Outline

Quick recap of #;-regression, and how to speed it up

Introduction to the Streaming Model

Estimating Norms in the Streaming Model



L, Regression Algorithm Recap

Compute poly(d)- Compute well-conditioned
approximation basis

Sample rows from the /

well-conditioned basis and
the residual of the poly(d)-
approximation

|

Solve |,-regression on the sample, obtaining vector x, and output x

We saw how to solve the above problems by sketching by a
matrix of i.i.d. Cauchy random variables



Sketching to solve |,-regression [CW, MM]

Most expensive operation is computing R*A where R is the matrix of i.i.d.
Cauchy random variables

All other operations are in the “smaller space”

Can speed this up by choosing R as follows:

00100100 C,
1000 00 00 . C,
000-110-10 Cs
0-100 00 01

C,

1
For all x, (dzlogZd) |Ax|, < |RAx|, < O(dlogd) |Ax],

Overall time for £,-regression is nnz(A) + poly(d/e)




Fun Fact about Cauchy Random Variables

Suppose you have i.i.d. copies R4, ..., R, of a random variable with mean 0 and variance o>
. . g . Yi R
What is the distribution of ‘T ?

By Central Limit Theorem, this approaches a normal random variable N(0, 62 /n)
Intuitively, the variance is decreasing and the average is approaching its expectation

Now suppose you have i.i.d. copies Ry, ..., R, of a standard Cauchy random variable
. . g . Y Rj
What is the distribution of ‘T ?

It's still a standard Cauchy random variable!



Outline

Quick recap of #;-regression, and how to speed it up

Introduction to the Streaming Model

Estimating Norms in the Streaming Model



Turnstile Streaming Model
* Underlying n-dimensional vector x initialized to O"

* Long stream of updates x. < x; + A for A. in {-M, -M+1, ..., M-1, M}
* M < poly(n)

* Throughout the stream, x is promised to be in {-M, -M+1, ..., M-1, M}"

e Qutput an approximation to f(x) with high probability over our coin
tosses

* Goal: use as little space (in bits) as possible
* Massive data: stock transactions, weather data, genomes



Testing if x = 0"

* How can we test, with probability at least 9/10, over our random coin tosses, if the
underlying vector x = 07?

* Can we use O(log n) bits of space?

* We saw that for any fixed vector x, if S is a CountSketch matrix with O(Elz) rows, then
|Sx|5 = (1 % €)|x|5 with probability at least 9/10

*|If wesete = %, we use O(log n) bits of space to store the O(1) entries of Sx

* We can store the hash function and sign function defining S using O(log n) bits



Testing if x = 0"

* Is there a deterministic, i.e., zero-error, streaming algorithm to test if the underlying vector x = 0"
with o(n log n) bits of space?

* Theorem: any deterministic algorithm requires {2(nlogn) bits of space
* Suppose the first half of the stream corresponds to updates to a vector ain {0, 1, 2, ..., poly(n)}"

* Let S(a) be the state of the algorithm after reading the first half of the stream
* If |S(a)] = o(n log n), there exist a# a’ for which S(a) = 5(a’)

* Suppose the second half of the stream corresponds to updates to a vector b in
{0,-1,-2, .., —poly(n)}"

* The algorithm must output the same answer on a+b and a’+b, so it errs in one case



Example: Recovering a k-Sparse Vector

* Suppose we are promised that x has at most k non-zero entries at the end of the
stream

* k is often small — maybe we see all coordinates of a vector a followed by all
coordinates of a similar vector b, and a-b only has k non-zero entries

* Can we recover the indices and values of the k non-zero entries with high
probability?

* Can we use k poly(log n) bits of space?

* Can we do it deterministically?



Example: Recovering a k-Sparse Vector

* Suppose A is an s x n matrix such that any 2k columns are linearly independent

* Maintain A - x in the stream

* Claim: from A - X you can recover the subset S of k non-zero entries and their values

* Proof: suppose there were vectors x and y each with at most k non-zero entriesand A-x=A-y

* Then A(x-y) = 0. But x-y has at most 2k non-zero entries, and any 2k columns of A are linearly
independent. So x-y =0, i.e., x = V.

* Algorithm is deterministic given A. But do such matrices A exist with a small number s of rows?



Example: Recovering a k-Sparse Vector

* Vandermonde matrix A with s = 2k rows and n columns. A;; = ji=1

= A A
cor~rDN-
N O W-

7 ...
* Determinant of 2k x 2k submatrix of A with set of columns equal to {i4, ..., 15} is:
i 1j ]_[j<j,(i]- — i]-/) # 0, so any 2k columns of A are linearly independent

* But entries of A are exponentially increasing — how to store A and A - x?

* Just store A - x mod p for a large enough prime p = poly(n)



Outline
 Quick recap of £4-regression, and how to speed it up
* Introduction to the Streaming Model

 Estimating Norms in the Streaming Model



Example Problem: Norms

* Suppose you want |x| P =%_," |x]|P

* Want Z for which (1-€) [x| P < Z < (1+€) |x]| ,” with probability >9/10
* p = 1 corresponds to total variation distance between distributions

* p = 2 useful for geometric and linear algebraic problems

* p = 0 is the value of the maximum entry, useful for anomaly detection, etc.



Example Problem: Euclidean Norm

« Want Z for which (1-€) |x|,? < Z < (1+¢€) |x],?

« Sample a random CountSketch matrix S with 1/€? rows
* Can store S efficiently using limited independence

* If X; « X; + Ain the stream, then Sx « Sx + A;S,;

« At end of stream, output |Sx|3

» With probability at least 9/10, |Sx|3 = (1 + €)[x|3

* Space complexity is 1/€? words, each word is O(log n) bits



Example Problem: 1-Norm

* Want Z for which (1-€) |x|; < Z < (1+€) x|,

e Sample a random Cauchy matrix S?

* Can store S with % words of space [Kane, Nelson, W]

* If X; « x; + A in the stream, then Sx « Sx + A;S,;

* Space complexity is 1/€? words, each word is O(log n) bits
* At end of stream, output |Sx]|; ?

* Cauchy random variables have no concentration...



1-Norm Estimator

* Probability delgsity function f(x) of |C| for a Cauchy random variable
Cis f(x) =

m(1+x2)

* Cumulative distribution function F(z):
z 2
F(z) = f f(x)dx = Earctan(z)
0

* Since tan(mt/4) = 1, F(1) =%, so median(|C|) =1

og(5)

1
* If you taker = — independent samples X4, ..., X, from F, and X =
median;X; , then  F(X) in [1/2-€, 1/2+ €] with probability 1-6

¢ F1(X) = tan (’%“) € [1 — 4e,1 + 4]



p-Norm Estimator

* Can achieve 1/€? words of space for p-norm estimation for any 0 < p < 2

* Proof is similar to 1-norm estimation, and uses p-stable distributions,
which exist only forO<p <2

* No closed form expression for their probability density function but they
are efficiently sampleable:

*IfB € [—g,g] andr € [0,1] are uniformly random, then

1-p

sin(p 0) <cos(9(1—p))

po \ ()

cosP 0
* Can discretize them and store a sketching matrix of samples from the p-
stable distribution using limited independence

b
) is a sample from a p-stable distribution!



p-Norm Estimator for p > 2

* For p > 2, p-stable distributions do not exist!

2

. 1-=, . :
* We will see later that Q(n~ P) bits of space needed to approximate p-norms, p >
2, up to a constant factor with constant probability

* To achieve an 6(n1‘2/p) bits of space algorithm, we will use exponential
random variables. We will focus on constant approximation parameter €

e Our sketch will be P - D:

00100100 1/E,’P
100000 00 : 1/EY/P
000-110-10

0-100 00 01



Stability of Exponential Random Variables

Exponential random variable E with parameter A
(PDF) probability density function: f(x) = Ae™* if x > 0, and 0 otherwise
(CDF) cumulative density function: F(x) = 1-e™* for x > 0

A
t-Eforscalart >0has CDF F(x) =1—e ¢
Stability: consider independent exponential random variables E4, ..., E,, and

El En )
ly1lP” ™" lynlP

scalars |yq], ..., |ynl, let @ = min(

. _ p
Pr[q > x] = Pr [Vi 5—‘ > x| =1l e XyilP = o7XIylp

So g is an exponential random variable with A = Iylg , that is,

q= <Iy%> E for a standard exponential random variable E
p



Stability of Exponential Random Variables

Recall our sketch P*D =

1/p
001001060 1/E, 1
1/E/p
10000000
000-110-10 Y
0-100 00 01 1/Enp

What does |Dy|., look like for an arbitrary y?

|Y1|p) 1 _ 1 |Y|g

mlln v |p |Y|
l

Dyl = max(

pefe € [, 10]) = (1~ 20) - (1 e730) = oo o710 5



Stability of Exponential Random Variables

lylp

We know |Dylc € [—575,

10%/P|yl, ] with probability at Ieast%

So |Dy|. is a good estimate of |y|,, but Dy is an n-dimensional vector!

Recall our sketch P*D =

00100100 1/EM/P
10000000
000-110-10 ) 1/p
0-100 00 01 1/En

What can we say about |PDy|, if P has s rows?

Intuitively P is hashing coordinates of Dy into buckets and taking a signed
sum of the entries. Expect everything to cancel out and |PDy|,, = |Dy|, ©



Understanding |PDy]|

Let s be the number of rows of P, which we can think of as hash buckets

P is a CountSketch matrix with hash functions h and o
h: [n] — [s]
o:[n] - {-1,1}
Let’'s assume h and o are truly random (can be derandomized)

We know [Dyl., € [-55=, 101/?|y|, ] with probability at least 4/5

To achieve |PDy|.= |Dy|, With good probability, we want

(1) in each bucket i not containing the coordinate j for which |(Dy)j| = |Dy|w, We
IYIp

have (PDy); < Too

(2) in the bucket i containing the coordinate j for which |(Dy)]-| = |Dyls, We have

[I(PDy);i| — IDyle| < lylp/100



Analyzing |PDy|

Let 6(E) = 1 if event E holds, and §(E) = 0 otherwise
What does the i-th bucket value (PDy); look like?
(PDy); = 2,;8(h(j) = 1) 0;(Dy);

E[(PDy);] = 0

What about the variance of (PDy);?



Understanding |PDy]|

Ep[(PDy)?] = X5, E[8(h()) = )8(h(j") = i)0j0;,1(Dy);(Dy);, = (5) IDyl3

EplIDyl5] = X;y{ - E[D{i]

E[D}] = [, t7*/Petdt
= t™2/PeTtdt + [ t7%/Petdt

— Jte[o,1]

—2 —t
< fieronr t /Pdt+ [, e7tdt
1 - —t|oo
= (:)'tl 2/P|h — Y3

p
=0(1)

so, E[PDy)? ] = 0 (2) Iyl3 = 0 (2) (' Flylp). Why?



Understanding |PDy]|

2
E[(PDy);] = 0 for each hash bucket i, and E[(PDy);* | = 0 (2) (nl_ﬁlylf,)

Bernstein’s bound: Suppose Ry, ..., R, are independent, and for all j, |R;| < K, and
Var[Y;R;| = o%. There are constants C, ¢, so that for all t > 0,

ct? ct
j

|>t] <C(e o? +e K)
j
Recall (PDy); = ¥;8(h(j) = 1) - 6;- (Dy); , and set R; = §(h(j) = i) - oj- (Dy);

Want |PDy|, = |Dy|., Where |Dy|., € [ﬁ)’%, 10%/P|yl, ] with probability > 4/5

2
Sett= % ands = @(n1_5 logn ), to get n—lz error probability in Bernstein’s bound

But what is K = max; |R;|?



Understanding the Large Elements

Recall (PDy); = Z]- 8(h(G) =1i) - oj (Dy)j , and set R; = 8(h(G) =1i) - oj (Dy)j

We will separately handle those R; for which |R;| > Lzlp for a sufficiently small

olylp
logn

constant a > 0. If [R| > le then necessarily |(Dy);| =

|YIp

We call such a j large if |(Dy);]| 2 1 , otherwise j is small. How many indices j are large?

Recall: [(Dy);| = |yj|/E].1/p

alyl lyil _ alylp] o aPly;|”
Prp || (Dy)y| = F22| = pr ;_lgg]_p L (1oge ) >
j
0‘P|Yj|p(108p n)

Ply.|P (1ogP
=1—¢e v <X |y,||y(|1pog " so the expected number of large j is O(logP n)




Understanding the Large Elements

Recall (PDy); = Zj 8(h(G) =1i) - oj- (Dy)j , and set R; = 6(h(G) =1i) - oj- (Dy)j

We have shown the expected number of large j is O(logP n), so by a Markov bound we
have O(logP n) large j with constant probability and we condition on D satisfying this

1
We also condition on |Dy|, € [% 105|y|p ] , which held with probability > 4/5
10P

All the large j get perfectly hashed into separate hash buckets by P
We are throwing O(logP n) balls into s > n'=2/P bins

We can apply Bernstein on the small indices j inside a hash bucket!



Understanding the Large Elements

2
E[(PDy);] = 0 for each hash bucket i, and E[(PDy)i2 |=0 G) (nl_glylﬁ)

Bernstein’s bound: Suppose R, ..., R, are independent, and for all j, |R;| < K, and Var|};R;] = 2. There

are constants C, c, so thatforallt> 0,
ct? ct

Pr[| ¥;R; — E[X;Rj]|> t] < C (e o7 +e7X)

(PDy); = 2;6(h(j) =1) - 05- (Dy); , and Rj = 6(h(j) =1i) - oj- (Dy);

|Y|p

Can assume K = max |R;] <7 , since there is at most one large j in any hash bucket (PDy);
J

Sett= ly"” ,and s = @(n P log n) in Bernstein’s bound, to get for a bucket (PDy);:
N lyl ogn) 1
Pr[ > 8h0) = D oy(Dy);| > =2 o)

< C( —0(ogn) 4 o %To0a ) < —
1’12
small j
By a union bound over all the s buckets, the “signed sum” of small j in every bucket will be at most

|Y|p



Wrapping Up

For all i,

|(PDy);| < b it o large indices in i-th bucket

100
|yl
|(PDy);| = |o;(Dy);| + T5-

No bucket contains more than 1 large index j

if exactly one large index j in i-th bucket

1
We conditioned on [Dy|,, € [% 105|y|p]
10P

What is |PDy|e?

|Y|p |Y|p

and IPDYIOO =Z~1 " To0
10P

|Y|p

1
[PDyle < 10|yl + =2

So just output |PDy/|,, as your estimate to |y|,

2 2
Total space is s = O(n"_? logn) words, which is O(n"_? log? n) bits



