilon^2$ rows

- Can store S efficiently using limited independence

- If $x_i \leftarrow x_i + \Delta_i$ in the stream, then $Sx \leftarrow Sx + \Delta_i S*_{\cdot,i}$

- At end of stream, output $|Sx|_2^2$

- With probability at least $9/10$, $|Sx|_2^2 = (1 \pm \varepsilon)|x|_2^2$

- Space complexity is $1/\varepsilon^2$ words, each word is $O(\log n)$ bits
Example Problem: 1-Norm

- Want Z for which \((1-\varepsilon) |x|_1 \leq Z \leq (1+\varepsilon) |x|_1\)
- Sample a random Cauchy matrix S?
- Can store S with \(\frac{1}{\varepsilon}\) words of space [Kane, Nelson, W]
- If \(x_i \leftarrow x_i + \Delta_i\) in the stream, then \(Sx \leftarrow Sx + \Delta_i S_{*,i}\)
- Space complexity is \(1/\varepsilon^2\) words, each word is \(O(\log n)\) bits
- At end of stream, output \(|Sx|_1\) ?

- Cauchy random variables have no concentration...
1-Norm Estimator

• Probability density function \(f(x) \) of \(|C|\) for a Cauchy random variable \(C \) is
 \[
 f(x) = \frac{2}{\pi(1+x^2)}
 \]

• Cumulative distribution function \(F(z) \):
 \[
 F(z) = \int_0^z f(x)dx = \frac{2}{\pi} \arctan(z)
 \]

• Since \(\tan(\pi/4) = 1 \), \(F(1) = \frac{1}{2} \), so \(\text{median}(|C|) = 1 \)

• If you take \(r = \frac{\log(\frac{1}{\delta})}{\epsilon^2} \) independent samples \(X_1, \ldots, X_r \) from \(F \), and \(X = \text{median}_{i}X_i \), then \(F(X) \) in \([1/2-\epsilon, 1/2+\epsilon]\) with probability \(1-\delta \)

• \(F^{-1}(X) = \tan \left(\frac{X\pi}{2} \right) \in [1 - 4\epsilon, 1 + 4\epsilon] \)
p-Norm Estimator

• Can achieve $1/\epsilon^2$ words of space for p-norm estimation for any $0 < p < 2$

• Proof is similar to 1-norm estimation, and uses p-stable distributions, which exist only for $0 < p < 2$

• No closed form expression for their probability density function but they are efficiently sampleable:

 • If $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $r \in [0,1]$ are uniformly random, then

 \[
 \frac{\sin(p \theta)}{\cos^p \theta} \left(\frac{\cos(\theta(1-p))}{\ln \left(\frac{1}{r} \right)} \right)^{\frac{1-p}{p}}
 \]

 is a sample from a p-stable distribution!

• Can discretize them and store a sketching matrix of samples from the p-stable distribution using limited independence
p-Norm Estimator for $p > 2$

- For $p > 2$, p-stable distributions do not exist!

- We will see later that $\Omega(n^{1-\frac{2}{p}})$ bits of space needed to approximate p-norms, $p > 2$, up to a constant factor with constant probability

- To achieve an $\widetilde{O}(n^{1-2/p})$ bits of space algorithm, we will use exponential random variables. We will focus on constant approximation parameter ϵ

- Our sketch will be $P \cdot D$:

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
1/E_1^{1/p} \\
1/E_2^{1/p} \\
\ldots \\
1/E_n^{1/p}
\end{bmatrix}
\]
Stability of Exponential Random Variables

- Exponential random variable \(E \) with parameter \(\lambda \)
 - (PDF) probability density function: \(f(x) = \lambda e^{-\lambda x} \) if \(x \geq 0 \), and 0 otherwise
 - (CDF) cumulative density function: \(F(x) = 1-e^{-\lambda x} \) for \(x \geq 0 \)
- \(t \cdot E \) for scalar \(t \geq 0 \) has CDF \(F(x) = 1 - e^{\frac{-\lambda}{t}x} \)

- Stability: consider independent exponential random variables \(E_1, \ldots, E_n \) and scalars \(|y_1|, \ldots, |y_n| \), let \(q = \min\left(\frac{E_1}{|y_1|^p}, \ldots, \frac{E_n}{|y_n|^p}\right) \)

\[
\Pr[q > x] = \Pr\left[\forall i, \frac{E_i}{|y_i|^p} \geq x\right] = \prod_i e^{-x|y_i|^p} = e^{-x|y|^p}
\]

- So \(q \) is an exponential random variable with \(\lambda = |y|^p \), that is,

\[
q \equiv \left(\frac{1}{|y|^p}\right)E \text{ for a standard exponential random variable } E
\]
Stability of Exponential Random Variables

- Recall our sketch $P^*D =$

$$
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1/E_1^{1/p} \\
1/E_2^{1/p} \\
\vdots \\
1/E_n^{1/p} \\
\end{bmatrix}
$$

- What does $|Dy|_\infty$ look like for an arbitrary y?

- $|Dy|_\infty^p = \max_i \left(\frac{|y_i|^p}{E_i} \right) = \frac{1}{\min_i \frac{E_i}{|y_i|^p}} \equiv \frac{1}{E} \cdot \frac{\frac{1}{|y|^p}}{E} = \frac{|y|^p}{E}$

- $\Pr[E \in \left[\frac{1}{10}, 10 \right]] = (1 - e^{-10}) - \left(1 - e^{-\frac{1}{10}} \right) = e^{-\frac{1}{10}} - e^{-10} > \frac{4}{5}$
Stability of Exponential Random Variables

- We know \(|Dy|_\infty \in \left[\frac{|y|_p}{10^{1/p}}, 10^{1/p}|y|_p \right] \) with probability at least \(\frac{4}{5} \)

- So \(|Dy|_\infty \) is a good estimate of \(|y|_p \), but \(Dy\) is an n-dimensional vector!

- Recall our sketch \(P^*D = \)

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1/E_1^{1/p} \\
1/E_2^{1/p} \\
\vdots \\
1/E_n^{1/p} \\
\end{bmatrix}
\]

- What can we say about \(|PDy|_\infty \) if \(P\) has \(s\) rows?

- Intuitively \(P\) is hashing coordinates of \(Dy\) into buckets and taking a signed sum of the entries. Expect everything to cancel out and \(|PDy|_\infty \approx |Dy|_\infty \)
Understanding $|PDy|_\infty$

- Let s be the number of rows of P, which we can think of as hash buckets

- P is a CountSketch matrix with hash functions h and σ
 - $h: [n] \rightarrow [s]$
 - $\sigma: [n] \rightarrow \{-1, 1\}$
 - Let’s assume h and σ are truly random (can be derandomized)

- We know $|Dy|_\infty \in \left[\frac{|y|_p}{10^{1/p}}, 10^{1/p} |y|_p \right]$ with probability at least $4/5$

- To achieve $|PDy|_\infty \approx |Dy|_\infty$ with good probability, we want
 - (1) in each bucket i not containing the coordinate j for which $|(Dy)_j| = |Dy|_\infty$, we have $(PDy)_i \leq \frac{|y|_p}{100}$
 - (2) in the bucket i containing the coordinate j for which $|(Dy)_j| = |Dy|_\infty$, we have $||(PDy)_i| - |Dy|_\infty| \leq |y|_p/100$
Analyzing $|PDy|_\infty$

- Let $\delta(E) = 1$ if event E holds, and $\delta(E) = 0$ otherwise
- What does the i-th bucket value $(PDy)_i$ look like?

 $$(PDy)_i = \sum_j \delta(h(j) = i) \sigma_j(Dy)_j$$

- $E[(PDy)_i] = 0$

- What about the variance of $(PDy)_i$?
Understanding $|PDy|_\infty$

- $E_P[(PDy)^2_i] = \sum_{i,j} E[\delta(h(j) = i)\delta(h(j') = i)\sigma_j \sigma_{j'}](Dy)_j(Dy)_{j'} = \left(\frac{1}{s}\right)|Dy|_2^2$

- $E_D[|Dy|^2_i] = \sum_i y_i^2 \cdot E[D_{i,i}^2]$

- $E[D_{i,i}^2] = \int_{t \geq 0} t^{-2/p} e^{-t} \, dt$

 $= \int_{t \in [0,1]} t^{-2/p} e^{-t} \, dt + \int_{t > 1} t^{-2/p} e^{-t} \, dt$

 $\leq \int_{t \in [0,1]} t^{-2/p} \, dt + \int_{t > 1} e^{-t} \, dt$

 $= \left(\frac{1}{1-\frac{2}{p}}\right) \cdot t^{1-2/p} \bigg|_{0}^{1} - e^{-t} \bigg|_{1}^{\infty}$

 $= 0(1)$

- So, $E[(PDy)^2_i] = O\left(\frac{1}{s}\right)|y|_2^2 = O\left(\frac{1}{s}\right)(n^{1-\frac{2}{p}}|y|_p^2)$. Why?
Understanding $|PDy|_\infty$

- $E[(PDy)_i] = 0$ for each hash bucket i, and $E[(PDy)_i^2] = O\left(\frac{1}{s}(n^{1/2}|y|^2)\right)$

- Bernstein’s bound: Suppose $R_1, …, R_n$ are independent, and for all j, $|R_j| \leq K$, and $\text{Var}[\sum R_j] = \sigma^2$. There are constants C, c, so that for all $t > 0$,
 $$P\{\left|\sum R_j - E[\sum R_j]\right| > t\} \leq C \left(e^{-ct^2/\sigma^2} + e^{-ct/K}\right)$$

- Recall $(PDy)_i = \sum_j \delta(h(j) = i) \cdot \sigma \cdot (Dy)_j$, and set $R_j = \delta(h(j) = i) \cdot \sigma \cdot (Dy)_j$

- Want $|PDy|_\infty \approx |Dy|_\infty$, where $|Dy|_\infty \in \left[\frac{|y|_p}{10^{1/p}}, 10^{1/p}|y|_p\right]$ with probability $> 4/5$

- Set $t = \frac{|y|_p}{100}$ and $s = \Theta(n^{1-2/p} \log n)$, to get $\frac{1}{n^2}$ error probability in Bernstein’s bound

- But what is $K = \max_j |R_j|$?
Understanding the Large Elements

- Recall $(PDy)_i = \sum_j \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$, and set $R_j = \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$

- We will separately handle those R_j for which $|R_j| > \frac{\alpha |y|_p}{\log n}$, for a sufficiently small constant $\alpha > 0$. If $|R_j| > \frac{\alpha |y|_p}{\log n}$, then necessarily $|(Dy)_j| \geq \frac{\alpha |y|_p}{\log n}$

- We call such a j large if $|(Dy)_j| \geq \frac{\alpha |y|_p}{\log n}$, otherwise j is small. How many indices j are large?

- Recall: $|(Dy)_j| \equiv \frac{|y_j|}{E_j^{1/p}}$

- $\Pr_D \left[|(Dy)_j| \geq \frac{\alpha |y|_p}{\log n} \right] = \Pr \left[\frac{|y_j|}{E_j^{1/p}} \geq \frac{\alpha |y|_p}{\log n} \right] = \Pr \left[\frac{\alpha^p |y_j|^p}{|y|_p^p} (\log^p n) \geq E_j \right]$

$$= 1 - e^{-\frac{\alpha^p |y_j|^p (\log^p n)}{|y|_p^p}} \leq \frac{\alpha^p |y_j|^p (\log^p n)}{|y|_p^p},$$ so the expected number of large j is $O(\log^p n)$.
Understanding the Large Elements

- Recall \((\text{P}Dy)_i = \sum_j \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j\), and set \(R_j = \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j\)

- We have shown the expected number of large \(j\) is \(O(\log^p n)\), so by a Markov bound we have \(O(\log^p n)\) large \(j\) with constant probability and we condition on \(D\) satisfying this

- We also condition on \(|Dy|_\infty \in \left[\frac{|y|_p}{10^p}, \frac{1}{10^p} |y|_p \right]\), which held with probability > 4/5

- All the large \(j\) get perfectly hashed into separate hash buckets by \(P\)
 - We are throwing \(O(\log^p n)\) balls into \(s \geq n^{1-2/p}\) bins

- We can apply Bernstein on the small indices \(j\) inside a hash bucket!
Understanding the Large Elements

- $E[(PDy)_i] = 0$ for each hash bucket i, and $E[(PDy)_i^2] = 0 \left(\frac{1}{s}\right) (n^{1-\frac{2}{p}}|y|^2_p)$

- Bernstein’s bound: Suppose R_1, \ldots, R_n are independent, and for all j, $|R_j| \leq K$, and $\text{Var}[\sum R_j] = \sigma^2$. There are constants C, c, so that for all $t > 0$,
 - $\Pr[|\sum R_j - E[\sum R_j]| > t] \leq C \left(e^{-\frac{ct^2}{\sigma^2}} + e^{-\frac{ct}{K}} \right)$

- $(PDy)_i = \sum_j \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$, and $R_j = \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$

- Can assume $K = \max_j |R_j| \leq \frac{\alpha |y|_p}{\log n}$, since there is at most one large j in any hash bucket $(PDy)_i$

- Set $t = \frac{|y|_p}{100}$, and $s = \Theta(n^{1-\frac{2}{p}} \log n)$ in Bernstein’s bound, to get for a bucket $(PDy)_i$:
 $$\Pr \left[\sum_{\text{small } j} \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j > \frac{|y|_p}{100} \right] \leq C \left(e^{-\Theta(n)} + e^{-c\frac{\log n}{100\alpha}} \right) \leq \frac{1}{n^2}$$

- By a union bound over all the s buckets, the “signed sum” of small j in every bucket will be at most $\frac{|y|_p}{100}$
Wrapping Up

- For all i,
 - $|(PDy)_i| \leq \frac{|y|_p}{100}$ if no large indices in i-th bucket
 - $|(PDy)_i| = |\sigma_j(Dy)_j| \pm \frac{|y|_p}{100}$ if exactly one large index j in i-th bucket
 - No bucket contains more than 1 large index j

- We conditioned on $|Dy|_\infty \in \left[\frac{|y|_p}{10^p}, 10^p|y|_p\right]$.

- What is $|PDy|_\infty$?
 - $|PDy|_\infty \leq 10^p|y|_p + \frac{|y|_p}{100}$ and $|PDy|_\infty \geq \frac{|y|_p}{10^p} - \frac{|y|_p}{100}$

- So just output $|PDy|_\infty$ as your estimate to $|y|_p$

- Total space is $s = O(n^{1 - \frac{2}{p}} \log n)$ words, which is $O(n^{1 - \frac{2}{p}} \log^2 n)$ bits.