Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem

Discrete Distributions

• Consider distributions p over a finite support of size n:

• p =
$$(p_1, p_2, p_3, ..., p_n)$$

- $p_i \in [0,1]$ for all i
- $\sum_i p_i = 1$
- X is a random variable with distribution p if $Pr[X = i] = p_i$

Entropy

- Let X be a random variable with distribution p on n items
- (Entropy) $H(X) = \sum_i p_i \log_2 (1/p_i)$

• If
$$p_i = 0$$
 then $p_i \log_2 \left(\frac{1}{p_i}\right) = 0$

- $H(X) \leq \log_2 n$. Equality holds when $p_i = \frac{1}{n}$ for all i.
- Entropy measures "uncertainty" of X.
- (Binary Input) If B is a bit with bias p, then

H(B) =
$$p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1 - p}$$

(symmetric)

Conditional and Joint Entropy

Let X and Y be random variables

• (Conditional Entropy)

$$H(X \mid Y) = \sum_{y} H(X \mid Y = y) \Pr[Y = y]$$

• (Joint Entropy)

$$H(X, Y) = \sum_{x,y} Pr[(X,Y) = (x,y)] \log(1/Pr[(X,Y) = (x,y)])$$

Chain Rule for Entropy

• (Chain Rule) H(X,Y) = H(X) + H(Y | X)

Proof:

$$H(X,Y) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \log \left(\frac{1}{\Pr((X,Y) = (x,y))}\right)$$

$$= \sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] \log \left(\frac{1}{\Pr(X = x) \Pr(Y = y | X = x)}\right)$$

$$= \sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] (\log \left(\frac{1}{\Pr(X = x)}\right) + \log \left(\frac{1}{\Pr(Y = y | X = x)}\right))$$

$$= H(X) + H(Y | X)$$

Conditioning Cannot Increase Entropy

- Let X and Y be random variables. Then $H(X|Y) \leq H(X)$.
- To prove this, we need Jensen's inequality:

Let f be a continuous, concave function, and let $p_1, ..., p_n$ be non-negative reals that sum to 1. For any $x_1, ..., x_n$,

$$\sum_{i=1,\dots,n} p_i f(x_i) \le f(\sum_{i=1,\dots,n} p_i x_i)$$

• Recall that f is concave if $f\left(\frac{a+b}{2}\right) \ge \frac{f(a)}{2} + \frac{f(b)}{2}$ and $f(x) = \log x$ is concave

Conditioning Cannot Increase Entropy

• Proof:

$$H(X | Y) - H(X) = \sum_{xy} \Pr[Y = y] \Pr[X = x | Y = y] \log(\frac{1}{\Pr[X = x | Y = y]})$$

$$- \sum_{x} \Pr[X = x] \log(\frac{1}{\Pr[X = x]}) \sum_{y} \Pr[Y = y | X = x]$$

$$= \sum_{x,y} \Pr[X = x, Y = y] \log(\frac{\Pr[X = x]}{\Pr[X = x | Y = y]})$$

$$= \sum_{x,y} \Pr[X = x, Y = y] \log(\frac{\Pr[X = x] \Pr[Y = y]}{\Pr[(X,Y) = (x,y)]})$$

$$\leq \log(\sum_{x,y} \Pr[X = x, Y = y] \cdot \frac{\Pr[X = x] \Pr[Y = y]}{\Pr[(X,Y) = (x,y)]})$$

$$= 0$$

where the inequality follows by Jensen's inequality.

If X and Y are independent $H(X \mid Y) = H(X)$.

Mutual Information

Note: I(X ; X) = H(X) - H(X | X) = H(X)

• (Conditional Mutual Information)

$$I(X ; Y | Z) = H(X | Z) - H(X | Y, Z)$$

Is $I(X; Y | Z) \ge I(X; Y)$? Or is $I(X; Y | Z) \le I(X; Y)$?

Neither!

Mutual Information

- Claim: For certain X, Y, Z, we can have $I(X; Y \mid Z) \leq I(X; Y)$
- Consider X = Y = Z
- Then,
 - I(X;Y|Z) = H(X|Z) H(X|Y,Z) = 0 0 = 0
 - I(X;Y) = H(X) H(X|Y) = H(X) 0 = H(X)
- Intuitively, Y only reveals information that Z has already revealed, and we are conditioning on Z

Mutual Information

- Claim: For certain X, Y, Z, we can have $I(X; Y \mid Z) \ge I(X; Y)$
- Consider $X = Y + Z \mod 2$, where X and Y are uniform in $\{0,1\}$
- Then,
 - I(X;Y|Z) = H(X|Z) H(X|Y,Z) = 1 0 = 1
 - I(X;Y) = H(X) H(X|Y) = 1 1 = 0
- Intuitively, Y only reveals useful information about X after also conditioning on Z

Chain Rule for Mutual Information

• I(X, Y; Z) = I(X; Z) + I(Y; Z | X)

By induction, $I(X_1, ..., X_n; Z) = \sum_i I(X_i; Z \mid X_1, ..., X_{\{i-1\}})$

Fano's Inequality

• For any estimator X': X -> Y -> X' with $P_e = \Pr[X' \neq X]$, we have $H(X \mid Y) \leq H(P_e) + P_e \cdot \log(|X| - 1)$

Here X -> Y -> X' is a Markov Chain, meaning X' and X are independent given Y.

"Past and future are conditionally independent given the present"

To prove Fano's Inequality, we need the data processing inequality

Data Processing Inequality

- Suppose X -> Y -> Z is a Markov Chain. Then, $I(X;Y) \ge I(X;Z)$
- That is, no clever combination of the data can improve estimation
- I(X; Y, Z) = I(X; Z) + I(X; Y | Z) = I(X; Y) + I(X; Z | Y)
- So, it suffices to show I(X; Z | Y) = 0
- I(X ; Z | Y) = H(X | Y) H(X | Y, Z)
- But given Y, then X and Z are independent, so $H(X \mid Y, Z) = H(X \mid Y)$.
- Data Processing Inequality implies $H(X \mid Y) \leq H(X \mid Z)$

Proof of Fano's Inequality

• For any estimator X' such that X-> Y -> X' with $P_e = \Pr[X \neq X']$, we have $H(X|Y) \leq H(P_e) + P_e(\log_2|X| - 1)$.

Proof: Let E = 1 if X' is not equal to X, and E = 0 otherwise. $H(E, X \mid X') = H(X \mid X') + H(E \mid X, X') = H(X \mid X') \\ H(E, X \mid X') = H(E \mid X') + H(X \mid E, X') \leq H(P_e) + H(X \mid E, X') \\ \text{But } H(X \mid E, X') = \Pr(E = 0)H(X \mid X', E = 0) + \Pr(E = 1)H(X \mid X', E = 1) \\ \leq (1 - P_e) \cdot 0 + P_e \cdot \log_2(|X| - 1) \\ \text{Combining the above, } H(X \mid X') \leq H(P_e) + P_e \cdot \log_2(|X| - 1) \\ \text{By Data Processing, } H(X \mid Y) \leq H(X \mid X') \leq H(P_e) + P_e \cdot \log_2(|X| - 1) \\ \end{cases}$

Tightness of Fano's Inequality

- Suppose the distribution p of X satisfies $p_1 \ge p_2 \ge ... \ge p_n$
- Suppose Y is a constant, so I(X ; Y) = H(X) H(X | Y) = 0.
- Best predictor X' of X is X = 1.
- $P_e = \Pr[X' \neq X] = 1 p_1$
- $H(X \mid Y) \le H(p_1) + (1 p_1) \log_2(n 1)$ predicted by Fano's inequality
- But H(X) = H(X | Y) and if $p_2=p_3=\ldots=p_n=\frac{1-p_1}{n-1}$ the inequality is tight

Tightness of Fano's Inequality

• For X from distribution $(p_1, \frac{1-p_1}{n-1}, \dots, \frac{1-p_1}{n-1})$

•
$$H(X) = \sum_{i} p_{i} \log \left(\frac{1}{p_{i}}\right)$$

= $p_{1} \log \left(\frac{1}{p_{1}}\right) + \sum_{i>1} \frac{1-p_{1}}{n-1} \log \left(\frac{n-1}{1-p_{1}}\right)$
= $p_{1} \log \left(\frac{1}{p_{1}}\right) + (1-p_{1}) \log \left(\frac{1}{1-p_{1}}\right) + (1-p_{1}) \log (n-1)$
= $H(p_{1}) + (1-p_{1}) \log (n-1)$

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem

Distances Between Distributions

- Let p and q be two distributions with the same support
- (Total Variation Distance) $D_{TV}(p,q) = \frac{1}{2}|p-q|_1 = \frac{1}{2}\sum_i|p_i-q_i|$ • $D_{TV}(p,q) = \max_{events \ E}|p(E)-q(E)|$
- Sometimes abuse notation and say $D_{TV}(X,Y)$ to mean $D_{TV}(p,q)$ where X has distribution p and Y has distribution q
- (Hellinger Distance)
 - Define $\sqrt{p}=\left(\sqrt{p_1},\sqrt{p_2},\ldots,\sqrt{p_n}\right),\ \sqrt{q}=\left(\sqrt{q_1},\sqrt{q_2},\ldots,\sqrt{q_n}\right)$
 - Note that \sqrt{p} and \sqrt{q} are unit vectors
 - $h(p,q) = \frac{1}{\sqrt{2}} |\sqrt{p} \sqrt{q}|_2 = \frac{1}{\sqrt{2}} \left(\sum_i \left(\sqrt{p_i} \sqrt{q_i} \right)^2 \right)^{.5}$
- Note: $D_{TV}(p,q)$ and h(p,q) satisfy the triangle inequality

Why Hellinger Distance?

- Useful for independent distributions
- Suppose X and Y are independent random variables with distributions p and q, respectively

$$\Pr[(X,Y) = (x,y)] = p(x) \cdot q(y)$$

 Suppose A and B are independent random variables with distributions p' and q', respectively

$$\Pr[(A,B) = (a,b)] = p'(a) \cdot q'(b)$$

(Product Property)

$$h^2((X,Y),(A,B)) = 1 - (1 - h^2(X,A)) \cdot (1 - h^2(Y,B))$$

No easy product structure for variation distance

Product Property of Hellinger Distance

•
$$h^{2}((p,q),(p',q')) = \frac{1}{2} |\sqrt{p,q} - \sqrt{p',q'}|_{2}^{2}$$

= $\frac{1}{2} (1 + 1 - 2 \langle \sqrt{p,q}, \sqrt{p',q'} \rangle)$
= $1 - \sum_{i,j} \sqrt{p_{i}} \sqrt{q_{j}} \sqrt{p'_{i}} \sqrt{q'_{j}}$
= $1 - \sum_{i} \sqrt{p_{i}} \sqrt{p'_{i}} \cdot \sum_{j} \sqrt{q_{j}} \sqrt{q'_{j}}$
= $1 - (1 - h^{2}(p,p')) \cdot (1 - h^{2}(q,q'))$

Jensen-Shannon Distance

- (Kullback-Leibler Divergence) KL(p,q) = $\sum_{i} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)$
 - KL(p,q) can be infinite!
- (Jensen-Shannon Distance) $JS(p,q) = \frac{1}{2}(KL(p,r) + KL(q,r)),$ where r = (p+q)/2 is the average distribution
- Why Jensen-Shannon Distance?
- (Jensen-Shannon Lower Bounds Information) Suppose X, B are possibly dependent random variables and B is a uniform bit. Then,

$$I(X; B) \ge JS(X \mid B = 0, X \mid B = 1)$$

Relations Between Distance Measures

• (Squared Hellinger Lower Bounds Jensen-Shannon)

$$JS(p,q) \ge h^2(p,q)$$

• (Squared Hellinger Lower Bounded by Squared Variation Distance)

$$h^2(p,q) \ge D_{TV}^2(p,q)$$

• (Variation Distance Upper Bounds Distinguishing Probability) $\frac{1}{2} + \delta/2$ If you can distinguish distribution p from q with a sample w.pr.

$$D_{TV}(p,q) \geq \delta$$

Talk Outline

- 1. Information Theory Concepts
- 2. Distances Between Distributions
- 3. An Example Communication Lower Bound Randomized 1-way Communication Complexity of the INDEX problem

Randomized 1-Way Communication Complexity

INDEX PROBLEM

 $j \in \{1, 2, 3, ..., n\}$

- Alice sends a single message M to Bob
- Bob, given M and j, should output x_i with probability at least 2/3
- Note: The probability is over the coin tosses, not inputs
- Prove that for some inputs and coin tosses, M must be $\Omega(n)$ bits long...

1-Way Communication Complexity of Index

- Consider a uniform distribution μ on X
- Alice sends a single message M to Bob
- We can think of Bob's output as a guess X_j' to X_j
- For all j, $\Pr[X'_j = X_j] \ge \frac{2}{3}$
- By Fano's inequality, for all j,

$$H(X_j \mid M) \le H(\frac{2}{3}) + \frac{1}{3}(\log_2 2 - 1) = H(\frac{1}{3})$$

1-Way Communication of Index Continued

- Consider the mutual information I(M; X)
- By the chain rule,

$$I(X ; M) = \Sigma_i I(X_i ; M \mid X_{< i})$$

= $\Sigma_i H(X_i \mid X_{< i}) - H(X_i \mid M , X_{< i})$

- Since the coordinates of X are independent bits, $H(X_i \mid X_{< i}) = H(X_i) = 1$.
- Since conditioning cannot increase entropy,

$$H(X_i \mid M, X_{< i}) \leq H(X_i \mid M)$$

So,
$$I(X; M) \ge n - \sum_i H(X_i | M) \ge n - H(\frac{1}{3}) n$$

So, $|M| \ge H(M) \ge I(X; M) = \Omega(n)$

Typical Communication Reduction

 $a \in \{0,1\}^n$ Create stream s(a)

 $b \in \{0,1\}^n$ Create stream s(b)

Lower Bound Technique

- 1. Run Streaming Alg on s(a), transmit state of Alg(s(a)) to Bob
- 2. Bob computes Alg(s(a), s(b))
- 3. If Bob solves g(a,b), space complexity of Alg at least the 1-way communication complexity of g

Example: Distinct Elements

• Give a₁, ..., a_m in [n], how many *distinct* numbers are there?

• Index problem:

- Alice has a bit string x in $\{0, 1\}^n$
- Bob has an index i in [n]
- Bob wants to know if x_i = 1

Reduction:

- $s(a) = i_1, ..., i_r$, where i_j appears if and only if $x_{i_j} = 1$
- s(b) = i
- If Alg(s(a), s(b)) = Alg(s(a))+1 then $x_i = 0$, otherwise $x_i = 1$
- Space complexity of Alg at least the 1-way communication complexity of Index

Strengthening Index: Augmented Indexing

- Augmented-Index problem:
 - Alice has $x \in \{0, 1\}^n$
 - Bob has i ∈ [n], and x₁, ..., x_{i-1}
 - Bob wants to learn x_i
- Similar proof shows $\Omega(n)$ bound
- I(M; X) = sum_i I(M; X_i | X_{< i}) = n - sum_i H(X_i | M, X_{< i})
- By Fano's inequality, $H(X_i \mid M, X_{< i}) < H(\delta)$ if Bob can predict X_i with probability > 1- δ from $M, X_{< i}$
- $CC_{\delta}(Augmented-Index) > I(M ; X) \ge n(1-H(\delta))$

Log n Bit Lower Bound for Estimating Norms

- Alice has $x \in \{0,1\}^{\log n}$ as an input to Augmented Index
- She creates a vector v with a single coordinate equal to $\sum_j 10^j x_j$
- Alice sends to Bob the state of the data stream algorithm after feeding in the input v
- Bob has i in [log n] and $x_{i+1}, x_{i+2}, \dots, x_{\log n}$
- Bob creates vector $w = \sum_{j>i} 10^j x_j$
- Bob feeds –w into the state of the algorithm
- If the output of the streaming algorithm is at least $10^{\rm i}/2$, guess $x_{\rm i}=1$, otherwise guess $x_{\rm i}=0$

$\frac{1}{\epsilon^2}$ Bit Lower Bound for Estimating Norms

$$x \in \{0,1\}^n$$

$$y \in \{0,1\}^n$$

- Gap Hamming Problem: Hamming distance $\Delta(x,y) > n/2 + \epsilon n$ or $\Delta(x,y) < n/2$
- Lower bound of $\Omega(\epsilon^{-2})$ for randomized 1-way communication [Indyk, W], [W], [Jayram, Kumar, Sivakumar]
- Gives $\Omega(\epsilon^{-2})$ bit lower bound for approximating any norm
- Same for 2-way communication [Chakrabarti, Regev]

Gap-Hamming From Index [JKS]

Public coin = r^1 , ..., r^t , each in $\{0,1\}^t$

$$t = \varepsilon^{-2}$$

$$x \in \{0,1\}^{t}$$

$$\downarrow$$

$$a \in \{0,1\}^{t}$$

$$b \in \{0,1\}^{t}$$

$$a_{k} = \text{Majority}_{j \text{ such that } x_{j} = 1} r^{k_{j}}$$

$$b_{k} = r^{k_{j}}$$

$$E[\Delta(a,b)] = t/2 + x_i \cdot t^{1/2}$$

1-Way Distributional Communication of Index

- Alice has $x \in \{0,1\}^n$
- Bob has i ∈ [n]
- Alice sends a (randomized) message M to Bob
- I(M; X) = sum_i I(M; X_i | X_{<i})

 sum_i I(M; X_i)

 = n sum_i H(X_i | M)
- Fano: $H(X_i \mid M) < H(\delta)$ if Bob can guess X_i with probability > 1- δ
- $CC_{\delta}(Index) \ge I(M; X) \ge n(1-H(\delta))$

The same lower bound applies if the protocol is only correct on average over x and i drawn independently from a uniform distribution

Distributional Communication Complexity

- $(X,Y) \sim \mu$
- μ -distributional complexity $D_{\mu}(f)$: the minimum communication cost of a protocol which outputs f(X,Y) with probability 2/3 for $(X,Y) \sim \mu$
 - Yao's minimax principle: $R(f) = \max_{\mu} D_{\mu}(f)$
- 1-way communication: Alice sends a single message M(X) to Bob

Indexing is Universal for Product Distributions [Kremer, Nisan, Ron]

• Communication matrix A_f of a Boolean function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ has (x,y)-th entry equal to f(x,y)

•
$$\max_{product \mu} D_{\mu}(f) = \Theta(VC\text{-dimension}) \text{ of } A_f$$

Implies a reduction from Index is optimal for product distributions

Indexing with Low Error

- Index Problem with 1/3 error probability and 0 error probability both have $\Omega(n)$ communication
- Sometimes, want lower bounds in terms of error probability
- Indexing on Large Alphabets:
 - Alice has $x \in \{0,1\}^{n/\delta}$ with wt(x) = n, Bob has $i \in [n/\delta]$
 - Bob wants to decide if $x_i = 1$ with error probability δ
 - [Jayram, W] 1-way communication is $\Omega(n \log(1/\delta))$
 - Can be used to get an $\Omega(\log\left(\frac{1}{\delta}\right))$ bound for norm estimation
 - We've seen an $\Omega(\log n + \epsilon^{-2} + \log \left(\frac{1}{\delta}\right))$ lower bound for norm estimation
 - There is an $\Omega(\epsilon^{-2}\log\frac{1}{\delta}\log n)$ bit lower bound

Beyond Product Distributions

```
Although R(f) = \max_{\mu} D_{\mu}(f), it may be that \max_{\mu} D_{\mu}(f) \gg \max_{product \mu} D_{\mu}(f), so one often can't get good lower bounds by looking at product distributions...
```

Example: set disjointness

Non-Product Distributions

- Needed for stronger lower bounds
- Example: approximate $|x|_1$ up to a multiplicative factor of B in a stream
 - Lower bounds for p-norms

 $Gap_{\infty}(x,y)$ **Problem**

$$x \in \{0, ..., B\}^n$$
 $y \in \{0, ..., B\}^n$

$$y \in \{0, ..., B\}^r$$

- Promise: $|x-y|_1 \le 1$ or $|x-y|_1 \ge B$
- Hard distribution non-product
- $\Omega(n/B^2)$ lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]

Direct Sums

- $\operatorname{Gap}_{\infty}(x,y)$ doesn't have a hard product distribution, but has a hard distribution $\mu = \lambda^n$ in which the coordinate pairs $(x_1, y_1), \ldots, (x_n, y_n)$ are independent
 - w.pr. 1-1/n, (x_i, y_i) random subject to $|x_i y_i| \le 1$
 - w.pr. 1/n, (x_i, y_i) random subject to $|x_i y_i| \ge B$
- Direct Sum: solving $\text{Gap}_{\infty}(x,y)$ requires solving n single-coordinate sub-problems g
 - Communication is not additive, but information is!
- In g, Alice and Bob have J,K ∈ {0, ..., B}, and want to decide if |J-K| ≤ 1 or |J-K| ≥ B