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Massive data sets

Examples
 Internet traffic logs
 Financial data
 etc.

Algorithms
 Want nearly linear time or less 
 Usually at the cost of a randomized approximation
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Regression analysis

Regression
 Statistical method to study dependencies between 

variables in the presence of noise.
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies 

between variables in the presence of noise.
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies 

between variables in the presence of noise.

Example
 Ohm's law V = R ∙ I 
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies 

between variables in the presence of noise.

Example
 Ohm's law V = R ∙ I 
 Find linear function that 

best fits the data
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Regression analysis

Linear Regression
 Statistical method to study linear dependencies between 

variables in the presence of noise.

Standard Setting
 One measured variable b
 A set of predictor variables a  ,…, a
 Assumption:

b  = x  + a   x  + … + a    x   + 
 is assumed to be noise and the xi are model 

parameters we want to learn
 Can assume x0 = 0
 Now consider n observations of b
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Regression analysis

Matrix form
Input:  nd-matrix A and a vector b=(b1,…, bn)

n is the number of observations; d is the number of  
predictor variables

Output: x* so that Ax* and b are close

 Consider the over-constrained case, when n � d
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Regression analysis

Least Squares Method

 Find x* that minimizes |Ax-b|22 =  (bi – <Ai*, x>)²

 Ai* is i-th row of A

 Certain desirable statistical properties
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Regression analysis

Geometry of regression
 We want to find an x that minimizes |Ax-b|2
 The product Ax can be written as

A*1x1 + A*2x2 + ... + A*dxd

where A*i is the i-th column of A

 This is a linear d-dimensional subspace 
 The problem is equivalent to computing the point of the 

column space of A nearest to b in l2-norm
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Regression analysis

Solving least squares regression via the normal equations

 How to find the solution x to minx |Ax-b|2 ?

 Equivalent problem: minx |Ax-b |22

 Write b = Ax’ + b’, where b’ orthogonal to columns of A
 Cost is |A(x-x’)|22 + |b’|22 by Pythagorean theorem
 Optimal solution x if and only if AT(Ax-b) = AT(Ax-Ax’) = 0
 Normal Equation: ATAx = ATb for any optimal x
 x = (ATA)-1 AT b 

 If the columns of A are not linearly independent, the Moore-
Penrose pseudoinverse gives a minimum norm solution x
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Moore-Penrose Pseudoinverse
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Moore-Penrose Pseudoinverse

• Any optimal solution x has the form A b
I V′V′ z,	where V 		corresponds to the rows i

of V for which Σ , 	 0

• Why?

• Because A I V′V′ z 0, so A b I V′V′ z
is a solution. This is a (d-rank(A))-dimensional 
affine space so it spans all optimal solutions

• Since A b is in column span of V’, by the 
Pythagorean theorem, |A b I V′V′ z|
A b | I V V z| A b
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Time Complexity

Solving least squares regression via the normal equations

 Need to compute x = A-b 

 Naively this takes nd time

 Can do nd . using fast matrix multiplication

 But we want much better running time!
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Sketching to solve least squares regression

 How to find an approximate solution x to minx |Ax-b|2 ?

 Goal: output x‘ for which |Ax‘-b|2 � (1+ε) minx |Ax-b|2
with high probability

 Draw S from a k x n random family of matrices, for a 
value k << n

 Compute S*A and S*b

 Output the solution x‘ to minx‘ |(SA)x-(Sb)|2
 x’ = (SA)-Sb 
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How to choose the right sketching matrix S? 

 Recall: output the solution x‘ to minx‘ |(SA)x-(Sb)|2

 Lots of matrices work

 S is d/ε2 x n matrix of i.i.d. Normal random variables

 To see why this works, we 
introduce the notion of a 
subspace embedding



Subspace Embeddings

• Let k = O(d/ε2)
• Let S be a k x n matrix of i.i.d. normal 

N(0,1/k) random variables
• For any fixed d-dimensional subspace, i.e., 

the column space of an n x d matrix A
– W.h.p., for all x in Rd, |SAx|2 = (1±ε)|Ax|2

• Entire column space of A is preserved

Why is this true?



Subspace Embeddings – A Proof
• Want to show |SAx|2 = (1±ε)|Ax|2 for all x

• Can assume columns of A are orthonormal,  
since we prove this for all x

• Claim: SA is a k x d matrix of i.i.d. N(0,1/k) 
random variables

– First property: for two independent random variables X 
and Y, with X drawn from N(0,a ) and Y drawn from 
N(0,b ), we have X+Y is drawn from N(0, a b



X+Y is drawn from N(0, 
• Probability density function of Z = X+Y is 

convolution of probability density functions f and	f

• f z f z y f y 	dy	

• f x . e / ,   f y . e /

• f z . e /
. e / dy

. . e /
.

. e dy



X+Y is drawn from N(0, 

Calculation:	 	 	 		 		

	 	

Density	of	Gaussian	distribution:	
.

. dy = 1 



Rotational Invariance
• Second property: if u, v are vectors with <u, v> = 0, 

then <g,u> and <g,v> are independent, where g is a 
vector of i.i.d. N(0,1/k) random variables

• Why? 
• If g is an n-dimensional  vector of i.i.d. N(0,1)  

random variables, and R is a fixed matrix, then   
the probability density function of Rg is 

	 /

is the covariance matrix
– For a rotation matrix R, the distribution of Rg

and of g are the same



Orthogonal Implies Independent
• Want to show: if u, v are vectors with <u, v> = 0, then 

<g,u> and <g,v> are independent, where g is a vector of 
i.i.d. N(0,1/k) random variables

• Choose a rotation R which sends u to αe , and sends v 
to βe

• g, u 	 	 Rg, Ru 	 	 h, αe 	 αh
• g, v 	 	 Rg, Rv 	 	 h, βe 	 βh

where h is a vector of i.i.d. N(0, 1/k) random variables

• Then h and h 	are independent by definition 



Where were we?
• Claim: SA is a k x d matrix of i.i.d. N(0,1/k) random 

variables

• Proof: The rows of SA are independent

– Each row is: g, A , g, A 	, … , g, A 	

– First property implies the entries in each row are 
N(0,1/k) since the columns A have unit norm

– Since the columns A are orthonormal, the entries in a 
row are independent by our second property



Back to Subspace Embeddings
• Want to show |SAx|2 = (1±ε)|Ax|2 for all x
• Can assume columns of A are orthonormal
• Can also assume x is a unit vector
• SA is a k x d matrix of i.i.d. N(0,1/k) random variables

• Consider any fixed unit vector x ∈ R
• SAx ∑ g , x∈ , where g is i-th row of SA

• Each g , x is distributed as N 0,

• E[ g , x ] = 1/k, and so E[ SAx ] = 1
How concentrated is SAx about its expectation?



Johnson-Lindenstrauss Theorem
• Suppose h ,… , h 	are i.i.d. N(0,1) random variables
• Then G = ∑ h is a -random variable
• Apply known tail bounds to G:

– (Upper)	Pr G k 2 kx . 2x e
– (Lower) Pr G k	 	2 kx . e

• If x , then Pr G ∈ k 1 ϵ 	 1 2e /

• If k Θ ϵ log	 , this probability is 1-δ

• Pr SAx ∈ 1 ϵ 1 2
This only holds for a fixed x, how to argue for all x?



Net for Sphere 
• Consider the sphere S
• Subset N is a γ-net if for all x ∈ S , there is a y ∈ N, 

such that x y γ
• Greedy construction of N

– While there is a point x ∈ S of distance larger than 
γ from every point in N, include x in N

• The ball of radius γ/2 around every point in N is 
contained in the ball of radius 1+ γ/2 around 0

• Further, all such balls are disjoint
• Ratio of volume of d-dimensional ball of radius 1+ γ/2 to 

d-dimensional sphere of radius is 1 γ/2 / γ/2 , 
so N 1 γ/2 / γ/2



Net for Subspace
• Let M = {Ax | x in N}, so	 M 1 γ/2 / γ/2

• Claim: For every x in S , there is a y in M for which 
Ax y γ

• Proof: Let x’ in S be such that x x γ
Then Ax Ax x x γ, using that the 
columns of A are orthonormal. Set y = Ax’



Net Argument
• For a fixed unit x, Pr SAx ∈ 1 ϵ 1 2
• For a fixed pair of unit x, x’, SAx , SAx′ , SA x x

are preserved up to a 1 ϵ factor with prob. 1 2
• SA x x SAx SAx 2 SAx, SAx
• A x x Ax Ax 2 Ax, Ax

– So Pr Ax, Ax 	 	 SAx, SAx 	 	O ϵ 1	 2

• Choose a ½-net M = {Ax | x in N} of size 5
• By a union bound, for all pairs y, y’ in M, 

y, y′ 	 	 Sy, Sy′ 	 	O ϵ
• Condition on this event
• By linearity, if this holds for y, y’ in M, for αy, βy′ we have

αy, βy′ 	 αβ Sy, Sy′ 	 	O ϵ	αβ



Finishing the Net Argument

• Let y = Ax for an arbitrary x ∈ S
• Let y ∈ M be such that y y γ
• Let α be such that α y y 1

– α 1/γ (could be infinite)
• Let y ∈ M be such that α y y y ′ γ

• Then y y γ

• Set y . Repeat, obtaining y , y , y , … such that for 
all integers i, 

y y y 	… y γ
• Implies y γ γ 2γ 	



Finishing the Net Argument
• Have y , y , y , … such that y	 ∑ y and y 2γ 	

• Sy |S∑ y |
= ∑ Sy 2∑ Sy , Sy,

= ∑ y 2	∑ y , y, 	 O ϵ ∑ y y, 	

= | ∑ y | 	 O ϵ
= y O ϵ
= 1 O ϵ

• Since this held for an arbitrary y = Ax for unit x, by 
linearity it follows that for all x, |SAx|2 = (1±ε)|Ax|2 



• We showed that S is a subspace 
embedding, that is, simultaneously for all x,

|SAx|2 = (1±ε)|Ax|2 

What does this have to do with regression?

Back to Regression



Subspace Embeddings for 
Regression

• Want x so that |Ax-b|2 � (1+ε) miny |Ay-b|2
• Consider subspace L spanned by columns of A 

together with b
• Then for all y in L, |Sy|2 = (1± ε) |y|2
• Hence, |S(Ax-b)|2 = (1± ε) |Ax-b|2 for all x
• Solve argminy |(SA)y – (Sb)|2
• Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes O(nd2) time 
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How to choose the right sketching matrix S? [S] 

 S is a Subsampled Randomized Hadamard Transform
 S = P*H*D

 D is a diagonal matrix with +1, -1 on diagonals

 H is the Hadamard matrix: H , 1/n. ,

 P just chooses a random (small) subset of rows of H*D

 S*A can be computed in O(nd log n) time

Why does it work?
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Why does this work?

 We can again assume columns of A are orthonormal

 It suffices to show SAx PHDAx 1 ϵ for all x

 HD is a rotation matrix, so HDAx Ax 1 for any x
 Notation: let y = Ax

 Flattening Lemma: For any fixed y, 

Pr [ HDy C
.

.
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 Flattening Lemma: Pr [ HDy C
. /
.

 Let C > 0 be a constant. We will show for a fixed i in [n], 

Pr [ HDy C
. /
.

 If we show this, we can apply a union bound over all i
 HDy ∑ H , D , y
 (Azuma-Hoeffding) For independent zero-mean random variables Z : 

	Pr | ∑ Z | t 2e ∑ ,	where |Z | β with probability 1
 Z H , D , y has 0 mean

 |Z | | |
. β with probability 1

 ∑ β

 Pr | ∑ Z |
	 .

. 2e 	

Proving the Flattening Lemma
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Consequence of the Flattening Lemma

 Recall columns of A are orthonormal
 HDA has orthonormal columns 

 Flattening Lemma implies HDAe C
. /
. with 

probability 1 for a fixed i ∈ d

 With probability 1 , e HDAe C
. /
. for all i,j

 Given this, e HDA C
. . /

. for all j

(Can be optimized further)
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Matrix Chernoff Bound

 Let X ,… , X be independent copies of a symmetric random matrix X ∈ R
with E X 0, X γ, and E X X . Let W ∑ X∈ .	 For any ϵ 0,

Pr W ϵ 2d ⋅ e /

(here W sup	 Wx / x

 Let V = HDA, and recall V has orthonormal columns

 Suppose P in the S = PHD definition samples s rows uniformly with 
replacement. If row i is sampled in the j-th sample, P, √

, and is 0 otherwise

 Let Y be the i-th sampled row of V = HDA

 Let X I n ⋅ Y Y

 E X I n ⋅ ∑ V V I V V 0 	 	

 X I n ⋅ max	 e HDA 1 n ⋅ C 	log ⋅ Θ d log


