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High Precision Regression

 Goal: output x‘ for which |Ax‘-b|2 � (1+ε) minx |Ax-b|2
with high probability

 Our algorithms all have running time poly(d/ε)

 Goal: Sometimes we want running time poly(d)*log(1/ε)

 Want to make A well-conditioned 
 κ A sup Ax / inf

	
Ax 	

 Lots of algorithms’ time complexity depends on κ A

 Use sketching to reduce κ A to O(1)!
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Small QR Decomposition

 Let S be a (1 ϵ - subspace embedding for A

 Compute SA

 Compute QR-factorization, SA QR

 Claim: κ AR

 For all unit x, 1 ϵ ARx 	 SAR	x 1

 For all unit x, 1 ϵ ARx SARx 1

 So κ AR sup ARx / inf
	
ARx 	
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Finding a Constant Factor Solution

 Let S be a 1 ϵ - subspace embedding for AR

 Solve x argmin SARx Sb

 Time to compute R and x is nnz(A) + poly(d) for constant ϵ

 x ← x R A b	 AR	x 	

 AR x 	 x∗ AR	 x R A b ARx x∗
= AR	 ARR A AR x x∗

U Σ Σ V x x∗ ,
where AR U	ΣV is the SVD of AR

 AR x 	 x∗ Σ Σ V x x∗ O ϵ |AR x x∗ |
 ARx b AR x x∗ ARx∗ b
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 This is another subspace embedding, but it is based on sampling!
 If A has sparse rows, then SA has sparse rows!

 Let A U	ΣV be an n x d matrix with rank d, written in its SVD

 Define the i-th leverage score ℓ i of A to be U ,∗

 What is ∑ ℓ i ?

 Let q , … , q be a distribution with q ℓ , where β is a parameter

 Define sampling matrix S D ⋅ Ω , where D is k x k and Ω is n x k
 Ω is a sampling matrix, and D is a rescaling matrix
 For each column j of Ω, D, independently, and with replacement, pick a row 

index i in [n] with probability q , and set Ω , 1 and D , 	 	 1/ q k . 	

Leverage Score Sampling
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Leverage Score Sampling
 Note: leverage scores do not depend on choice of orthonormal 

basis U for columns of A

 Indeed, let U and U’ be two such orthonormal bases

 Claim: e U e U for all i

 Proof: Since both U and U’ have column space equal to that of A, 
we have U U Z for change of basis matrix Z

 Since U and U’ each have orthonormal columns, Z is a rotation 
matrix (orthonormal rows and columns)

 Then e U e U Z e U
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Leverage Score Sampling gives a Subspace Embedding

 Want to show for S D ⋅ Ω ,	that SAx 1 ϵ Ax for all x

 Writing A U	ΣV in its SVD, this is equivalent to showing               
SUy 1 ϵ Uy 1 ϵ y 	 for all y

 As usual, we can just show with high probability, U S SU	 I ϵ

 How can we analyze U S SU?	

 (Matrix Chernoff) Let X ,… , X be independent copies of a symmetric 
random matrix X ∈ R with E X 0, X γ, and E X X σ . Let W
∑ X∈ .	 For any ϵ 0,

Pr W ϵ 2d ⋅ e /

(here W sup .	Since W is symmetric, W sup	x Wx	
	
. 	
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Leverage Score Sampling gives a Subspace Embedding

 Let i(j) denote the index of the row of U sampled in the j-th trial

 Let X I , where U is the j-th sampled row of U

 The X are independent copies of a symmetric matrix random variable

 E X I ∑ q I I 0

 X I 1 max 1 	

 E X X I 2E E

																							 ∑ I ∑ U U 	 I 	 1 I , 

where A B means x Ax x Bx for all x

 Hence, |E X X | 1
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Applying the Matrix Chernoff Bound

 (Matrix Chernoff) Let X ,… , X be independent copies of a symmetric 
random matrix X ∈ R with E X 0, X γ, and E X X σ . Let W
∑ X∈ .	 For any ϵ 0,

Pr W ϵ 2d ⋅ e /

(here W sup .	Since W is symmetric, W sup	x Wx	
	
. 	

 γ 1 , and σ 	 1

 X 	I ,	and recall how we generated S D ⋅ Ω : For each 

column j of Ω, D, independently, and with replacement, pick a row index i in 
[n] with probability q , and set Ω , 1 and D , 	 1/ q k . 				
 Implies W I U S SU

 Pr I U S SU ϵ 2d ⋅ e .	Set k Θ and we’re done. 
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Fast Computation of Leverage Scores
 Naively, need to do an SVD to compute leverage scores

 Suppose we compute SA for a subspace embedding S

 Let SA QR be such that Q has orthonormal columns

 Set ℓ e AR

 Since AR has the same column span of A, AR UT
 1 ϵ ARx SARx x
 1 ϵ ARx SARx x
 1 O ϵ x ARx UT x T x , 

 ℓ 	 e ART 1 O ϵ e AR 1 O ϵ ℓ ′

 But how do we compute AR? We want nnz(A) time
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Fast Computation of Leverage Scores

 ℓ 	 1 O ϵ ℓ ′

 Suffices to set this ϵ to be a constant 

 Set ℓ e AR
 This takes too long

 Let G be a d x O(log n) matrix of i.i.d. normal random variables

 For any vector z, Pr	 zG 1 z 1

 Instead set ℓ e ARG . 
 Can compute in (nnz(A) + d log n	 time

 Can solve regression in nnz(A) log n + poly(d(log n)/ε) time 



82

Course Outline
 Subspace embeddings and least squares regression
 Gaussian matrices
 Subsampled Randomized Hadamard Transform
 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression
 Leverage score sampling
 Distributed low rank approximation
 L1 Regression
 M-Estimator regression



83

Distributed low rank approximation 

 We have fast algorithms for low rank approximation, but 
can they be made to work in a distributed setting?

 Matrix A distributed among s servers

 For t = 1, …, s, we get a customer-product matrix from 
the t-th shop stored in server t. Server t’s matrix = At

 Customer-product matrix A = A1 + A2 + … + As

 Model is called the arbitrary partition model

 More general than the row-partition model in which each 
customer shops in only one shop
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The Communication Model

…

Server 1

Coordinator

• Each player talks only to a Coordinator via 2-way communication

• Can simulate arbitrary point-to-point communication up to factor of 2
(and an additive O(log s) factor per message)

Server 2 Server s
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Communication cost of low rank approximation 

 Input: n x d matrix A stored on s servers
 Server t has n x d matrix At

 A = A1 + A2 + … + As

 Assume entries of At are O(log(nd))-bit integers

 Output: Each server outputs the same k-dimensional space W
 C A P A P 	… A P , where P is the projection onto W
 |A-C|F � (1+ε)|A-Ak|F
 Application: k-means clustering

 Resources: Minimize total communication and computation. 
Also want O(1) rounds and input sparsity time
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Work on Distributed Low Rank Approximation

 [FSS]: First protocol for the row-partition model.
 O(sdk/ε) real numbers of communication
 Don’t analyze bit complexity (can be large)
 SVD Running time, see also [BKLW]

 [KVW]: O(skd/ε) communication in arbitrary partition model

 [BWZ]: O(skd) + poly(sk/ε) words of communication in 
arbitrary partition model. Input sparsity time
 Matching Ω(skd) words of communication lower bound

 Variants: kernel low rank approximation [BLSWX], low rank 
approximation of an implicit matrix [WZ], sparsity [BWZ]
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Outline of Distributed Protocols

 [FSS] protocol

 [KVW] protocol

 [BWZ] protocol
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Constructing a Coreset [FSS]

 Let A U	ΣV be its SVD

 Let m = k + k/ϵ

 Let Σ agree with Σ on the first m diagonal entries, and be 0 
otherwise

 Claim: For all projection matrices Y=I-X onto (d-k)-dimensional 
subspaces, 

Σ V Y 1 ϵ AY c, 

where c A A does not depend on Y

 We can think of S as U so that SA U UΣV Σ V is a sketch 
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Constructing a Coreset
 Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces, 

Σ V Y c	 1 ϵ AY , 

where c A A does not depend on Y

 Proof: AY UΣ V Y U Σ Σ V Y

Σ V Y A A Σ V Y c

Also, Σ V Y A A 	 AY

Σ V Σ V X A A A AX

AX Σ V X

Σ Σ V X

													 Σ Σ V ⋅ X

												 σ 	k ϵ	σ m k ϵ∑ σ ϵ A A 	∈ ,..,


