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Discrete Distributions

* Consider distributions p over a finite support of size n:

*pP= (plr P2, P3, ---,pn)

* p; €[0,1] for all i
* 2ipi=1

* X is a random variable with distribution p if Pr[X = i] = p;



Entropy

* Let X be a random variable with distribution p on n items
* (Entropy) H(X) = X; p; log, (1/p;)

* If p; = 0 then p;log, (pl) =0

« H(X) < log, n. Equality holds when p; = % for all i.

* Entropy measures “uncertainty” of X.

* (Binary Input) If B is a bit with bias p, then
1 1
H(B) = p log, = + (1 —p)log, 1 (symmetric)



Conditional and Joint Entropy

* Let Xand Y be random variables

* (Conditional Entropy)
HX|Y)=X,HX|Y=y)PrlY =y]

* (Joint Entropy)
H(X, Y) = Xxy Pri(X,Y) = (x,y)] log(1/Pr[(X)Y) = (x,y)])



Chain Rule for Entropy
* (Chain Rule) H(X,Y) = H(X) + H(Y | X)

* Proof:

H(X,Y) — Zx,y Pr[(X, Y) — (X, y)] log (pr((X,Y;=(x,J’)))

1
= Zx’y Pr[X = x| Pr Y = y |X = x] log (pr(sz) Pr(vy=y |X=x))

1 1
=Yy Pr[X =x]Pr[Y =y |X = x](log (pr(xzx)) + 108(PF[Y=Y |X:X]))

= H(X) + H(Y | X)




Conditioning Cannot Increase Entropy
* Let X and Y be random variables. Then H(X|Y) < H(X).

* To prove this, we need Jensen’s inequality:

Let f be a continuous, concave function, and let p4, ..., p, be non-negative reals
that sum to 1. For any Xy, ..., Xy,

Yi=1..n Pif(%)) < f(Xj=1 . nPiXi)

f(b)

x and f(x) = log x is concave

e Recall that f is concave if f(%) > f(za) +



Conditioning Cannot Increase Entropy

* Proof:
HX 1Y) = H(X) = o PrlY = y] PrlX = x |Y = y] logGrzmrym)

-ZxPr[sz]log( [; ) 2y PrlY =y |X = x]

Pr[X=x]
=Yy PrlX =x,Y =y] lOg(Prerliyf J’])

Pr[X=x] Pr[Y=

=Yxy PriX =x,Y =yllo (;r (X,;) 1ﬂ([x;v;‘;])
Pr[X=x] Pr[y=y]

<log(XyyPriX =x,Y =y]- ;r[(X,J;);(xJ’)); :

=0
where the inequality follows by Jensen’s inequality.
If X and Y are independent H(X | Y) = H(X).




Mutual Information

e (Mutual Information) I(X; Y) = H(X) = H(X | Y)
= H(Y) = H(Y | X)
= (Y ; X)

Note: I(X ; X) = H(X) = H(X | X) = H(X)

 (Conditional Mutual Information)
I(X; Y [2)=H(X|Z)-H(X]Y,2)

ISIX;Y [2Z)=I(X;Y)?0risI(X;Y]Z) <I(X;Y)? Neither!



Mutual Information

* Claim: For certain X, Y, Z, we can have I(X; Y | Z) < (X ;Y)
* ConsiderX=Y=7

* Then,
« I(X;Y|Z)=HX|Z) —HX|Y,Z)=0 —0=0
« I(X;Y) = H(X) —H(X|Y) = HX) — 0 = H(X)

* Intuitively, Y only reveals information that Z has already revealed, and
we are conditioning on Z



Mutual Information
e Claim: For certain X, Y, Z, we can have [(X; Y | Z) = I(X; Y)

* Consider X =Y 4+ Zmod 2, where Xand Y are uniform in {0,1}

* Then,
« I(X;Y|Z)=HX|Z) —-HX|Y,Z2)=1-0=1
« IX;Y) =HX) -HX|[Y)=1-1=0

* Intuitively, Y only reveals useful information about X after also
conditioning on Z



Chain Rule for Mutual Information
(X, Y:2)=1(X;2)+1(Y;Z ]| X)
e Proof: I(X, Y ;Z) = H(X, Y) = H(X, Y | 2)

= H(X) + H(Y | X)=H(X | Z) = H(Y | X, 2)

=1(X;2)+1(Y;Z | X)

By induction, I(Xy, .., Xy; Z) = X I(Xi; Z | Xy, oo, Xi—13)



Fano’s Inequality

* For any estimator X’: X-> Y -> X’ with P, = Pr[X’' # X], we have
HX|Y)<H(P,)+P, -log(|X| —1)

Here X ->Y -> X" is a Markov Chain, meaning X" and X are independent
given Y.

“Past and future are conditionally independent given the present”

To prove Fano’s Inequality, we need the data processing inequality



Data Processing Inequality

e Suppose X ->Y ->Z is a Markov Chain. Then,
I(X;Y)=21(X;2)

e That is,

cIX:Y,Z)=1(X;2)+1X;Y | 2)=1(X;Y)+1(X;Z]Y)

* So, it sufficestoshow [(X;Z | Y)=0
*I(X5;Z]Y)=H(X][Y)-HX]Y,Z)

e But given Y, then X and Z are independent, soH(X | Y, Z) = H(X | Y).

* Data Processing Inequality implies H(X | Y) < H(X | Z)



Proof of Fano’s Inequality

* For any estimator X’ such that X->Y -> X’ with P, = Pr[X # X'],
we have H(X |Y) < H(P,) + P,(log,|X| — 1).

Proof: Let E = 1 if X" is not equal to X, and E = 0 otherwise.
H(E, X | X') = H(X | X’) + H(E | X, X') = H(X | X")
H(E, X | X') =H(E | X') + H(X | E, X") < H(P,) + H(X | E, X')
But H(X | E, X') = Pr(E = 0)H(X | X', E=0) + Pr(E = 1)H(X | X, E = 1)
<1 - F) - 0+F log(IX] - 1)
Combining the above, H(X | X') < H(P,) + P, -log,(|X]| — 1)
By Data Processing, H(X | Y) < HX | X)) < H(P,) + P, -log,(|X| — 1)



Tightness of Fano’s Inequality

* Suppose the distribution p of X satisfies p; = p, = ... = p,

 Suppose Y is a constant, so I(X; Y) =H(X)—H(X | Y) =0.

Best predictor X’ of Xis X = 1.

P,=PrlX' #X]=1-p,

H(X | Y) < H(py) + (1 — py) log,(n — 1) predicted by Fano’s inequality

But HX) =H(X | Y)andifp, =p3 = ... =p, = ~P1 the inequality is tight

n-—1



Tightness of Fano’s Inequality

1-pq 1_p1)
n-1""""n-1

* For X from distribution (py,
1
* H(X) = ); p;log (_)
—P1log( )+Zl>1 pllg( )

= P4 log( ) + (1 - pl)log( ) + (1 —pylog(n — 1)
=H(py) + (1 —pylog(n — 1)
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Distances Between Distributions

* Let p and g be two distributions with the same support

* (Total Variation Distance) Dry(p,q) = % lp—ql, = %Zi lpi — qil
¢ DTV(pv Q) = MaXepents E |p(E) - Q(E)l

« Sometimes abuse notation and say Dyy(X,Y) to mean Dy (p, ) where X has
distribution p and Y has distribution g

* (Hellinger Distance)

+ Define B = (VB \Fz - VPr)» V@ = (VTG \Tn)

* Note that /p and ,/q are unit vectors

s h(p,q)=%lﬁ-\@|2 =%(Zi(m _\@)2).5

* Note: Dyy(p, q) and h(p, q) satisfy the triangle inequality



Why Hellinger Distance?

» Useful for independent distributions

* Suppose X and Y are independent random variables with distributions p
and g, respectively

Pri(X,Y) = (x,y)] = p(x) - q(y)

’

* Suppose A and B are independent random variables with distributions p
and q’, respectively

Pr[(4,B) = (a,b)] =p'(a) - q'(b)

* (Product Property)
h2((X,Y),(4,B)) =1 — (1 - h*(X,A)) - (1 — h2(Y,B))
No easy product structure for variation distance



Product Property of Hellinger Distance

(0, @), (0',q") = %NZT - \/29,’61’|22
=~(1+1 -2(/5qPq)
=1 —Zi,j\/Pi\/CIj‘/P{‘/CI]"

=1- Zi\/p_i\/p_t{'zj\/q_f \/q}
=1-(1-h*(p,p")) - (1 — h*(q,9")



Jensen-Shannon Distance

* (Kullback-Leibler Divergence) KL(p,q) = }.; p; log (%)
* KL(p,q) can be infinite! l

* (Jensen-Shannon Distance) JS(p,q) = % (KL(p,r) + KL(q,1)),
where r = (p+q)/2 is the average distribution

* Why Jensen-Shannon Distance?

* (Jensen-Shannon Lower Bounds Information) Squose X, B are possibly
dependent random variables and B is a uniform bit. Then,

I(X;B) >JS(X|1B=0,X|B=1)



Relations Between Distance Measures

* (Squared Hellinger Lower Bounds Jensen-Shannon)
JS(p, @) = h*(p,q)

* (Squared Hellinger Lower Bounded by Squared Variation Distance)
h?*(p,q) = D7y (p, q)

* (Variation Distance Upper Bounds Distinguishing Probability) 1/2+ 5/2

If you can distinguish distribution p from q with a sample w.pr.[2]
Dry(p,q) = 6



Talk Outline

1. Information Theory Concepts
2. Distances Between Distributions

3. An Example Communication Lower Bound — Randomized 1-way
Communication Complexity of the INDEX problem



Randomized 1-Way Communication Complexity

Q@ INDEX 1\/%
\ , = PROBLEM %%3&\\1”/

x € {0,1}" i€e{1,2,3,...,n}

* Alice sends a single message M to Bob

* Bob, given M and j, should output x; with probability at least 2/3

* Note: The probability is over the coin tosses, not inputs

* Prove that for some inputs and coin tosses, M must be Q(n) bits long...



1-Way Communication Complexity of Index

e Consider a uniform distribution p on X
* Alice sends a single message M to Bob
* We can think of Bob’s output as a guess Xj’ to X;

* Forallj, Pr[Xj’ = Xj] > %

* By Fano’s inequality, for all j,
H(X| M) < H(E) +>(log,2 —1) = HE)
j = 3 3 2 3



1-Way Communication of Index Continued

* Consider the mutual information (M ; X)
* By the chain rule,
1(X; M) =% 1(X.; M| X_,)
=2, H(Xi | X<i)_ H(Xi | M, X<i)
* Since the coordinates of X are independent bits, H(X. | X..) = H(X)) = 1.
* Since conditioning cannot increase entropy,
HIX | M, X)) < H(X | M)

So, I(X;M) = n — % HX;|M) 2 n —H(5)n
So, M| = H(M) = I(X; M) = Q(n)



Typical Communication Reduction

ﬁ m = 9
== | i
e 0

a €{0,1) b € {0,1}"
Create stream s(a) Create stream s(b)

Lower Bound Technique
1. Run Streaming Alg on s(a), transmit state of Alg(s(a)) to Bob

2. Bob computes Alg(s(a), s(b))

3. If Bob solves g(a,b), space complexity of Alg at least the 1-way
communication complexity of g



Example: Distinct Elements

* Give a, ..., a,, in [n], how many distinct numbers are there?

Index problem:
 Alice has a bit string x in {0, 1}"
* Bob hasanindexiin [n]
* Bob wants to know if x, = 1

Reduction:
* s(a) =iy, ..., i, where i, appears if and only if X, = 1
* s(b) =i
* If Alg(s(a), s(b)) = Alg(s(a))+1 then x, = O, otherwise x, = 1

* Space complexity of Alg at least the 1-way communication complexity of Index



Strengthening Index: Augmented Indexing

* Augmented-Index problem:
* Alice hasx € {0, 1}"
* Bob hasi € [n], and x,, ..., X4
* Bob wants to learn x

Similar proof shows Q(n) bound
(M ; X) =sum, I(M; X, | X_))
=n—sum H(X. | M, X_))

By Fano’s inequality, H(X, | M, X_,) < H(8) if Bob can predict X, with probability
>1-6 from M, X_,

CCs(Augmented-Index) > I(M ; X) =n(1-H(d))



Log n Bit Lower Bound for Estimating Norms

e Alice has x € {0,1}1°81 35 an input to Augmented Index
* She creates a vector v with a single coordinate equal to »;; 10! X;

 Alice sends to Bob the state of the data stream algorithm after feeding
in the input v

* Bob hasiin [log n] and X1, X2, «-+» Xlogn
» Bob creates vector w = %,;-; 10 x;
* Bob feeds —w into the state of the algorithm

* If the output of the streaming algorithm is at least 10i/2, guess x; = 1,
otherwise guess x; = 0



1

= Bit Lower Bound for Estimating Norms

x € {0,1}n y €{0,1}"
« Gap Hamming Problem: Hamming distance A(x,y) > n/2 + en or A(X,y) < n/2

 Lower bound of Q(&2) for randomized 1-way communication [Indyk, W], [W],
[Jayram, Kumar, Sivakumar]

* Gives Q(&2) bit lower bound for approximating any norm

« Same for 2-way communication [Chakrabarti, Regev]



Gap-Hamming From Index [JKS]

Public coin=r', ..., rt, each in {0,1}!
t=¢?
| € [1]
V
a € {0,1}t b € {0,1}
ay = Majority; guch that X = 1 i by = 1%,

E[A(a,b)] =t/2 + x, - t1/2



1-Way Distributional Communication of Index

Alice has x € {0,1}"
Bob hasi € [n]
Alice sends a (randomized) message M to Bob
(M ; X) =sum. I(M; X. | X_,)
, sum. I(M; X.)
=n-sum H(X. | M)
Fano: H(X, | M) < H(d) if Bob can guess X; with probability > 1- &
CCs(Index) = I(M ; X) = n(1-H(9))

The same lower bound applies if the protocol is only correct on
average over x and i drawn independently from a uniform
distribution



Distributional Communication Complexity

¢« (XY) ~u

* p-distributional complexity D, (f): the minimum communication cost of
a protocol which outputs f(X,Y) with probability 2/3 for (X,Y) ~ u

— Yao’s minimax principle: R(f) = mﬁlx D, (f)

* 1-way communication: Alice sends a single message M(X) to Bob



Indexing is Universal for Product Distributions
[Kremer, Nisan, Ron]

« Communication matrix As of a Boolean function
f:{0,1}* x {0,1}" - {0,1} has (x,y)-th entry equal to f(x,y)

« max D (f)=6O(VC-dimension) of A¢
product u
001
100
000
010
001
110

» Implies a reduction from Index is optimal for product distributions



Indexing with Low Error

* Index Problem with 1/3 error probability and O error probability both have Q(n)
communication

* Sometimes, want lower bounds in terms of error probability

* Indexing on Large Alphabets:

* Alice has x € {0,1}"/% with wt(x) = n, Bob has i € [n/8]
Bob wants to decide if x, = 1 with error probability 6
[Jayram, W] 1-way communication is (n log(1/6))

Can be used to get an Q(log (%)) bound for norm estimation

e We've seen an Q(logn + €2 + log (%)) lower bound for norm estimation

* Thereis an Q(e™? logélog n) bit lower bound



Beyond Product Distributions

Although R(f) = max D (), it may be that
u

mﬁzx D, (f) > prgé%ict , D (f), so one often can't

get good lower bounds by looking at product
distributions...

Example: set disjointness



Non-Product Distributions

Needed for stronger lower bounds

Example: approximate |x|, up to a multiplicative factor of B in a stream
— Lower bounds for p-norms

Gape, () )

x € {0, ..., B y €{0, ..., B}

Promise: |x-y|; < 1or|x-y|, =B

Hard distribution non-product

Q(n/B?) lower bound [Saks, Sun] [Bar-Yossef, Jayram, Kumar, Sivakumar]



Direct Sums

e Gap, (X,y) doesn’t have a hard product distribution, but
has a hard distribution y = A" in which the coordinate
pairs (X4, Y1), ---, (X, ¥,,) @re independent

— w.pr. 1-1/n, (x;, y;) random subject to |x, — y;| < 1
— w.pr. 1/n, (x;, y;) random subject to |x,— y;| = B

« Direct Sum: solving Gap.(X,y) requires solving n single-
coordinate sub-problems g
— Communication is not additive, but information is!

* In g, Alice and Bob have J,K € {0, ..., B}, and want to
decide if |[J-K| < 1 or |J-K| =B



