15-859 Algorithms for Big Data

David Woodruff

Massive data sets

Examples

- Internet traffic logs
- Financial data
- etc.

Algorithms

- Want nearly linear time or less
- Usually at the cost of a randomized approximation

Regression analysis

Regression

- Statistical method to study dependencies between variables in the presence of noise.

Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law V = R • I

Example Regression

Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Example Regression
Example

- Ohm's law V = R • I
- Find linear function that best fits the data

Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting

- One measured variable b
- A set of predictor variables a_{1}, \ldots, a_{d}
- Assumption:

$$
b=x_{0}+a_{1} x_{1}+\ldots+a_{d} x_{d}+\varepsilon
$$

- ε is assumed to be noise and the x_{i} are model parameters we want to learn
- Can assume $x_{0}=0$
- Now consider n observations of b

Regression analysis

Matrix form
Input: $\mathrm{n} \times \mathrm{d}$-matrix A and a vector $\mathrm{b}=\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)$
n is the number of observations; d is the number of predictor variables

Output: x^{*} so that $A x^{*}$ and b are close

- Consider the over-constrained case, when n " d

Regression analysis

Least Squares Method

- Find x^{*} that minimizes $\left.|A x-b|_{2}^{2}=\Sigma\left(b_{i}-<A_{i^{*}}, x\right\rangle\right)^{2}$
- $A_{i^{*}}$ is i-th row of A
- Certain desirable statistical properties

Regression analysis

Geometry of regression

- We want to find an x that minimizes $|A x-b|_{2}$
- The product $A x$ can be written as

$$
A_{*_{1}} x_{1}+A_{*_{2}} x_{2}+\ldots+A_{*_{d}} x_{d}
$$

where $A_{* i}$ is the i-th column of A

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of A nearest to b in I_{2}-norm

Regression analysis

Solving least squares regression via the normal equations

- How to find the solution x to $\min _{x}|A x-b|_{2}$?
- Equivalent problem: $\min _{\mathrm{x}}|\mathrm{Ax}-\mathrm{b}|_{2}{ }^{2}$
- Write $b=A x^{\prime}+b^{\prime}$, where b^{\prime} orthogonal to columns of A
- Cost is $\left|A\left(x-x^{\prime}\right)\right|_{2}{ }^{2}+\left|b^{\prime}\right|_{2}{ }^{2}$ by Pythagorean theorem
- Optimal solution x if and only if $A^{\top}(A x-b)=A^{\top}\left(A x-A x^{3}\right)=0$
- Normal Equation: $A^{\top} A x=A^{\top} b$ for any optimal x
- $x=\left(A^{\top} A\right)^{-1} A^{\top} b$
- If the columns of A are not linearly independent, the MoorePenrose pseudoinverse gives a minimum norm solution x

Moore-Penrose Pseudoinverse

Singular Value Decomposition (SVD)

Any matrix $A=U \cdot \Sigma \cdot V^{T}$

- U has orthonormal columns
- Σ is diagonal with non-increasing non-negative entries down the diagonal
- V^{T} has orthonormal rows
- Pseudoinverse $A^{-}=\mathrm{V} \Sigma^{-1} \mathrm{U}^{\mathrm{T}}$
- Where Σ^{-1} is a diagonal matrix with i-th diagonal entry equal to $1 / \Sigma_{i i}$ if $\Sigma_{i i}>0$ and is 0 otherwise
- $\min _{x}|A x-b|_{2}{ }^{2}$ not unique when columns of A are linearly independent, but $x=A^{-b}$ has minimum norm

Moore-Penrose Pseudoinverse

- Any optimal solution x has the form $A^{-} b+$ $\left(\mathrm{I}-\mathrm{V}^{\prime} \mathrm{V}^{\prime \mathrm{T}}\right) \mathrm{z}$, where $\left(\mathrm{V}^{\prime}\right)^{\mathrm{T}}$ corresponds to the rows i of V^{T} for which $\Sigma_{i, i}>0$
- Why?
- Because $A\left(I-V^{\prime} V^{\prime T}\right) z=0$, so $A^{-} b+\left(I-V^{\prime} V^{\prime T}\right) z$ is a solution. This is a (d-rank(A))-dimensional affine space so it spans all optimal solutions
- Since $\mathrm{A}^{-} \mathrm{b}$ is in column span of V^{\prime}, by the Pythagorean theorem, $\left|\mathrm{A}^{-} \mathrm{b}+\left(\mathrm{I}-\mathrm{V}^{\prime} \mathrm{V}^{\prime \mathrm{T}}\right) \mathrm{z}\right|_{2}^{2}=$ $\left|A^{-} \mathrm{b}\right|_{2}^{2}+\left|\left(\mathrm{I}-\mathrm{V}^{\prime} \mathrm{V}^{\prime T}\right) \mathrm{z}\right|_{2}^{2} \geq\left|\mathrm{A}^{-} \mathrm{b}\right|_{2}^{2}$

Time Complexity

Solving least squares regression via the normal equations

- Need to compute $x=A-b$
- Naively this takes nd ${ }^{2}$ time
- Can do nd ${ }^{1.376}$ using fast matrix multiplication
- But we want much better running time!

Sketching to solve least squares regression

- How to find an approximate solution x to $\min _{x}|A x-b|_{2}$?
- Goal: output $x^{‘}$ for which $\left|A x^{\prime}-b\right|_{2} \%(1+\varepsilon) \min _{x}|A x-b|_{2}$ with high probability
- Draw S from a $\mathrm{k} \times \mathrm{n}$ random family of matrices, for a value $\mathrm{k} \ll \mathrm{n}$
- Compute S*A and S*b
- Output the solution x^{x} to $\min _{x^{x}}|(S A) x-(S b)|_{2}$
- $x^{\prime}=(S A)-S b$

How to choose the right sketching matrix S?

- Recall: output the solution x^{\prime} to $\min _{x^{\prime}}|(S A) x-(S b)|_{2}$
- Lots of matrices work
- S is $d / \varepsilon^{2} \times n$ matrix of i.i.d. Normal random variables
- To see why this works, we introduce the notion of a subspace embedding

Subspace Embeddings

- Let $\mathrm{k}=\mathrm{O}\left(\mathrm{d} / \varepsilon^{2}\right)$
- Let S be a $k \times n$ matrix of i.i.d. normal $N(0,1 / k)$ random variables
- For any fixed d-dimensional subspace, i.e., the column space of an $n x d$ matrix A
- W.h.p., for all x in $R^{d},|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$
- Entire column space of A is preserved

Subspace Embeddings - A Proof

- Want to show $|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$ for all x
- Can assume columns of A are orthonormal, since we prove this for all x
- Claim: SA is a $k \times d$ matrix of i.i.d. $N(0,1 / k)$ random variables
- First property: for two independent random variables X and Y, with X drawn from $N\left(0, a^{2}\right)$ and Y drawn from $N\left(0, b^{2}\right)$, we have $X+Y$ is drawn from $N\left(0, a^{2}+b^{2}\right)$

$X+Y$ is drawn from $N\left(0, a^{2}+b^{2}\right)$

- Probability density function f_{z} of $Z=X+Y$ is convolution of probability density functions f_{X} and f_{Y}
- $f_{Z}(z)=\int f_{X}(z-y) f_{Y}(y) d y$
- $\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\frac{1}{\mathrm{a}(2 \pi)^{5}} \mathrm{e}^{-\mathrm{x}^{2} / 2 \mathrm{a}^{2}} \quad, \mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\frac{1}{\mathrm{~b}(2 \pi)^{5}} \mathrm{e}^{-\mathrm{y}^{2} / 2 \mathrm{~b}^{2}}$
- $\mathrm{f}_{\mathrm{Z}}(\mathrm{z})=\int \frac{1}{\mathrm{a}(2 \pi)^{5}} \mathrm{e}^{-(\mathrm{z}-\mathrm{y})^{2} / 2 \mathrm{a}^{2}} \frac{1}{\mathrm{~b}(2 \pi)^{5}} \mathrm{e}^{-\mathrm{y}^{2} / 2 \mathrm{~b}^{2}} \mathrm{dy}$

$\mathrm{X}+\mathrm{Y}$ is drawn from $\mathrm{N}\left(0, a^{2}+b^{2}\right)$

Density of Gaussian distribution: $\int \frac{\left(a^{2}+b^{2}\right)^{.5}}{(2 \pi)^{5} a b} e^{-\frac{\left(y-\frac{b^{2} z}{a^{2}+b^{2}}\right)^{2}}{2\left(\frac{(a b)^{2}}{a^{2}+b^{2}}\right)}} d y=1$

Rotational Invariance

- Second property: if u, v are vectors with $<u, v>=0$, then <g,u> and <g,v> are independent, where g is a vector of i.i.d. $N(0,1 / k)$ random variables
- Why?
- If g is an n-dimensional vector of i.i.d. $N(0,1)$ random variables, and R is a fixed matrix, then the probability density function of Rg is

$$
f(x)=\frac{1}{\operatorname{det}\left(\mathrm{R} \mathrm{R}^{\mathrm{T}}\right)(2 \pi)^{n / 2}} e^{-\frac{x^{T}\left(\mathrm{R} \mathrm{R}^{\mathrm{T}}\right)^{-1} x}{2}}
$$

$-R^{T}$ is the covariance matrix

- For a rotation matrix R, the distribution of Rg and of g are the same

Orthogonal Implies Independent

- Want to show: if u, v are vectors with $<u, v>=0$, then $<\mathrm{g}, \mathrm{u}>$ and $<\mathrm{g}, \mathrm{v}>$ are independent, where g is a vector of i.i.d. $\mathrm{N}(0,1 / k)$ random variables
- Choose a rotation R which sends u to $\alpha_{\mathrm{e}_{1}}$, and sends v to $\beta \mathrm{e}_{2}$
- $<\mathrm{g}, \mathrm{u}>=<\mathrm{Rg}, \mathrm{Ru}>=<\mathrm{h}, \alpha \mathrm{e}_{1}>=\alpha \mathrm{h}_{1}$
- $\langle\mathrm{g}, \mathrm{v}\rangle=<\mathrm{Rg}, \mathrm{Rv}>=<\mathrm{h}, \beta \mathrm{e}_{2}>=\beta \mathrm{h}_{2}$ where h is a vector of i.i.d. $N(0,1 / k)$ random variables
- Then h_{1} and h_{2} are independent by definition

Where were we?

- Claim: SA is a $k x d$ matrix of i.i.d. $N(0,1 / k)$ random variables
- Proof: The rows of SA are independent
- Each row is: $<\mathrm{g}, \mathrm{A}_{1}>,<\mathrm{g}, \mathrm{A}_{2}>, \ldots,<\mathrm{g}, \mathrm{A}_{\mathrm{d}}>$
- First property implies the entries in each row are $N(0,1 / k)$ since the columns A_{i} have unit norm
- Since the columns A_{i} are orthonormal, the entries in a row are independent by our second property

Back to Subspace Embeddings

- Want to show $|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$ for all x
- Can assume columns of A are orthonormal
- Can also assume x is a unit vector
- SA is a $k x d$ matrix of i.i.d. $N(0,1 / k)$ random variables
- Consider any fixed unit vector $\mathrm{x} \in \mathrm{R}^{\mathrm{d}}$
- $|S A x|_{2}^{2}=\sum_{i \in[k]}<g_{i}, x>^{2}$, where g_{i} is i-th row of $S A$
- Each $<\mathrm{g}_{\mathrm{i}}, \mathrm{x}>^{2}$ is distributed as $\mathrm{N}\left(0, \frac{1}{\mathrm{k}}\right)^{2}$
- $\mathrm{E}\left[<\mathrm{g}_{\mathrm{i}}, \mathrm{x}>^{2}\right]=1 / k$, and so $\mathrm{E}\left[|S A x|_{2}^{2}\right]=1$

How concentrated is $|\mathrm{SAx}|_{2}^{2}$ about its expectation?

Johnson-Lindenstrauss Theorem

- Suppose h_{1}, \ldots, h_{k} are i.i.d. $\mathrm{N}(0,1)$ random variables
- Then $\mathrm{G}=\sum_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}^{2}$ is a χ^{2}-random variable
- Apply known tail bounds to G :
- (Upper) $\operatorname{Pr}\left[G \geq \mathrm{k}+2(\mathrm{kx})^{5}+2 \mathrm{x}\right] \leq \mathrm{e}^{-\mathrm{x}}$
- (Lower) $\operatorname{Pr}\left[\mathrm{G} \leq \mathrm{k}-2(\mathrm{kx})^{5}\right] \leq \mathrm{e}^{-\mathrm{x}}$
- If $x=\frac{\epsilon^{2} k}{16}$, then $\operatorname{Pr}[G \in k(1 \pm \epsilon)] \geq 1-2 e^{-\epsilon^{2} k / 16}$
- If $\mathrm{k}=\Theta\left(\epsilon^{-2} \log \left(\frac{1}{\delta}\right)\right)$, this probability is $1-\delta$
- $\operatorname{Pr}\left[|S A x|_{2}^{2} \in(1 \pm \epsilon)\right] \geq 1-2^{-\Theta(d)}$

This only holds for a fixed x, how to argue for all x ?

Net for Sphere

- Consider the sphere S^{d-1}
- Subset N is a γ-net if for all $x \in S^{d-1}$, there is a $y \in N$, such that $|x-y|_{2} \leq \gamma$
- Greedy construction of N
- While there is a point $x \in S^{d-1}$ of distance larger than γ from every point in N , include x in N
- The ball of radius $\gamma / 2$ around every point in N is contained in the ball of radius $1+\gamma / 2$ around 0^{d}
- Further, all such balls are disjoint
- Ratio of volume of d-dimensional ball of radius $1+\gamma / 2$ to d-dimensional sphere of radius γ is $(1+\gamma / 2)^{\mathrm{d}} /(\gamma / 2)^{\mathrm{d}}$, so $|\mathrm{N}| \leq(1+\gamma / 2)^{\mathrm{d}} /(\gamma / 2)^{\mathrm{d}}$

Net for Subspace

- Let $M=\{A x \mid x$ in $N\}$, so $|M| \leq(1+\gamma / 2)^{d} /(\gamma / 2)^{d}$
- Claim: For every x in $\mathrm{S}^{\mathrm{d}-1}$, there is a y in M for which $|A x-y|_{2} \leq \gamma$
- Proof: Let x^{\prime} in S^{d-1} be such that $\left|x-x^{\prime}\right|_{2} \leq \gamma$ Then $\left|A x-A x^{\prime}\right|_{2}=\left|x-x^{\prime}\right|_{2} \leq \gamma$, using that the columns of A are orthonormal. Set $y=A x^{\prime}$

Net Argument

- For a fixed unit $x, \operatorname{Pr}\left[|S A x|_{2}^{2} \in(1 \pm \epsilon)\right] \geq 1-2^{-\Theta(d)}$
- For a fixed pair of unit $x, x^{\prime},|S A x|_{2}^{2},\left|S A x^{\prime}\right|_{2}^{2},\left|S A\left(x-x^{\prime}\right)\right|_{2}^{2}$ are preserved up to a $1 \pm \epsilon$ factor with prob. $1-2^{-\Theta(d)}$
- $\left|S A\left(x-x^{\prime}\right)\right|_{2}^{2}=|S A x|_{2}^{2}+\left|S A x^{\prime}\right|_{2}^{2}-2<S A x, S A x^{\prime}>$
- $\left|A\left(x-x^{\prime}\right)\right|_{2}^{2}=|A x|_{2}^{2}+\left|A x^{\prime}\right|_{2}^{2}-2<A x, A x^{\prime}>$

$$
\text { - So } \operatorname{Pr}\left[<A x, A x^{\prime}>=<S A x, S A x^{\prime}> \pm O(\epsilon)\right]=1-2^{-\Theta(d)}
$$

- Choose a $1 / 2$-net $M=\{A x \mid x$ in $N\}$ of size 5^{d}
- By a union bound, for all pairs y, y ' in M ,

$$
<\mathrm{y}, \mathrm{y}^{\prime}>=<\mathrm{Sy}, \mathrm{Sy}^{\prime}> \pm \mathrm{O}(\epsilon)
$$

- Condition on this event
- By linearity, if this holds for $\mathrm{y}, \mathrm{y}^{\prime}$ in M , for $\alpha \mathrm{y}, \beta \mathrm{y}^{\prime}$ we have

$$
<\alpha y, \beta y^{\prime}>=\alpha \beta<S y, S y^{\prime}> \pm O(\epsilon \alpha \beta)
$$

Finishing the Net Argument

- Let $y=A x$ for an arbitrary $x \in S^{d-1}$
- Let $y_{1} \in M$ be such that $\left|y-y_{1}\right|_{2} \leq \gamma$
- Let α be such that $\left|\alpha\left(y-y_{1}\right)\right|_{2}=1$
$-\alpha \geq 1 / \gamma$ (could be infinite)
- Let $y_{2}^{\prime} \in M$ be such that $\left|\alpha\left(y-y_{1}\right)-y_{2}{ }^{\prime}\right|_{2} \leq \gamma$
- Then $\left|y-y_{1}-\frac{\mathrm{y}_{2}{ }^{\prime}}{\alpha}\right|_{2} \leq \frac{\gamma}{\alpha} \leq \gamma^{2}$
- Set $\mathrm{y}_{2}=\frac{\mathrm{y}_{2}^{\prime}}{\alpha}$. Repeat, obtaining $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots$ such that for all integers i ,

$$
\left|y-y_{1}-y_{2}-\ldots-y_{i}\right|_{2} \leq \gamma^{i}
$$

- Implies $\left|y_{i}\right|_{2} \leq \gamma^{i-1}+\gamma^{\mathrm{i}} \leq 2 \gamma^{\mathrm{i}-1}$

Finishing the Net Argument

- Have $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots$ such that $\mathrm{y}=\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$ and $\left|\mathrm{y}_{\mathrm{i}}\right|_{2} \leq 2 \gamma^{\mathrm{i}-1}$
- $|S y|_{2}^{2}=\left|S \sum_{i} y_{i}\right|_{2}^{2}$

$$
\begin{aligned}
& =\sum_{\mathrm{i}}\left|S y_{\mathrm{i}}\right|_{2}^{2}+2 \sum_{\mathrm{i}, \mathrm{j}}<S y_{\mathrm{i}}, S y_{\mathrm{j}}> \\
& =\sum_{\mathrm{i}}\left|y_{\mathrm{i}}\right|_{2}^{2}+2 \sum_{\mathrm{i}, \mathrm{j}}<\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}> \pm \mathrm{O}(\epsilon) \sum_{\mathrm{i}, \mathrm{j}}\left|y_{\mathrm{i}}\right|_{2}\left|\mathrm{y}_{\mathrm{j}}\right|_{2} \\
& =\left|\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right|_{2}^{2} \pm 0(\epsilon) \\
& =|\mathrm{y}|_{2}^{2} \pm \mathrm{O}(\epsilon) \\
& =1 \pm \mathrm{O}(\epsilon)
\end{aligned}
$$

- Since this held for an arbitrary $y=A x$ for unit x, by linearity it follows that for all $x,|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$

Back to Regression

- We showed that S is a subspace embedding, that is, simultaneously for all x ,

$$
|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}
$$

What does this have to do with regression?

Subspace Embeddings for Regression

- Want x so that $|A x-b|_{2} \%(1+\varepsilon)$ min $_{y}|A y-b|_{2}$
- Consider subspace L spanned by columns of A together with b
- Then for all y in $\mathrm{L},|\mathrm{Sy}|_{2}=(1 \pm \varepsilon)|y|_{2}$
- Hence, $|S(A x-b)|_{2}=(1 \pm \varepsilon)|A x-b|_{2}$ for all x
- Solve argmin $|(S A) y-(S b)|_{2}$
- Given SA, Sb, can solve in poly(d/ ε) time

Only problem is computing SA takes $O\left(n d^{2}\right)$ time

How to choose the right sketching matrix S ? [S]

- S is a Subsampled Randomized Hadamard Transform
- $S=P^{*} H^{*} D$
- D is a diagonal matrix with $+1,-1$ on diagonals
- H is the Hadamard matrix: $\mathrm{H}_{\mathrm{i}, \mathrm{j}}=\left(-1 / \mathrm{n}^{5}\right)^{<\mathrm{i}, \mathrm{j}>}$
- P just chooses a random (small) subset of rows of H*D
- S*A can be computed in $O(n d \log n)$ time

Why does this work?

- We can again assume columns of A are orthonormal
- It suffices to show $|S A x|_{2}^{2}=\mid$ PHDAx $\left.\right|_{2} ^{2}=1 \pm \epsilon$ for all x
- HD is a rotation matrix, so $|\mathrm{HDAx}|_{2}^{2}=|A x|_{2}^{2}=1$ for any x
- Notation: let $y=A x$
- Flattening Lemma: For any fixed y,

$$
\operatorname{Pr}\left[|\mathrm{HDy}|_{\infty} \geq \mathrm{C} \frac{\log ^{5}\left(\frac{\mathrm{nd}}{\delta}\right)}{\mathrm{n}^{5}}\right] \leq \frac{\delta}{2 \mathrm{~d}}
$$

Proving the Flattening Lemma

- Flattening Lemma: $\operatorname{Pr}\left[|H D y|_{\infty} \geq \mathrm{C} \frac{\log ^{5} \mathrm{nd} / \delta}{\mathrm{n}^{5}}\right] \leq \frac{\delta}{2 \mathrm{~d}}$
- Let C > 0 be a constant. We will show for a fixed i in [n],

$$
\operatorname{Pr}\left[\left|(H D y)_{\mathrm{i}}\right| \geq \mathrm{C} \frac{\log ^{5} \mathrm{nd} / \delta}{\mathrm{n}^{5}}\right] \leq \frac{\delta}{2 \mathrm{nd}}
$$

" If we show this, we can apply a union bound over all i

- $\left|(H D y)_{i}\right|=\sum_{j} H_{i, j} D_{j, j} \mathrm{y}_{\mathrm{j}}$
- (Azuma-Hoeffding) For independent zero-mean random variables Z_{j} :
$\operatorname{Pr}\left[\left|\sum_{\mathrm{j}} \mathrm{Z}_{\mathrm{j}}\right|>\mathrm{t}\right] \leq 2 \mathrm{e}^{-\left(\frac{\mathrm{t}^{2}}{2 \Sigma_{\mathrm{j}} \beta_{j}}\right)}$, where $\left|\mathrm{Z}_{\mathrm{j}}\right| \leq \beta_{\mathrm{j}}$ with probability 1
- $Z_{j}=H_{i, j} D_{j, j} y_{j}$ has 0 mean
- $\left|Z_{j}\right| \leq \frac{\left|y_{j}\right|}{n^{5}}=\beta_{j}$ with probability 1
- $\sum_{j} \beta_{j}^{2}=\frac{1}{n}$
$=\operatorname{Pr}\left[\left|\sum_{j} Z_{j}\right|>\frac{C \log \left(\frac{n d}{\delta}\right)}{n^{5}}\right] \leq 2 e^{-\frac{c^{2} \log \left(\frac{n d}{\delta}\right)}{2}} \leq \frac{\delta}{2 n d}$

Consequence of the Flattening Lemma

- Recall columns of A are orthonormal
- HDA has orthonormal columns
- Flattening Lemma implies $\left|\mathrm{HDAe}_{\mathrm{i}}\right|_{\infty} \leq \mathrm{C} \frac{\log \cdot{ }^{5} \mathrm{nd} / \delta}{\mathrm{n}^{5}}$ with probability $1-\frac{\delta}{2 d}$ for a fixed $\mathrm{i} \in[\mathrm{d}]$
- With probability $1-\frac{\delta}{2},\left|e_{j} H D A e_{i}\right| \leq C \frac{\log ^{5} n d / \delta}{n^{5}}$ for all i, j
- Given this, $\left|\mathrm{e}_{\mathrm{j}} \mathrm{HDA}\right|_{2} \leq \mathrm{C} \frac{\mathrm{d}^{5} \log .^{5} \mathrm{nd} / \delta}{\mathrm{n}^{5}}$ for all j
(Can be optimized further)

Matrix Chernoff Bound

- Let X_{1}, \ldots, X_{s} be independent copies of a symmetric random matrix $X \in R^{\mathrm{dxd}}$ with $\mathrm{E}[\mathrm{X}]=0,|\mathrm{X}|_{2} \leq \gamma$, and $\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]\right|_{2} \leq \sigma^{2}$. Let $\mathrm{W}=\frac{1}{\mathrm{~s}} \sum_{\mathrm{i} \in[\mathrm{s}]} \mathrm{X}_{\mathrm{i}}$. For any $\epsilon>0$,

$$
\begin{gathered}
\operatorname{Pr}\left[|\mathrm{W}|_{2}>\epsilon\right] \leq 2 \mathrm{~d} \cdot \mathrm{e}^{-\mathrm{s} \epsilon^{2} /\left(\sigma^{2}+\frac{\gamma \epsilon}{3}\right)} \\
\left(\text { here }|\mathrm{W}|_{2}=\sup |\mathrm{Wx}|_{2} /|\mathrm{x}|_{2}\right)
\end{gathered}
$$

- Let $\mathrm{V}=\mathrm{HDA}$, and recall V has orthonormal columns
- Suppose P in the $\mathrm{S}=\mathrm{PHD}$ definition samples s rows uniformly with replacement. If row i is sampled in the j -th sample, $\mathrm{P}_{\mathrm{j}, \mathrm{i}}=\frac{\sqrt{n}}{\sqrt{s}}$, and is 0 otherwise
- Let Y_{i} be the i-th sampled row of $V=H D A$
- Let $X_{i}=I_{d}-n \cdot Y_{i}^{T} Y_{i}$
- $E\left[X_{i}\right]=I_{d}-n \cdot \sum_{j}\left(\frac{1}{n}\right) V_{j}^{T} V_{j}=I_{d}-V^{T} V=0^{d x d}$
- $\left|X_{i}\right|_{2} \leq\left|I_{d}\right|_{2}+n \cdot \max \left|e_{j} H D A\right|_{2}^{2}=1+n \cdot C^{2} \log \left(\frac{n d}{\delta}\right) \cdot \frac{d}{n}=\Theta\left(d \log \left(\frac{n d}{\delta}\right)\right)$

