Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression
High Precision Regression

- **Goal:** output \(x' \) for which \(|Ax' - b|_2 \% (1 + \varepsilon) \min_x |Ax - b|_2 \) with high probability

- Our algorithms all have running time \(\text{poly}(d/\varepsilon) \)

- **Goal:** Sometimes we want running time \(\text{poly}(d) \times \log(1/\varepsilon) \)

- Want to make \(A \) well-conditioned
 - \(\kappa(A) = \sup_{|x|_2=1} |Ax|_2 / \inf_{|x|_2=1} |Ax|_2 \)

- Lots of algorithms’ time complexity depends on \(\kappa(A) \)

- Use sketching to reduce \(\kappa(A) \) to \(O(1) \)!
Small QR Decomposition

- Let S be a $(1 + \epsilon_0)$- subspace embedding for A
- Compute SA
- Compute QR-factorization, $SA = QR^{-1}$

Claim: $\kappa(AR) = \frac{1+\epsilon_0}{1-\epsilon_0}$

For all unit x, $(1 - \epsilon_0)|ARx|_2 \leq |SARx|_2 = 1$

For all unit x, $(1 + \epsilon_0)|ARx|_2 \geq |SARx|_2 = 1$

So $\kappa(AR) = \sup_{|x|_2=1} |ARx|_2 / \inf_{|x|_2=1} |ARx|_2 \leq \frac{1+\epsilon_0}{1-\epsilon_0}$
Finding a Constant Factor Solution

- Let S be a $1 + \epsilon_0$ - subspace embedding for AR

- Solve $x_0 = \arg\min_x |SARx - Sb|_2$

- Time to compute R and x_0 is $\text{nnz}(A) + \text{poly}(d)$ for constant ϵ_0

- $x_{m+1} \leftarrow x_m + R^TA^T(b - ARx_m)$

- $AR(x_{m+1} - x^*) = AR(x_m + R^TA^T(b - ARx_m) - x^*)$

 $= (AR - ARR^TA^TAR)(x_m - x^*)$

 $= U(S - S^3)V^T(x_m - x^*)$,

 where $AR = U\Sigma V^T$ is the SVD of AR

- $|AR(x_{m+1} - x^*)|_2 = |(S - S^3)V^T(x_m - x^*)|_2 = O(\epsilon_0)|AR(x_m - x^*)|_2$

- $|ARx_m - b|_2^2 = |AR(x_m - x^*)|_2^2 + |ARx^* - b|_2^2$
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- M-Estimator regression
Leverage Score Sampling

- This is another subspace embedding, but it is based on sampling!
 - If A has sparse rows, then SA has sparse rows!

- Let $A = U \Sigma V^T$ be an $n \times d$ matrix with rank d, written in its SVD

- Define the i-th leverage score $\ell(i)$ of A to be $|U_{i,*}|_2^2$

- What is $\sum_i \ell(i)$?
 - Let $(q_1, ..., q_n)$ be a distribution with $q_i \geq \frac{\beta\ell(i)}{d}$, where β is a parameter

- Define sampling matrix $S = D \cdot \Omega^T$, where D is $k \times k$ and Ω is $n \times k$
 - Ω is a sampling matrix, and D is a rescaling matrix
 - For each column j of Ω, D, independently, and with replacement, pick a row index i in $[n]$ with probability q_i, and set $\Omega_{i,j} = 1$ and $D_{i,j} = 1/(q_i k)^5$.5
Leverage Score Sampling

- Note: leverage scores do not depend on choice of orthonormal basis U for columns of A

- Indeed, let U and U’ be two such orthonormal bases

- Claim: \(|e_i U|_2^2 = |e_i U'|_2^2 \) for all i

- Proof: Since both U and U’ have column space equal to that of A, we have \(U = U'Z \) for change of basis matrix Z

- Since U and U’ each have orthonormal columns, Z is a rotation matrix (orthonormal rows and columns)

- Then \(|e_i U|_2^2 = |e_i U'Z|_2^2 = |e_i U'|_2^2 \)
Leverage Score Sampling gives a Subspace Embedding

- Want to show for \(S = D \cdot \Omega^T \), that \(|SAx|^2 = (1 \pm \epsilon)|Ax|^2 \) for all \(x \)

- Writing \(A = U \Sigma V^T \) in its SVD, this is equivalent to showing \(|SUy|^2 = (1 \pm \epsilon)|Uy|^2 = (1 \pm \epsilon)|y|^2 \) for all \(y \)

- As usual, we can just show with high probability, \(|U^T S^T S U - I|^2 \leq \epsilon \)

- How can we analyze \(U^T S^T S U \)?

- (Matrix Chernoff) Let \(X_1, \ldots, X_k \) be independent copies of a symmetric random matrix \(X \in \mathbb{R}^{d \times d} \) with \(E[X] = 0 \), \(|X|_2 \leq \gamma \), and \(|E[X^T X]|_2 \leq \sigma^2 \). Let \(W = \frac{1}{k} \sum_{j \in [k]} X_j \). For any \(\epsilon > 0 \),

\[
\Pr[|W|_2 > \epsilon] \leq 2d \cdot e^{-k\epsilon^2 / (\sigma^2 + \gamma^2 / 3)}
\]

(here \(|W|_2 = \sup \frac{|Wx|_2}{|x|_2} \). Since \(W \) is symmetric, \(|W|_2 = \sup_{|x|_2=1} x^T W x \).)
Leverage Score Sampling gives a Subspace Embedding

- Let $i(j)$ denote the index of the row of U sampled in the j-th trial
- Let $X_j = I_d - \frac{U_{i(j)}^TU_{i(j)}}{q_{i(j)}}$, where $U_{i(j)}$ is the j-th sampled row of U
- The X_j are independent copies of a symmetric matrix random variable
- $E[X_j] = I_d - \sum_i q_i \left(\frac{U_{i(j)}^TU_i}{q_i} \right) = I_d - I_d = 0^d$
- $|X_j|_2 \leq |I_d|_2 + \frac{|U_{i(j)}^TU_{i(j)}|_2}{q_{i(j)}} \leq 1 + \max_i \frac{|U_i|_2^2}{q_i} \leq 1 + \frac{d}{\beta}$
- $E[X^TX] = I_d - 2E \left[\frac{U_{i(j)}^TU_{i(j)}}{q_{i(j)}} \right] + \left[\frac{U_{i(j)}^TU_{i(j)}U_{i(j)}^TU_{i(j)}}{q_{i(j)}^2} \right]$
 \[= \sum_i \frac{U_i^TU_iU_i^TU_i}{q_{(i)}} - I_d \leq \left(\frac{d}{\beta} \right) \sum_i U_i^TU_i - I_d \leq \left(\frac{d}{\beta} - 1 \right) I_d,\]
 where $A \leq B$ means $x^TAx \leq x^TBx$ for all x
- Hence, $|E[X^TX]|_2 \leq \frac{d}{\beta} - 1$
Applying the Matrix Chernoff Bound

- (Matrix Chernoff) Let X_1, \ldots, X_k be independent copies of a symmetric random matrix $X \in \mathbb{R}^{d \times d}$ with $E[X] = 0$, $|X|_2 \leq \gamma$, and $|E[X^T X]|_2 \leq \sigma^2$. Let $W = \frac{1}{k} \sum_{j \in [k]} X_j$. For any $\epsilon > 0$,
 \[\Pr[|W|_2 > \epsilon] \leq 2d \cdot e^{-\epsilon^2/(\sigma^2 + \frac{\gamma \epsilon}{3})} \]
 (here $|W|_2 = \sup_{|x|_2} \frac{|Wx|_2}{|x|_2}$). Since W is symmetric, $|W|_2 = \sup_{|x|_2=1} x^T W x$.

- $\gamma = 1 + \frac{d}{\beta}$ and $\sigma^2 = \frac{d}{\beta} - 1$

- $X_j = I_d - \frac{U_{i(j)}^T U_{i(j)}}{q_{i(j)}}$, and recall how we generated $S = D \cdot \Omega^T$: For each column j of Ω, D, independently, and with replacement, pick a row index i in $[n]$ with probability q_i, and set $\Omega_{i,j} = 1$ and $D_{j,j} = 1/(q_i k)^5$.
 - Implies $W = I_d - U^T S^T S U$

- $\Pr \left[|I_d - U^T S^T S U|_2 > \epsilon \right] \leq 2d \cdot e^{-\epsilon^2 \theta(\frac{\beta}{d})}$. Set $k = \theta(\frac{d \log d}{\beta \epsilon^2})$ and we're done.
Fast Computation of Leverage Scores

- Naively, need to do an SVD to compute leverage scores

- Suppose we compute SA for a subspace embedding S

- Let $SA = QR^{-1}$ be such that Q has orthonormal columns

- Set $\ell'_i = |e_iAR|^2$

- Since AR has the same column span of A, $AR = UT^{-1}$
 - $(1 - \epsilon)|ARx|_2 \leq |SARx|_2 = |x|_2$
 - $(1 + \epsilon)|ARx|_2 \geq |SARx|_2 = |x|_2$
 - $(1 \pm 0(\epsilon))|x|_2 = |ARx|_2 = |UT^{-1}x|_2 = |T^{-1}x|_2$

- $\ell_i = |e_iART|^2 = (1 \pm 0(\epsilon))|e_iAR|^2 = (1 \pm 0(\epsilon))\ell'_i$

- But how do we compute AR? We want $\text{nnz}(A)$ time
Fast Computation of Leverage Scores

- \(\ell_i = (1 \pm O(\epsilon))\ell_i' \)

- Suffices to set this \(\epsilon \) to be a constant

- Set \(\ell_i' = |e_i A R|_2^2 \)
 - This takes too long

- Let \(G \) be a \(d \times O(\log n) \) matrix of i.i.d. normal random variables
 - For any vector \(z \), \(\Pr[|zG|_2^2 = \left(1 \pm \frac{1}{2}\right)|z|^2] \geq 1 - \frac{1}{n^2} \)

- Instead set \(\ell_i' = |e_i A R G|_2^2 \).
 - Can compute in \((\text{nnz}(A) + d^2) \log n\) time

- Can solve regression in \(\text{nnz}(A) \log n + \text{poly}(d(\log n)/\epsilon)\) time
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression
Distributed low rank approximation

- We have fast algorithms for low rank approximation, but can they be made to work in a distributed setting?

- Matrix A distributed among s servers

- For $t = 1, \ldots, s$, we get a customer-product matrix from the t-th shop stored in server t. Server t’s matrix = A_t

- Customer-product matrix $A = A_1 + A_2 + \ldots + A_s$
 - Model is called the arbitrary partition model

- More general than the row-partition model in which each customer shops in only one shop
The Communication Model

- Each player talks only to a Coordinator via 2-way communication
- Can simulate arbitrary point-to-point communication up to factor of 2 (and an additive $O(\log s)$ factor per message)
Communication cost of low rank approximation

- **Input**: n x d matrix A stored on s servers
 - Server t has n x d matrix A^t
 - A = A^1 + A^2 + ... + A^s
 - Assume entries of A^t are O(log(nd))-bit integers

- **Output**: Each server outputs the same k-dimensional space W
 - C = A^1P_W + A^2P_W + ... + A^sP_W, where P_W is the projection onto W
 - ||A-C||_F \leq (1+\varepsilon)||A-A^k||_F
 - Application: k-means clustering

- **Resources**: Minimize total communication and computation. Also want O(1) rounds and input sparsity time
Work on Distributed Low Rank Approximation

- [FSS]: First protocol for the row-partition model.
 - $O(sdk/\epsilon)$ real numbers of communication
 - Don’t analyze bit complexity (can be large)
 - SVD Running time, see also [BKLW]

- [KVW]: $O(skd/\epsilon)$ communication in arbitrary partition model

- [BWZ]: $O(skd) + \text{poly}(sk/\epsilon)$ words of communication in arbitrary partition model. Input sparsity time
 - Matching $\Omega(skd)$ words of communication lower bound

Variants: kernel low rank approximation [BLSWX], low rank approximation of an implicit matrix [WZ], sparsity [BWZ]
Outline of Distributed Protocols

- [FSS] protocol
- [KVW] protocol
- [BWZ] protocol
Constructing a Coreset [FSS]

- Let $A = U \Sigma V^T$ be its SVD

- Let $m = k + k/\epsilon$

- Let Σ_m agree with Σ on the first m diagonal entries, and be 0 otherwise

- Claim: For all projection matrices $Y = I - X$ onto $(d-k)$-dimensional subspaces,

 $$|\Sigma_m V^T Y|_F^2 = (1 \pm \epsilon) |AY|_F^2 + c,$$

 where $c = |A - A_m|_F^2$ does not depend on Y

- We can think of S as U_m^T so that $SA = U_m^T U\Sigma V^T = \Sigma_m V^T$ is a sketch
Constructing a Coreset

- **Claim:** For all projection matrices $Y=I-X$ onto $(d-k)$-dimensional subspaces,
 \[|\Sigma_m V^T Y|_F^2 + c = (1 \pm \epsilon)|AY|_F^2, \]
 where $c = |A - A_m|_F^2$ does not depend on Y.

- **Proof:**
 \[|AY|_F^2 = |U\Sigma_m V^T Y|_F^2 + |U(\Sigma - \Sigma_m)V^T Y|_F^2 \]
 \[\leq |\Sigma_m V^T Y|_F^2 + |A - A_m|_F^2 = |\Sigma_m V^T Y|_F^2 + c. \]

Also,
\[|\Sigma_m V^T Y|_F^2 + |A - A_m|_F^2 - |AY|_F^2 \]
\[= |\Sigma_m V^T|_F^2 - |\Sigma_m V^T X|_F^2 + |A - A_m|_F^2 - |A|_F^2 + |AX|_F^2 \]
\[= |AX|_F^2 - |\Sigma_m V^T X|_F^2 \]
\[= |(\Sigma - \Sigma_m)V^T X|_F^2 \]
\[\leq |(\Sigma - \Sigma_m)V^T|_F^2 \cdot |X|_F^2 \]
\[\leq \sigma_{m+1}^2 k \leq \epsilon \sigma_{m+1}^2 (m - k) \leq \epsilon \sum_{i \in \{k+1, \ldots, m+1\}} \sigma_i^2 \leq \epsilon |A - A_k|_F^2 \]