Outline

- Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model

L₁ Regression Algorithm Recap

We saw how to solve the above problems by sketching by a matrix of i.i.d. Cauchy random variables

Sketching to solve I₁-regression [CW, MM]

- Most expensive operation is computing R*A where R is the matrix of i.i.d.
 Cauchy random variables
- All other operations are in the "smaller space"
- Can speed this up by choosing R as follows:

$$\begin{array}{c} 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0 \\ 0\ 0\ 0\ 1\ 1\ 0\ -1\ 0\ 0\ 0\ 0\ 1 \\ \end{array} \qquad \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ \cdots \\ C_n \end{array}$$

- For all x, $\left(\frac{1}{d^2 \log^2 d}\right) |Ax|_1 \le |RAx|_1 \le 0 (d \log d) |Ax|_1$
- Overall time for ℓ_1 -regression is nnz(A) + poly(d/ ϵ)

Fun Fact about Cauchy Random Variables

- Suppose you have i.i.d. copies $R_1, ..., R_n$ of a random variable with mean 0 and variance σ^2
- What is the distribution of $\frac{\sum_{i} R_{i}}{n}$?
- By Central Limit Theorem, this approaches a normal random variable $N(0, \sigma^2/n)$
- Intuitively, the variance is decreasing and the average is approaching its expectation
- Now suppose you have i.i.d. copies R₁, ..., R_n of a standard Cauchy random variable
- What is the distribution of $\frac{\sum_{i} R_{i}}{n}$?
- It's still a standard Cauchy random variable!

Outline

- Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model

Turnstile Streaming Model

- Underlying n-dimensional vector x initialized to 0ⁿ
- Long stream of updates $x_i \leftarrow x_i + \Delta_i$ for Δ_i in $\{-M, -M+1, ..., M-1, M\}$
 - $M \le poly(n)$
- Throughout the stream, x is promised to be in {-M, -M+1, ..., M-1, M}ⁿ
- Output an approximation to f(x) with high probability over our coin tosses
- Goal: use as little space (in bits) as possible
 - Massive data: stock transactions, weather data, genomes

Testing if $x = 0^n$

- How can we test, with probability at least 9/10, over our random coin tosses, if the underlying vector $\mathbf{x} = \mathbf{0}^{n}$?
- Can we use O(log n) bits of space?
- We saw that for any fixed vector x, if S is a CountSketch matrix with $O(\frac{1}{\epsilon^2})$ rows, then $|Sx|_2^2 = (1 \pm \epsilon)|x|_2^2$ with probability at least 9/10
- If we set $\epsilon = \frac{1}{2}$, we use O(log n) bits of space to store the O(1) entries of Sx
- We can store the hash function and sign function defining S using O(log n) bits

Testing if $x = 0^n$

- Is there a deterministic, i.e., zero-error, streaming algorithm to test if the underlying vector $\mathbf{x} = \mathbf{0}^{n}$ with o(n log n) bits of space?
- Theorem: any deterministic algorithm requires $\Omega(n \log n)$ bits of space
- Suppose the first half of the stream corresponds to updates to a vector a in $\{0, 1, 2, ..., poly(n)\}^n$
- Let S(a) be the state of the algorithm after reading the first half of the stream
 - If $|S(a)| = o(n \log n)$, there exist $a \ne a'$ for which S(a) = S(a')
- Suppose the second half of the stream corresponds to updates to a vector b in $\{0, -1, -2, ..., -poly(n)\}^n$
- The algorithm must output the same answer on a+b and a'+b, so it errs in one case

Example: Recovering a k-Sparse Vector

- Suppose we are promised that x has at most k non-zero entries at the end of the stream
- k is often small maybe we see all coordinates of a vector a followed by all coordinates of a *similar* vector b, and a-b only has k non-zero entries
- Can we recover the indices and values of the k non-zero entries with high probability?
- Can we use k poly(log n) bits of space?
- Can we do it deterministically?

Example: Recovering a k-Sparse Vector

- Suppose A is an s x n matrix such that any 2k columns are linearly independent
- Maintain $A \cdot x$ in the stream
- Claim: from $A \cdot x$ you can recover the subset S of k non-zero entries and their values
- Proof: suppose there were vectors x and y each with at most k non-zero entries and $A \cdot x = A \cdot y$
- Then A(x-y) = 0. But x-y has at most 2k non-zero entries, and any 2k columns of A are linearly independent. So x-y = 0, i.e., x = y.
- Algorithm is deterministic given A. But do such matrices A exist with a small number s of rows?

Example: Recovering a k-Sparse Vector

 \bullet Vandermonde matrix A with s = 2k rows and n columns. $A_{i,j} = j^{i-1}$

1 1 1 ... 1 2 3 ... 1 4 9 ... 1 8 27 ...

- Determinant of 2k x 2k submatrix of A with set of columns equal to $\{i_1, ..., i_{2k}\}$ is: $\prod_j i_j \prod_{j < j'} (i_j i_{j'}) \neq 0$, so any 2k columns of A are linearly independent
- But entries of A are exponentially increasing how to store A and $A \cdot x$?
- Just store $A \cdot x$ mod p for a large enough prime p = poly(n)

Outline

- ullet Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model

Example Problem: Norms

- Suppose you want $|x|_p^p = \sum_{i=1}^n |x_i|^p$
- Want Z for which (1- ϵ) $|x|_p^p \le Z \le (1+\epsilon) |x|_p^p$ with probability > 9/10
- p = 1 corresponds to total variation distance between distributions
- p = 2 useful for geometric and linear algebraic problems
- p = ∞ is the value of the maximum entry, useful for anomaly detection, etc.

Example Problem: Euclidean Norm

- Want Z for which $(1-\epsilon) |x|_2^2 \le Z \le (1+\epsilon) |x|_2^2$
- Sample a random CountSketch matrix S with $1/\epsilon^2$ rows
- Can store S efficiently using limited independence
- If $x_i \leftarrow x_i + \Delta_i$ in the stream, then $Sx \leftarrow Sx + \Delta_i S_{*,i}$
- At end of stream, output $|Sx|_2^2$
- With probability at least 9/10, $|Sx|_2^2 = (1 \pm \epsilon)|x|_2^2$
- Space complexity is $1/\epsilon^2$ words, each word is $O(\log n)$ bits

Example Problem: 1-Norm

- Want Z for which (1- ϵ) $|x|_1 \le Z \le (1+\epsilon) |x|_1$
- Sample a random Cauchy matrix S?
- Can store S with $\frac{1}{\epsilon}$ words of space [Kane, Nelson, W]
- If $x_i \leftarrow x_i + \Delta_i$ in the stream, then $Sx \leftarrow Sx + \Delta_i S_{*,i}$
- Space complexity is $1/\epsilon^2$ words, each word is O(log n) bits
- At end of stream, output $|Sx|_1$?
- Cauchy random variables have no concentration...

1-Norm Estimator

- Probability density function f(x) of |C| for a Cauchy random variable C is $f(x)=\frac{2}{\pi(1+x^2)}$
- Cumulative distribution function F(z):

$$F(z) = \int_0^z f(x) dx = \frac{2}{\pi} \arctan(z)$$

- Since $tan(\pi/4) = 1$, $F(1) = \frac{1}{2}$, so median(|C|) = 1
- If you take $r=\frac{\log\left(\frac{1}{\delta}\right)}{\epsilon^2}$ independent samples X_1,\ldots,X_r from F, and X= median_i X_i , then ⁶ F(X) in [1/2- ϵ , 1/2+ ϵ] with probability 1- δ
- $F^{-1}(X) = \tan\left(\frac{X\pi}{2}\right) \in [1 4\epsilon, 1 + 4\epsilon]$

p-Norm Estimator

- Can achieve $1/\epsilon^2$ words of space for p-norm estimation for any 0
- Proof is similar to 1-norm estimation, and uses p-stable distributions, which exist only for 0
- No closed form expression for their probability density function but they are efficiently sampleable:
 - If $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ and $r \in [0,1]$ are uniformly random, then

$$\frac{\sin(p\,\theta)}{\cos^{\frac{1}{p}}\theta}\left(\frac{\cos(\theta(1-p))}{\ln(\frac{1}{r})}\right)^{\frac{1-p}{p}}$$
 is a sample from a p-stable distribution!

 Can discretize them and store a sketching matrix of samples from the pstable distribution using limited independence

p-Norm Estimator for p > 2

- For p > 2, p-stable distributions do not exist!
- We will see later that $\Omega(n^{1-\frac{2}{p}})$ bits of space needed to approximate p-norms, p > 2, up to a constant factor with constant probability
- To achieve an $\widetilde{O}(n^{1-2/p})$ bits of space algorithm, we will use exponential random variables. We will focus on constant approximation parameter ϵ
- Our sketch will be P · D:

Stability of Exponential Random Variables

- Exponential random variable E with parameter λ
 - (PDF) probability density function: $f(x) = \lambda e^{-\lambda x}$ if $x \ge 0$, and 0 otherwise
 - (CDF) cumulative density function: $F(x) = 1 e^{-\lambda x}$ for $x \ge 0$
 - $t \cdot E$ for scalar $t \ge 0$ has CDF $F(x) = 1 e^{-\frac{\lambda}{t}x}$
- Stability: consider independent exponential random variables $E_1, ..., E_n$ and scalars $|y_1|, ..., |y_n|$, let $q = min(\frac{E_1}{|y_1|^p}, ..., \frac{E_n}{|y_n|^p})$
- $\Pr[q > x] = \Pr\left[\forall i, \frac{E_i}{|y_i|^p} \ge x\right] = \prod_i e^{-x|y_i|^p} = e^{-x|y|_p^p}$
- So q is an exponential random variable with $\lambda = |y|_p^p$, that is,
 - $q \equiv \left(\frac{1}{|y|_p^p}\right) E$ for a standard exponential random variable E

Stability of Exponential Random Variables

Recall our sketch P*D =

$$\begin{array}{c} 1/E_1^{1/p} \\ 10000000 \\ 000-110-10 \\ 0-100001 \end{array}$$

What does $|Dy|_{\infty}$ look like for an arbitrary y?

$$|Dy|_{\infty}^{p} = \max_{i} \left(\frac{|y_{i}|^{p}}{E_{i}}\right) = \frac{1}{\min_{i} \frac{E_{i}}{|y_{i}|^{p}}} \equiv \frac{1}{E \cdot \frac{1}{|y|_{p}^{p}}} = \frac{|y|_{p}^{p}}{E}$$

•
$$\Pr[E \in \left[\frac{1}{10}, 10\right]] = (1 - e^{-10}) - \left(1 - e^{-\frac{1}{10}}\right) = e^{-\frac{1}{10}} - e^{-10} > \frac{4}{5}$$

Stability of Exponential Random Variables

- We know $|\mathrm{D}y|_{\infty} \in [\frac{|y|_p}{10^{1/p}}, 10^{1/p}|y|_p]$ with probability at least $\frac{4}{r}$
- So $|Dy|_{\infty}$ is a good estimate of $|y|_{p}$, but Dy is an n-dimensional vector!
- Recall our sketch P*D =

- What can we say about $|PDy|_{\infty}$ if P has s rows?
- Intuitively P is hashing coordinates of Dy into buckets and taking a signed sum of the entries. Expect everything to cancel out and $|PDy|_{\infty} \approx |Dy|_{\infty} \odot$

Understanding |PDy|_∞

- Let s be the number of rows of P, which we can think of as hash buckets
- P is a CountSketch matrix with hash functions h and σ
 - $h: [n] \rightarrow [s]$
 - $\sigma: [n] \to \{-1,1\}$
 - Let's assume h and σ are truly random (can be derandomized)
- We know $|\mathrm{D}y|_{\infty} \in [\frac{|y|_p}{10^{1/p}}, 10^{1/p}|y|_p]$ with probability at least 4/5
- To achieve $|PDy|_{\infty} \approx |Dy|_{\infty}$ with good probability, we want
 - (1) in each bucket i not containing the coordinate j for which $\left| (\mathrm{Dy})_j \right| = |\mathrm{Dy}|_{\infty}$, we have $(\mathrm{PDy})_i \leq \frac{|\mathrm{y}|_p}{100}$
 - (2) in the bucket i containing the coordinate j for which $|(Dy)_j| = |Dy|_{\infty}$, we have $||(PDy)_i| |Dy|_{\infty}| \le |y|_p/100$

Analyzing |PDy|_∞

- Let $\delta(E) = 1$ if event E holds, and $\delta(E) = 0$ otherwise
- What does the i-th bucket value (PDy)_i look like?
- $(PDy)_i = \sum_j \delta(h(j) = i) \sigma_j(Dy)_j$
- $E[(PDy)_i] = 0$
- What about the variance of (PDy)_i?

Understanding |PDy|_∞

•
$$E_P[(PDy)_i^2] = \sum_{j,j'} E[\delta(h(j) = i)\delta(h(j') = i)\sigma_j\sigma_{j'}](Dy)_j(Dy)_{j'} = (\frac{1}{s})|Dy|_2^2$$

•
$$E_D[|Dy|_2^2] = \sum_i y_i^2 \cdot E[D_{i,i}^2]$$

$$\begin{split} & \quad E \big[D_{i,i}^2 \big] = \int_{t \ge 0} t^{-2/p} e^{-t} \, dt \\ & \quad = \int_{t \in [0,1]} t^{-2/p} e^{-t} dt + \int_{t > 1} t^{-2/p} e^{-t} dt \\ & \quad \le \int_{t \in [0,1]} t^{-2/p} dt + \int_{t > 1} e^{-t} dt \\ & \quad = \left(\frac{1}{1 - \frac{2}{p}} \right) \cdot t^{1 - 2/p} \big|_0^1 - e^{-t} \big|_1^\infty \\ & \quad = 0 (1) \end{split}$$

• So,
$$E[(PDy)_i^2] = O(\frac{1}{s})|y|_2^2 = O(\frac{1}{s})(n^{1-\frac{2}{p}}|y|_p^2)$$
. Why?

Understanding |PDy|∞

- $E[(PDy)_i] = 0$ for each hash bucket i, and $E[(PDy)_i^2] = O(\frac{1}{s})(n^{1-\frac{2}{p}}|y|_p^2)$
- Bernstein's bound: Suppose $R_1, ..., R_n$ are independent, and for all j, $\left|R_j\right| \leq K$, and $Var\left[\sum_j R_j\right] = \sigma^2$. There are constants C, c, so that for all t > 0,

$$\Pr[|\sum_{j} R_{j} - E\left[\sum_{j} R_{j}\right]| > t] \le C \left(e^{-\frac{ct^{2}}{\sigma^{2}}} + e^{-\frac{ct}{K}}\right)$$

- Recall $(PDy)_i = \sum_j \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$, and set $R_j = \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$
- Want $|PDy|_{\infty} \approx |Dy|_{\infty}$, where $|Dy|_{\infty} \in [\frac{|y|_p}{10^{1/p}}, 10^{1/p}|y|_p]$ with probability > 4/5
- Set $t = \frac{|y|_p}{100}$ and $s = \Theta(n^{1-\frac{2}{p}}\log n)$, to get $\frac{1}{n^2}$ error probability in Bernstein's bound
- But what is $K = \max_{j} |R_{j}|$?

Understanding the Large Elements

- Recall $(PDy)_i = \sum_j \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$, and set $R_j = \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$
- We will separately handle those R_j for which $|R_j| > \frac{\alpha |y|_p}{\log n}$, for a sufficiently small constant $\alpha > 0$. If $|R_j| > \frac{\alpha |y|_p}{\log n}$, then necessarily $|(Dy)_j| \ge \frac{\alpha |y|_p}{\log n}$
 - We call such a j large if $|(Dy)_j| \ge \frac{\alpha |y|_p}{\log n}$, otherwise j is small. How many indices j are large?
- Recall: $|(Dy)_j| \equiv |y_j|/E_j^{1/p}$

$$\Pr_{D}\left[\left|(Dy)_{j}\right| \geq \frac{\alpha|y|_{p}}{\log n}\right] = \Pr\left[\frac{|y_{j}|}{\frac{1}{E_{j}^{p}}} \geq \frac{\alpha|y|_{p}}{\log n}\right] = \Pr\left[\frac{\alpha^{p}|y_{j}|^{p}}{|y|^{p}_{p}}\left(\log^{p} n\right) \geq E_{j}\right]$$

$$=1-e^{\frac{-\frac{\alpha^p|y_j|^p(\log^p n)}{|y|_p^p}}{|y|_p^p}}\leq \frac{\alpha^p|y_j|^p(\log^p n)}{|y|_n^p}, \text{ so the expected number of large j is } O(\log^p n)$$

Understanding the Large Elements

- Recall $(PDy)_i = \sum_j \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$, and set $R_j = \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$
- We have shown the expected number of large j is $O(\log^p n)$, so by a Markov bound we have $O(\log^p n)$ large j with constant probability and we condition on D satisfying this
- We also condition on $|\mathrm{D}y|_{\infty} \in \left[\frac{|y|_p}{10^{\frac{1}{p}}}, 10^{\frac{1}{p}}|y|_p\right]$, which held with probability > 4/5
- All the large j get perfectly hashed into separate hash buckets by P
 - We are throwing $O(\log^p n)$ balls into $s \ge n^{1-2/p}$ bins
- We can apply Bernstein on the small indices j inside a hash bucket!

Understanding the Large Elements

- $E[(PDy)_i] = 0$ for each hash bucket i, and $E[(PDy)_i^2] = O(\frac{1}{s})(n^{1-\frac{2}{p}}|y|_p^2)$
- Bernstein's bound: Suppose $R_1, ..., R_n$ are independent, and for all j, $|R_j| \le K$, and $Var[\sum_j R_j] = \sigma^2$. There are constants C, c, so that for all t > 0,

•
$$\Pr[|\sum_{j} R_{j} - E[\sum_{j} R_{j}]| > t] \le C \left(e^{-\frac{ct^{2}}{\sigma^{2}}} + e^{-\frac{ct}{K}}\right)$$

- $(PDy)_i = \sum_j \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$, and $R_j = \delta(h(j) = i) \cdot \sigma_j \cdot (Dy)_j$
- Can assume K = $\max_j |R_j| \le \frac{\alpha |y|_p}{\log n}$, since there is at most one large j in any hash bucket $(PDy)_i$
- Set $t = \frac{|y|_p}{100}$, and $s = \Theta(n^{1-\frac{2}{p}}\log n)$ in Bernstein's bound, to get for a bucket $(PDy)_i$:

$$\Pr\left[\left|\sum_{\text{small } j} \delta(h(j) = i) \, \sigma_j(Dy)_j\right| > \frac{|y|_p}{100}\right] \leq C\left(e^{-\Theta(\log n)} + e^{-c\frac{(\log n)}{100\alpha}}\right) \leq \frac{1}{n^2}$$

By a union bound over all the s buckets, the "signed sum" of small j in every bucket will be at most $\frac{|y|_p}{100}$

Wrapping Up

- For all i,
 - $|(PDy)_i| \le \frac{|y|_p}{100}$ if no large indices in i-th bucket
 - $|(PDy)_i| = |\sigma_j(Dy)_j| \pm \frac{|y|_p}{100}$ if exactly one large index j in i-th bucket
 - No bucket contains more than 1 large index j
- We conditioned on $|\mathrm{D}y|_{\infty} \in \left[\frac{|y|_p}{10^{\frac{1}{p}}}, 10^{\frac{1}{p}}|y|_p\right]$
- What is |PDy|_∞?
 - $|PDy|_{\infty} \le 10^{\frac{1}{p}} |y|_p + \frac{|y|_p}{100} \text{ and } |PDy|_{\infty} \ge \frac{|y|_p}{10^{\frac{1}{p}}} \frac{|y|_p}{100}$
- So just output |PDy|_∞ as your estimate to |y|_p
- Total space is $s = O(n^{1-\frac{2}{p}} \log n)$ words, which is $O(n^{1-\frac{2}{p}} \log^2 n)$ bits