## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression


## High Precision Regression

- Goal: output $x^{\prime}$ for which $\left|A x^{\prime}-b\right|_{2} \%(1+\varepsilon) \min _{x}|A x-b|_{2}$ with high probability
- Our algorithms all have running time poly(d/ $\varepsilon$ )
- Goal: Sometimes we want running time poly(d)* $\log (1 / \varepsilon)$
- Want to make A well-conditioned
- $\kappa(\mathrm{A})=\sup _{|\mathrm{x}|_{2}=1}|\mathrm{Ax}|_{2} / \inf _{|\mathrm{x}|_{2}=1}|\mathrm{Ax}|_{2}$
- Lots of algorithms' time complexity depends on $\kappa(\mathrm{A})$
- Use sketching to reduce $\kappa(\mathrm{A})$ to $\mathrm{O}(1)$ !


## Small QR Decomposition

- Let $S$ be a $\left(1+\epsilon_{0}\right)$ - subspace embedding for $A$
- Compute SA
- Compute QR -factorization, $\mathrm{SA}=\mathrm{QR}^{-1}$
- Claim: $\kappa(\mathrm{AR})=\frac{\left(1+\epsilon_{0}\right)}{1-\epsilon_{0}}$
- For all unit $x,\left(1-\epsilon_{0}\right)|A R x|_{2} \leq|\operatorname{SAR} x|_{2}=1$
- For all unit $x,\left(1+\epsilon_{0}\right)|A R x|_{2} \geq|S A R x|_{2}=1$
- So $\kappa(A R)=\sup _{|x|_{2}=1}|A R x|_{2} / \inf _{|x|_{2}=1}|A R x|_{2} \leq \frac{1+\epsilon_{0}}{1-\epsilon_{0}}$


## Finding a Constant Factor Solution

- Let $S$ be a $1+\epsilon_{0}$ - subspace embedding for AR
- Solve $\mathrm{x}_{0}=\underset{\mathrm{x}}{\operatorname{argmin}}|\operatorname{SARx}-\mathrm{Sb}|_{2}$
- Time to compute R and $\mathrm{x}_{0}$ is $\mathrm{nnz}(\mathrm{A})+\operatorname{poly}(\mathrm{d})$ for constant $\epsilon_{0}$
- $\mathrm{x}_{\mathrm{m}+1} \leftarrow \mathrm{x}_{\mathrm{m}}+\mathrm{R}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}\left(\mathrm{b}-\mathrm{AR} \mathrm{x}_{\mathrm{m}}\right)$
- $\operatorname{AR}\left(x_{m+1}-x^{*}\right)=\operatorname{AR}\left(x_{m}+R^{T} A^{T}\left(b-A R x_{m}\right)-x^{*}\right)$

$$
\begin{aligned}
& =\left(\mathrm{AR}-\mathrm{ARR}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}} \mathrm{AR}\right)\left(\mathrm{x}_{\mathrm{m}}-\mathrm{x}^{*}\right) \\
& =\mathrm{U}\left(\Sigma-\Sigma^{3}\right) V^{\mathrm{T}}\left(\mathrm{x}_{\mathrm{m}}-\mathrm{x}^{*}\right),
\end{aligned}
$$

where $A R=U \Sigma V^{T}$ is the SVD of $A R$

- $\left|\operatorname{AR}\left(x_{m+1}-x^{*}\right)\right|_{2}=\left|\left(\Sigma-\Sigma^{3}\right) V^{T}\left(x_{m}-x^{*}\right)\right|_{2}=0\left(\epsilon_{0}\right)\left|\operatorname{AR}\left(x_{m}-x^{*}\right)\right|_{2}$
- $\left|A R x_{m}-b\right|^{2}{ }_{2}=\left|\operatorname{AR}\left(x_{m}-x^{*}\right)\right|_{2}^{2}+\left|A R x^{*}-b\right|_{2}^{2}$


## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- M-Estimator regression


## Leverage Score Sampling

- This is another subspace embedding, but it is based on sampling!
- If $A$ has sparse rows, then SA has sparse rows!
- Let $A=U \Sigma V^{T}$ be an $n x d$ matrix with rank $d$, written in its SVD
- Define the i-th leverage score $\ell(\mathrm{i})$ of $A$ to be $\left|\mathrm{U}_{\mathrm{i}, *}\right|_{2}^{2}$
- What is $\sum_{\mathrm{i}} \ell(\mathrm{i})$ ?
- Let $\left(q_{1}, \ldots, q_{n}\right)$ be a distribution with $q_{i} \geq \frac{\beta \ell(i)}{d}$, where $\beta$ is a parameter
- Define sampling matrix $S=D \cdot \Omega^{T}$, where $D$ is $k \times k$ and $\Omega$ is $n \times k$
- $\Omega$ is a sampling matrix, and $D$ is a rescaling matrix
- For each column j of $\Omega, \mathrm{D}$, independently, and with replacement, pick a row index i in $[\mathrm{n}]$ with probability $\mathrm{q}_{\mathrm{i}}$, and set $\Omega_{\mathrm{i}, \mathrm{j}}=1$ and $\mathrm{D}_{\mathrm{j}, \mathrm{j}}=1 /\left(\mathrm{q}_{\mathrm{i}} \mathrm{k}\right)^{5}$


## Leverage Score Sampling

- Note: leverage scores do not depend on choice of orthonormal basis U for columns of A
- Indeed, let U and U' be two such orthonormal bases
- Claim: $\left|\mathrm{e}_{\mathrm{i}} \mathrm{U}\right|_{2}^{2}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{U}^{\prime}\right|_{2}^{2}$ for all i
- Proof: Since both $U$ and $U$ ' have column space equal to that of $A$, we have $U=U^{\prime} Z$ for change of basis matrix $Z$
- Since $U$ and $U$ ' each have orthonormal columns, $Z$ is a rotation matrix (orthonormal rows and columns)
- Then $\left|\mathrm{e}_{\mathrm{i}} U\right|_{2}^{2}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{U}^{\prime} \mathrm{Z}\right|_{2}^{2}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{U}^{\prime}\right|_{2}^{2}$


## Leverage Score Sampling gives a Subspace Embedding

- Want to show for $S=D \cdot \Omega^{T}$, that $|S A x|_{2}^{2}=(1 \pm \epsilon)|A x|_{2}^{2}$ for all $x$
- Writing $A=U \Sigma V^{T}$ in its SVD, this is equivalent to showing $|S U y|_{2}^{2}=(1 \pm \epsilon)|U y|_{2}^{2}=(1 \pm \epsilon)|y|_{2}^{2}$ for all $y$
- As usual, we can just show with high probability, $\left|\mathrm{U}^{\mathrm{T}} \mathrm{S}^{\mathrm{T}} \mathrm{SU}-\mathrm{I}\right|_{2} \leq \epsilon$
- How can we analyze $U^{T} S^{T}$ SU?
- (Matrix Chernoff) Let $X_{1}, \ldots, X_{k}$ be independent copies of a symmetric random matrix $\mathrm{X} \in \mathrm{R}^{\mathrm{dxd}}$ with $\mathrm{E}[\mathrm{X}]=0,|\mathrm{X}|_{2} \leq \gamma$, and $\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]\right|_{2} \leq \sigma^{2}$. Let $\mathrm{W}=$ $\frac{1}{k} \sum_{j \in[k]} X_{j}$. For any $\epsilon>0$,

$$
\operatorname{Pr}\left[|\mathrm{W}|_{2}>\epsilon\right] \leq 2 \mathrm{~d} \cdot \mathrm{e}^{-\mathrm{k} \epsilon^{2} /\left(\sigma^{2}+\frac{\gamma \epsilon}{3}\right)}
$$

$$
\text { (here }|W|_{2}=\sup \frac{|\mathrm{Wx}|_{2}}{|\mathrm{x}|_{2}} . \text { Since } \mathrm{W} \text { is symmetric, }|\mathrm{W}|_{2}=\sup _{|\mathrm{x}|_{2}=1} \mathrm{x}^{T} \mathrm{Wx} . \text { ) }
$$

## Leverage Score Sampling gives a Subspace Embedding

- Let $i(j)$ denote the index of the row of $U$ sampled in the $j$-th trial
- Let $X_{j}=I_{d}-\frac{U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}}$, where $U_{i(j)}$ is the $j$-th sampled row of $U$
- The $X_{j}$ are independent copies of a symmetric matrix random variable
- $E\left[X_{j}\right]=I_{d}-\sum_{i} q_{i}\left(\frac{U_{i}^{T} U_{i}}{q_{i}}\right)=I_{d}-I_{d}=0^{d}$
- $\left|X_{j}\right|_{2} \leq\left|I_{d}\right|_{2}+\frac{\left|U_{i(j)}^{T} U_{i(j)}\right|_{2}}{q_{i(j)}} \leq 1+\max _{\mathrm{i}} \frac{\left|\mathrm{U}_{\mathrm{i}}\right|_{2}^{2}}{q_{\mathrm{i}}} \leq 1+\frac{\mathrm{d}}{\beta}$
- $E\left[X^{T} X\right]=I_{d}-2 E\left[\frac{U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}}\right]+E\left[\frac{U_{i(j)}^{T} U_{i(j)} U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}^{2}}\right]$

$$
=\sum_{\mathrm{i}} \frac{\mathrm{U}_{\mathrm{i}}^{\mathrm{T}} \mathrm{U}_{\mathrm{i}} \mathrm{U}_{\mathrm{i}}^{\mathrm{T}} U_{\mathrm{i}}}{\mathrm{q}(\mathrm{i})}-\mathrm{I}_{\mathrm{d}} \leq\left(\frac{\mathrm{d}}{\beta}\right) \sum_{\mathrm{i}} \mathrm{U}_{\mathrm{i}}^{\mathrm{T}} U_{\mathrm{i}}-\mathrm{I}_{\mathrm{d}} \leq\left(\frac{\mathrm{d}}{\beta}-1\right) \mathrm{I}_{\mathrm{d}},
$$

where $\mathrm{A} \leq \mathrm{B}$ means $\mathrm{x}^{\mathrm{T}} \mathrm{Ax} \leq \mathrm{x}^{\mathrm{T}} \mathrm{Bx}$ for all x

- Hence, $\left|E\left[X^{T} X\right]\right|_{2} \leq \frac{d}{\beta}-1$


## Applying the Matrix Chernoff Bound

- (Matrix Chernoff) Let $X_{1}, \ldots, X_{k}$ be independent copies of a symmetric random matrix $X \in R^{d x d}$ with $E[X]=0,|X|_{2} \leq \gamma$, and $\left|E\left[X^{T} X\right]\right|_{2} \leq \sigma^{2}$. Let $W=$ $\frac{1}{k} \sum_{j \in[k]} X_{j}$. For any $\epsilon>0$,

$$
\operatorname{Pr}\left[|\mathrm{W}|_{2}>\epsilon\right] \leq 2 \mathrm{~d} \cdot \mathrm{e}^{-\mathrm{k} \epsilon^{2} /\left(\sigma^{2}+\frac{\gamma \epsilon}{3}\right)}
$$

$$
\text { (here }|\mathrm{W}|_{2}=\sup \frac{|\mathrm{Wx}|_{2}}{|\mathrm{x}|_{2}} \text {. Since } \mathrm{W} \text { is symmetric, }|\mathrm{W}|_{2}=\sup _{|\mathrm{x}|_{2}=1} \mathrm{x}^{T} \mathrm{Wx} . \text { ) }
$$

- $\gamma=1+\frac{\mathrm{d}}{\beta}$, and $\sigma^{2}=\frac{\mathrm{d}}{\beta}-1$
- $\quad X_{j}=I_{d}-\frac{U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}}$, and recall how we generated $S=D \cdot \Omega^{T}$ : For each column jof $\Omega, \mathrm{D}$, independently, and with replacement, pick a row index i in [ n ] with probability $\mathrm{q}_{\mathrm{i}}$, and set $\Omega_{\mathrm{i}, \mathrm{j}}=1$ and $\mathrm{D}_{\mathrm{j}, \mathrm{j}}=1 /\left(\mathrm{q}_{\mathrm{i}} \mathrm{k}\right)^{5}$
- Implies W $=I_{d}-U^{T} S^{T} S U$
- $\operatorname{Pr}\left[\left|I_{d}-U^{T} S^{T} S U\right|_{2}>\epsilon\right] \leq 2 d \cdot e^{-k \epsilon^{2} \Theta\left(\frac{\beta}{d}\right)}$. Set $k=\Theta\left(\frac{d \log d}{\beta \epsilon^{2}}\right)$ and we're done.


## Fast Computation of Leverage Scores

- Naively, need to do an SVD to compute leverage scores
- Suppose we compute SA for a subspace embedding S
- Let $S A=\mathrm{QR}^{-1}$ be such that Q has orthonormal columns
- Set $\ell_{\mathrm{i}}^{\prime}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{AR}\right|_{2}^{2}$
- Since $A R$ has the same column span of $A, A R=U T^{-1}$
- $(1-\epsilon)|\operatorname{ARx}|_{2} \leq|\operatorname{SARx}|_{2}=|x|_{2}$
- $(1+\epsilon)|\operatorname{ARx}|_{2} \geq|\operatorname{SARx}|_{2}=|\mathrm{x}|_{2}$
- $(1 \pm O(\epsilon))|\mathrm{x}|_{2}=|A R x|_{2}=\left|\mathrm{UT}^{-1} \mathrm{x}\right|_{2}=\left|\mathrm{T}^{-1} \mathrm{x}\right|_{2}$,
- $\ell_{\mathrm{i}}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{ART}\right|_{2}^{2}=(1 \pm \mathrm{O}(\epsilon))\left|\mathrm{e}_{\mathrm{i}} \mathrm{AR}\right|_{2}^{2}=(1 \pm \mathrm{O}(\epsilon)) \ell_{\mathrm{i}}{ }^{\prime}$
- But how do we compute AR? We want nnz(A) time


## Fast Computation of Leverage Scores

- $\quad \ell_{\mathrm{i}}=(1 \pm O(\epsilon)) \ell_{\mathrm{i}}^{\prime}$
- Suffices to set this $\epsilon$ to be a constant
- Set $\ell_{\mathrm{i}}^{\prime}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{AR}\right|_{2}^{2}$
- This takes too long
- Let G be adx $\mathrm{O}(\log \mathrm{n})$ matrix of i.i.d. normal random variables
- For any vector $z, \operatorname{Pr}\left[|z G|_{2}^{2}=\left(1 \pm \frac{1}{2}\right)|z|^{2}\right] \geq 1-\frac{1}{n^{2}}$
- Instead set $\ell_{\mathrm{i}}^{\prime}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{ARG}\right|_{2}^{2}$.
- Can compute in $\left(\mathrm{nnz}(\mathrm{A})+\mathrm{d}^{2}\right) \log \mathrm{n}$ time
- Can solve regression in nnz(A) $\log n+\operatorname{poly}(d(\log n) / \varepsilon)$ time


## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression


## Distributed low rank approximation

- We have fast algorithms for low rank approximation, but can they be made to work in a distributed setting?
- Matrix A distributed among s servers
- For $t=1, \ldots, s$, we get a customer-product matrix from the $t$-th shop stored in server $t$. Server t's $^{\text {matrix }}=\mathrm{A}^{\mathrm{t}}$
- Customer-product matrix $A=A^{1}+A^{2}+\ldots+A^{s}$
- Model is called the arbitrary partition model
- More general than the row-partition model in which each customer shops in only one shop


## The Communication Model



Server 1
Server 2
Server s

- Each player talks only to a Coordinator via 2-way communication
- Can simulate arbitrary point-to-point communication up to factor of 2 (and an additive $\mathrm{O}(\log \mathrm{s})$ factor per message)


## Communication cost of low rank approximation

- Input: n x d matrix A stored on s servers
- Servert has nxd matrix $A^{t}$
- $A=A^{1}+A^{2}+\ldots+A^{s}$
- Assume entries of $A^{t}$ are $O(\log (n d))$-bit integers
- Output: Each server outputs the same k-dimensional space $W$
- $C=A^{1} P_{W}+A^{2} P_{W}+\ldots+A^{s} P_{W}$, where $P_{W}$ is the projection onto $W$
- $|A-C|_{F} \%(1+\varepsilon)\left|A-A_{k}\right|_{F}$
- Application: k-means clustering
- Resources: Minimize total communication and computation. Also want $O(1)$ rounds and input sparsity time


## Work on Distributed Low Rank Approximation

- [FSS]: First protocol for the row-partition model.
- O(sdk/ع) real numbers of communication
- Don't analyze bit complexity (can be large)
- SVD Running time, see also [BKLW]
- [KVW]: O(skd/ $\varepsilon$ ) communication in arbitrary partition model
" [BWZ]: O(skd) + poly(sk/ع) words of communication in arbitrary partition model. Input sparsity time
- Matching $\Omega$ (skd) words of communication lower bound
- Variants: kernel low rank approximation [BLSWX], low rank approximation of an implicit matrix [WZ], sparsity [BWZ]


## Outline of Distributed Protocols

- [FSS] protocol
- [KVW] protocol
- [BWZ] protocol


## Constructing a Coreset [FSS]

- Let $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$ be its SVD
- Let $\mathrm{m}=\mathrm{k}+\mathrm{k} / \epsilon$
- Let $\Sigma_{\mathrm{m}}$ agree with $\Sigma$ on the first m diagonal entries, and be 0 otherwise
- Claim: For all projection matrices $\mathrm{Y}=\mathrm{I}-\mathrm{X}$ onto (d-k)-dimensional subspaces,

$$
\begin{gathered}
\left|\Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}=(1 \pm \epsilon)|\mathrm{AY}|_{\mathrm{F}}^{2}+\mathrm{c} \\
\text { where } \mathrm{c}=\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2} \text { does not depend on } \mathrm{Y}
\end{gathered}
$$

- We can think of $S$ as $U_{m}^{T}$ so that $S A=U_{m}^{T} U \Sigma V^{T}=\Sigma_{m} V^{T}$ is a sketch


## Constructing a Coreset

- Claim: For all projection matrices $\mathrm{Y}=\mathrm{l}-\mathrm{X}$ onto (d-k)-dimensional subspaces,

$$
\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\mathrm{c}=(1 \pm \epsilon)|\mathrm{AY}|_{\mathrm{F}}^{2}
$$

where $c=\left|A-A_{m}\right|_{F}^{2}$ does not depend on $Y$

- Proof: $|A Y|_{F}^{2}=\left|U \Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\left|\mathrm{U}\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}$

$$
\leq\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}=\left|\Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\mathrm{c}
$$

$$
\text { Also, } \begin{aligned}
& \left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}-|\mathrm{AY}|_{\mathrm{F}}^{2} \\
& =\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}}\right|_{\mathrm{F}}^{2}-\left|\Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{X}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}-|\mathrm{A}|_{\mathrm{F}}^{2}+|\mathrm{AX}|_{\mathrm{F}}^{2} \\
& =|\mathrm{AX}|_{\mathrm{F}}^{2}-\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{X}\right|_{\mathrm{F}}^{2} \\
= & \left|\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T} X}\right|_{\mathrm{F}}^{2} \\
& \leq\left|\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T}}\right|_{2}^{2} \cdot|\mathrm{X}|_{\mathrm{F}}^{2} \\
& \leq \sigma_{\mathrm{m}+1}^{2} \mathrm{k} \leq \epsilon \sigma_{\mathrm{m}+1}^{2}(\mathrm{~m}-\mathrm{k}) \leq \epsilon \sum_{\mathrm{i} \in\{\mathrm{k}+1, \ldots, \mathrm{~m}+1\}} \sigma_{\mathrm{i}}^{2} \leq \epsilon\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}^{2}
\end{aligned}
$$

