15-859 Algorithms for Big Data

David Woodruff

Massive data sets

Examples

- Internet traffic logs
- Financial data
- etc.

Algorithms

- Want nearly linear time or less
- Usually at the cost of a randomized approximation

Regression

 Statistical method to study dependencies between variables in the presence of noise.

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Example

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law $V = R \cdot I$
- Find linear function that best fits the data

Linear Regression

 Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting

- One measured variable b
- A set of predictor variables a₁,..., a_d
- Assumption:

$$b = x_0 + a_1 x_1 + ... + a_d x_d + \varepsilon$$

- ε is assumed to be noise and the x_i are model parameters we want to learn
- Can assume $x_0 = 0$
- Now consider n observations of b

Matrix form

Input: $n \times d$ -matrix A and a vector $b=(b_1,..., b_n)$ n is the number of observations; d is the number of predictor variables

Output: x^{*} so that Ax* and b are close

Consider the over-constrained case, when n " d

Least Squares Method

- Find x* that minimizes $|Ax-b|_2^2 = \Sigma (b_i \langle A_{i^*}, x \rangle)^2$
- A_{i*} is i-th row of A
- Certain desirable statistical properties

Geometry of regression

- We want to find an x that minimizes |Ax-b|₂
- The product Ax can be written as

$$A_{*1}x_1 + A_{*2}x_2 + \dots + A_{*d}x_d$$

where A_{*_i} is the i-th column of A

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of A nearest to b in I₂-norm

Solving least squares regression via the normal equations

- How to find the solution x to min_x |Ax-b|₂?
- Equivalent problem: min_x |Ax-b |₂²
 - Write b = Ax' + b', where b' orthogonal to columns of A
 - Cost is $|A(x-x')|_2^2 + |b'|_2^2$ by Pythagorean theorem
 - Optimal solution x if and only if $A^{T}(Ax-b) = A^{T}(Ax-Ax') = 0$
 - Normal Equation: A^TAx = A^Tb for any optimal x
 - $x = (A^T A)^{-1} A^T b$
- If the columns of A are not linearly independent, the Moore-Penrose pseudoinverse gives a minimum norm solution x

Singular Value Decomposition (SVD) Any matrix $A = U \cdot \Sigma \cdot V^{T}$

- U has orthonormal columns
- Σ is diagonal with non-increasing non-negative entries down the diagonal
- V^T has orthonormal rows
- Pseudoinverse $A^- = V \Sigma^{-1} U^T$

• Where Σ^{-1} is a diagonal matrix with i-th diagonal entry equal to $1/\Sigma_{ii}$ if $\Sigma_{ii} > 0$ and is 0 otherwise

• min_x $|Ax-b|_2^2$ not unique when columns of A are linearly independent, but $x = A^{-}b$ has minimum norm

Moore-Penrose Pseudoinverse

- Any optimal solution x has the form $A^-b + (I V'V'^T)z$, where $(V')^T$ corresponds to the rows i of V^T for which $\Sigma_{i,i} > 0$
- Why?
- Because $A(I V'V'^T)z = 0$, so $A^-b + (I V'V'^T)z$ is a solution. This is a (d-rank(A))-dimensional affine space so it spans all optimal solutions
- Since A⁻b is in column span of V', by the Pythagorean theorem, $|A^-b + (I - V'V'^T)z|_2^2 = |A^-b|_2^2 + |(I - V'V'^T)z|_2^2 \ge |A^-b|_2^2$

Time Complexity

Solving least squares regression via the normal equations

- Need to compute x = A⁻b
- Naively this takes nd² time
- Can do nd^{1.376} using fast matrix multiplication
- But we want much better running time!

Sketching to solve least squares regression

- How to find an approximate solution x to min_x |Ax-b|₂?
- Goal: output x' for which |Ax'-b|₂ ‰ (1+ε) min_x |Ax-b|₂ with high probability
- Draw S from a k x n random family of matrices, for a value k << n
- Compute S*A and S*b
- Output the solution x' to min_{x'} |(SA)x-(Sb)|₂

How to choose the right sketching matrix S?

- Recall: output the solution x' to min_{x'} |(SA)x-(Sb)|₂
- Lots of matrices work
- S is $d/\epsilon^2 x$ n matrix of i.i.d. Normal random variables
- To see why this works, we introduce the notion of a subspace embedding

Subspace Embeddings

- Let $k = O(d/\epsilon^2)$
- Let S be a k x n matrix of i.i.d. normal N(0,1/k) random variables
- For any fixed d-dimensional subspace, i.e., the column space of an n x d matrix A
 – W.h.p., for all x in R^d, |SAx|₂ = (1±ε)|Ax|₂
- Entire column space of A is preserved

Why is this true?

Subspace Embeddings – A Proof

- Want to show $|SAx|_2 = (1 \pm \varepsilon)|Ax|_2$ for all x
- Can assume columns of A are orthonormal, since we prove this for all x
- Claim: SA is a k x d matrix of i.i.d. N(0,1/k) random variables
 - First property: for two independent random variables X and Y, with X drawn from N(0, a^2) and Y drawn from N(0, b^2), we have X+Y is drawn from N(0, $a^2 + b^2$)

X+Y is drawn from N(0, $a^2 + b^2$)

• Probability density function f_z of Z = X+Y is convolution of probability density functions f_x and f_y

•
$$f_Z(z) = \int f_X(z-y)f_Y(y) dy$$

•
$$f_X(x) = \frac{1}{a(2\pi)^{.5}} e^{-x^2/2a^2}$$
, $f_Y(y) = \frac{1}{b(2\pi)^{.5}} e^{-y^2/2b^2}$

•
$$f_Z(z) = \int \frac{1}{a(2\pi)^{.5}} e^{-(z-y)^2/2a^2} \frac{1}{b(2\pi)^{.5}} e^{-y^2/2b^2} dy$$

= $\frac{1}{(2\pi)^{.5}(a^2+b^2)^{.5}} e^{-z^2/2(a^2+b^2)} \int \frac{(a^2+b^2)^{.5}}{(2\pi)^{.5}ab} e^{-z\left(\frac{(ab)^2}{a^2+b^2}\right)} dy$

X+Y is drawn from N(0, $a^2 + b^2$)

Rotational Invariance

- Second property: if u, v are vectors with <u, v> = 0, then <g,u> and <g,v> are independent, where g is a vector of i.i.d. N(0,1/k) random variables
- Why?
- If g is an n-dimensional vector of i.i.d. N(0,1) random variables, and R is a fixed matrix, then the probability density function of Rg is

$$f(x) = \frac{1}{\det(R \ R^{T})(2\pi)^{n/2}} e^{-\frac{x^{T}(R \ R^{T})^{-1}x}{2}}$$

- RR^T is the covariance matrix
- For a rotation matrix R, the distribution of Rg and of g are the same

Orthogonal Implies Independent

- Want to show: if u, v are vectors with <u, v> = 0, then
 <g,u> and <g,v> are independent, where g is a vector of i.i.d. N(0,1/k) random variables
- Choose a rotation R which sends u to $\alpha e_1,$ and sends v to βe_2
- $< g, u > = < Rg, Ru > = < h, \alpha e_1 > = \alpha h_1$
- $< g, v > = < Rg, Rv > = < h, \beta e_2 > = \beta h_2$ where h is a vector of i.i.d. N(0, 1/k) random variables
- Then h_1 and h_2 are independent by definition

Where were we?

- Claim: SA is a k x d matrix of i.i.d. N(0,1/k) random variables
- **Proof**: The rows of SA are independent
 - Each row is: < g, $A_1 >$, < g, $A_2 >$, ..., < g, $A_d >$
 - First property implies the entries in each row are N(0,1/k) since the columns A_i have unit norm
 - Since the columns A_i are orthonormal, the entries in a row are independent by our second property

Back to Subspace Embeddings

- Want to show $|SAx|_2 = (1 \pm \varepsilon)|Ax|_2$ for all x
- Can assume columns of A are orthonormal
- Can also assume x is a unit vector
- SA is a k x d matrix of i.i.d. N(0,1/k) random variables
- Consider any fixed unit vector $x \in R^d$
- $|SAx|_2^2 = \sum_{i \in [k]} < g_i, x >^2$, where g_i is i-th row of SA
- Each < g_i , x >² is distributed as N $\left(0, \frac{1}{k}\right)^2$
- E[< g_i, x >²] = 1/k, and so E[|SAx|²₂] = 1
 How concentrated is |SAx|²₂ about its expectation?

Johnson-Lindenstrauss Theorem

- Suppose $\mathrm{h}_1, \ldots, \mathrm{h}_k$ are i.i.d. N(0,1) random variables
- Then G = $\sum_i h_i^2$ is a χ^2 -random variable
- Apply known tail bounds to G:
 - (Upper) $\Pr[G \ge k + 2(kx)^{.5} + 2x] \le e^{-x}$
 - (Lower) $Pr[G \le k 2(kx)^{.5}] \le e^{-x}$
- If $x = \frac{\epsilon^2 k}{16}$, then $\Pr[G \in k(1 \pm \epsilon)] \ge 1 2e^{-\epsilon^2 k/16}$
- If $k = \Theta(e^{-2}\log(\frac{1}{\delta}))$, this probability is 1- δ
- $\Pr[|SAx|_2^2 \in (1 \pm \epsilon)] \ge 1 2^{-\Theta(d)}$

This only holds for a fixed x, how to argue for all x?

Net for Sphere

- Consider the sphere S^{d-1}
- Subset N is a γ -net if for all $x \in S^{d-1}$, there is a $y \in N$, such that $|x y|_2 \le \gamma$
- Greedy construction of N
 - While there is a point $x \in S^{d-1}$ of distance larger than γ from every point in N, include x in N
- The ball of radius $\gamma/2$ around every point in N is contained in the ball of radius 1+ $\gamma/2$ around 0^d
- Further, all such balls are disjoint
- Ratio of volume of d-dimensional ball of radius $1 + \gamma/2$ to d-dimensional sphere of radius γ is $(1 + \gamma/2)^d/(\gamma/2)^d$, so $|N| \le (1 + \gamma/2)^d/(\gamma/2)^d$

Net for Subspace

- Let M = {Ax | x in N}, so $|M| \le (1 + \gamma/2)^d / (\gamma/2)^d$
- Claim: For every x in S^{d-1} , there is a y in M for which $|Ax y|_2 \le \gamma$
- Proof: Let x' in S^{d-1} be such that $|x x'|_2 \le \gamma$ Then $|Ax - Ax'|_2 = |x - x'|_2 \le \gamma$, using that the columns of A are orthonormal. Set y = Ax'

Net Argument

- For a fixed unit x, $\Pr[|SAx|_2^2 \in (1 \pm \epsilon)] \ge 1 2^{-\Theta(d)}$
- For a fixed pair of unit x, x', $|SAx|_2^2$, $|SAx'|_2^2$, $|SA(x x')|_2^2$ are preserved up to a $1 \pm \epsilon$ factor with prob. $1 - 2^{-\Theta(d)}$
- $|SA(x x')|_2^2 = |SAx|_2^2 + |SAx'|_2^2 2 < SAx, SAx' >$
- $|A(x x')|_2^2 = |Ax|_2^2 + |Ax'|_2^2 2 < Ax, Ax' >$
 - So $Pr[\langle Ax, Ax' \rangle = \langle SAx, SAx' \rangle \pm O(\varepsilon)] = 1 2^{-\Theta(d)}$
- Choose a $\frac{1}{2}$ -net M = {Ax | x in N} of size 5^d
- By a union bound, for all pairs y, y' in M, $< y, y' > = < Sy, Sy' > \pm O(\epsilon)$
- Condition on this event
- By linearity, if this holds for y, y' in M, for αy , $\beta y'$ we have $< \alpha y$, $\beta y' > = \alpha \beta < Sy$, $Sy' > \pm O(\epsilon \alpha \beta)$

Finishing the Net Argument

- Let y = Ax for an arbitrary $x \in S^{d-1}$
- Let $y_1 \in M$ be such that $|y y_1|_2 \leq \gamma$
- Let α be such that $|\alpha(y y_1)|_2 = 1$ - $\alpha \ge 1/\gamma$ (could be infinite)
- Let $y_2' \in M$ be such that $|\alpha(y-y_1)-{y_2}'|_2 \leq \gamma$

• Then
$$\left| y - y_1 - \frac{y_2'}{\alpha} \right|_2 \le \frac{\gamma}{\alpha} \le \gamma^2$$

• Set $y_2 = \frac{y'_2}{\alpha}$. Repeat, obtaining $y_1, y_2, y_3, ...$ such that for all integers i,

$$|y - y_1 - y_2 - ... - y_i|_2 \le \gamma^i$$

- Implies $|y_i|_2 \leq \gamma^{i-1} + \gamma^i \leq 2\gamma^{i-1}$

Finishing the Net Argument

• Have y_1, y_2, y_3, \dots such that $y = \sum_i y_i$ and $|y_i|_2 \le 2\gamma^{i-1}$

•
$$|Sy|_{2}^{2} = |S\sum_{i} y_{i}|_{2}^{2}$$

 $= \sum_{i} |Sy_{i}|_{2}^{2} + 2\sum_{i,j} < Sy_{i}, Sy_{j} >$
 $= \sum_{i} |y_{i}|_{2}^{2} + 2\sum_{i,j} < y_{i}, y_{j} > \pm O(\epsilon) \sum_{i,j} |y_{i}|_{2} |y_{j}|_{2}$
 $= |\sum_{i} y_{i}|_{2}^{2} \pm O(\epsilon)$
 $= |y|_{2}^{2} \pm O(\epsilon)$
 $= 1 \pm O(\epsilon)$

 Since this held for an arbitrary y = Ax for unit x, by linearity it follows that for all x, |SAx|₂ = (1±ε)|Ax|₂

Back to Regression

 We showed that S is a subspace embedding, that is, simultaneously for all x, |SAx|₂ = (1±ε)|Ax|₂

What does this have to do with regression?

Subspace Embeddings for Regression

- Want x so that $|Ax-b|_2 \leq (1+\varepsilon) \min_y |Ay-b|_2$
- Consider subspace L spanned by columns of A together with b
- Then for all y in L, $|Sy|_2 = (1 \pm \varepsilon) |y|_2$
- Hence, $|S(Ax-b)|_2 = (1 \pm \epsilon) |Ax-b|_2$ for all x
- Solve $\operatorname{argmin}_{y} |(SA)y (Sb)|_{2}$
- Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes O(nd²) time

How to choose the right sketching matrix S? [S]

- S is a Subsampled Randomized Hadamard Transform
 S = P*H*D
 - D is a diagonal matrix with +1, -1 on diagonals
 - H is the Hadamard matrix: $H_{i,j} = (-1/n^{.5})^{\langle i,j \rangle}$
 - P just chooses a random (small) subset of rows of H*D
 - S*A can be computed in O(nd log n) time

Why does it work?

- We can again assume columns of A are orthonormal
- It suffices to show $|SAx|_2^2 = |PHDAx|_2^2 = 1 \pm \epsilon$ for all x
- HD is a rotation matrix, so |HDAx|²₂ = |Ax|²₂ = 1 for any x
 Notation: let y = Ax
- Flattening Lemma: For any fixed y,

$$\Pr\left[|\text{HDy}|_{\infty} \ge C \quad \frac{\log^{.5}(\frac{\text{nd}}{\delta})}{n^{.5}}\right] \le \frac{\delta}{2d}$$

Proving the Flattening Lemma

- Flattening Lemma: $\Pr[|HDy|_{\infty} \ge C \quad \frac{\log^{.5} nd/\delta}{n^{.5}}] \le \frac{\delta}{2d}$
- Let C > 0 be a constant. We will show for a fixed i in [n],

$$\Pr[|(HDy)_i| \ge C \quad \frac{\log^{.5} nd/\delta}{n^{.5}}] \le \frac{\delta}{2nd}$$

- If we show this, we can apply a union bound over all i
- $|(HDy)_i| = \sum_j H_{i,j} D_{j,j} y_j$
- (Azuma-Hoeffding) For independent zero-mean random variables Z_j : $Pr[|\sum_j Z_j| > t] \le 2e^{-(\frac{t^2}{2\sum_j \beta_j^2})}$, where $|Z_j| \le \beta_j$ with probability 1
 - $Z_j = H_{i,j}D_{j,j}y_j$ has 0 mean
 - $|Z_j| \le \frac{|y_j|}{n^{.5}} = \beta_j$ with probability 1
 - $\sum_{j} \beta_j^2 = \frac{1}{n}$

•
$$\Pr\left[\left|\sum_{j} Z_{j}\right| > \frac{C \log^{.5}\left(\frac{nd}{\delta}\right)}{n^{.5}}\right] \le 2e^{-\frac{C^{2} \log\left(\frac{nd}{\delta}\right)}{2}} \le \frac{\delta}{2nd}$$

Consequence of the Flattening Lemma

- Recall columns of A are orthonormal
- HDA has orthonormal columns
- Flattening Lemma implies $|\text{HDAe}_i|_{\infty} \le C$ $\frac{\log^{.5} nd/\delta}{n^{.5}}$ with probability $1 \frac{\delta}{2d}$ for a fixed i ∈ [d]
- With probability $1 \frac{\delta}{2}$, $|e_j HDAe_i| \leq C \frac{\log^{.5} nd/\delta}{n^{.5}}$ for all i,j
- Given this, $|e_j HDA|_2 \le C = \frac{d^{.5} \log^{.5} nd/\delta}{n^{.5}}$ for all j

(Can be optimized further)

Matrix Chernoff Bound

- Let $X_1, ..., X_s$ be independent copies of a symmetric random matrix $X \in \mathbb{R}^{dxd}$ with $\mathbb{E}[X] = 0$, $|X|_2 \leq \gamma$, and $|\mathbb{E}[X^T X]|_2 \leq \sigma^2$. Let $W = \frac{1}{s} \sum_{i \in [s]} X_i$. For any $\epsilon > 0$, $\Pr[|W|_2 > \epsilon] \leq 2d \cdot e^{-s\epsilon^2/(\sigma^2 + \frac{\gamma\epsilon}{3})}$ (here $|W|_2 = \sup |Wx|_2/|x|_2$)
- Let V = HDA, and recall V has orthonormal columns
- Suppose P in the S = PHD definition samples s rows uniformly with replacement. If row i is sampled in the j-th sample, $P_{j,i} = \frac{\sqrt{n}}{\sqrt{s}}$, and is 0 otherwise
- Let Y_i be the i-th sampled row of V = HDA
- Let $X_i = I_d n \cdot Y_i^T Y_i$
 - $E[X_i] = I_d n \cdot \sum_j \left(\frac{1}{n}\right) V_j^T V_j = I_d V^T V = 0^{d \times d}$
 - $|X_i|_2 \le |I_d|_2 + n \cdot \max \left| e_j HDA \right|_2^2 = 1 + n \cdot C^2 \log \left(\frac{nd}{\delta}\right) \cdot \frac{d}{n} = \Theta(d \log \left(\frac{nd}{\delta}\right))$ 37