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Course Outline
 Subspace embeddings and least squares regression
 Gaussian matrices
 Subsampled Randomized Hadamard Transform
 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression
 Leverage score sampling
 Distributed low rank approximation
 L1 Regression
 M-Estimator regression
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High Precision Regression

 Goal: output x‘ for which |Ax‘-b|2 � (1+ε) minx |Ax-b|2
with high probability

 Our algorithms all have running time poly(d/ε)

 Goal: Sometimes we want running time poly(d)*log(1/ε)

 Want to make A well-conditioned 
 κ A ൌ sup

୶ మୀଵ
Ax ଶ/ inf

୶ మୀଵ	
Ax ଶ	

 Lots of algorithms’ time complexity depends on κ A

 Use sketching to reduce κ A to O(1)!
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Small QR Decomposition

 Let S be a (1 ൅ ϵ଴ሻ- subspace embedding for A

 Compute SA

 Compute QR-factorization, SA ൌ QRିଵ

 Claim: κ AR ൌ ଵା஫బ
ଵି஫బ

 For all unit x, 1 െ ϵ଴ ARx ଶ ൑	 SAR	x ଶൌ 1

 For all unit x, 1 ൅ ϵ଴ ARx ଶ ൒ SARx ଶ ൌ 1

 So κ AR ൌ sup
୶ మୀଵ

ARx ଶ/ inf
୶ మୀଵ	

ARx ଶ	 ൑
ଵା஫బ
ଵି஫బ
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Finding a Constant Factor Solution

 Let S be a 1 ൅ ϵ଴ - subspace embedding for AR

 Solve x଴ ൌ argmin
୶

SARx െ Sb ଶ

 Time to compute R and x଴ is nnz(A) + poly(d) for constant ϵ଴

 x୫ାଵ ← x୫ ൅ R୘A୘ b	 െ AR	x୫ 	

 AR x୫ାଵ	 െ x∗ ൌ AR	ሺx୫ ൅ R୘A୘ b െ ARx୫ െ x∗ሻ
= AR	 െ ARR୘A୘AR x୫ െ x∗

ൌ U Σ െ Σଷ V୘ሺx୫ െ x∗ሻ,
where AR ൌ U	ΣV୘ is the SVD of AR

 AR x୫ାଵ	 െ x∗ ଶ ൌ Σ െ Σଷ V୘ x୫ െ x∗ ଶ ൌ O ϵ଴ |ARሺx୫ െ x∗ሻ|ଶ
 ARx୫ െ b ଶ

ଶ ൌ AR x୫ െ x∗ ଶ
ଶ ൅ ARx∗ െ b ଶ

ଶ
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Course Outline
 Subspace embeddings and least squares regression
 Gaussian matrices
 Subsampled Randomized Hadamard Transform
 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression
 Leverage score sampling
 Distributed low rank approximation
 M-Estimator regression
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 This is another subspace embedding, but it is based on sampling!
 If A has sparse rows, then SA has sparse rows!

 Let A ൌ U	ΣV୘ be an n x d matrix with rank d, written in its SVD

 Define the i-th leverage score ℓ i of A to be U୧,∗ ଶ
ଶ

 What is ∑ ℓ i ?୧

 Let qଵ, … , q୬ be a distribution with q୧ ൒
ஒℓ ୧
ୢ

, where β is a parameter

 Define sampling matrix S ൌ D ⋅ Ω୘, where D is k x k and Ω is n x k
 Ω is a sampling matrix, and D is a rescaling matrix
 For each column j of Ω, D, independently, and with replacement, pick a row 

index i in [n] with probability q୧, and set Ω୧,୨ ൌ 1 and D୨,୨	 ൌ 	 1/ሺq୧kሻ.ହ	

Leverage Score Sampling
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Leverage Score Sampling
 Note: leverage scores do not depend on choice of orthonormal 

basis U for columns of A

 Indeed, let U and U’ be two such orthonormal bases

 Claim: e୧U ଶ
ଶ ൌ e୧Uᇱ ଶଶ for all i

 Proof: Since both U and U’ have column space equal to that of A, 
we have U ൌ UᇱZ for change of basis matrix Z

 Since U and U’ each have orthonormal columns, Z is a rotation 
matrix (orthonormal rows and columns)

 Then e୧U ଶ
ଶ ൌ e୧UᇱZ ଶ

ଶ ൌ e୧Uᇱ ଶଶ
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Leverage Score Sampling gives a Subspace Embedding

 Want to show for S ൌ D ⋅ Ω୘,	that SAx ଶ
ଶ ൌ 1 േ ϵ Ax ଶ

ଶ for all x

 Writing A ൌ U	ΣV୘ in its SVD, this is equivalent to showing               
SUy ଶ

ଶ ൌ 1 േ ϵ Uy ଶ
ଶ ൌ 1 േ ϵ y ଶ

ଶ	 for all y

 As usual, we can just show with high probability, U୘S୘SU	 െ I ଶ ൑ ϵ

 How can we analyze U୘S୘SU?	

 (Matrix Chernoff) Let Xଵ, … , X୩ be independent copies of a symmetric 
random matrix X ∈ Rୢ୶ୢ with E X ൌ 0, X ଶ ൑ γ, and E X୘X ଶ ൑ σଶ. Let W ൌ
ଵ
୩
∑ X୨୨∈ሾ୩ሿ .	 For any ϵ ൐ 0,

Pr W ଶ ൐ ϵ ൑ 2d ⋅ eି୩஫
మ/ሺ஢మାಋಣయ ሻ

(here W ଶ ൌ sup ୛୶ మ
୶ మ

.	Since W is symmetric, W ଶ ൌ sup	x୘Wx	
୶ మୀଵ	

. ሻ	



78

Leverage Score Sampling gives a Subspace Embedding

 Let i(j) denote the index of the row of U sampled in the j-th trial

 Let X୨ ൌ Iୢ െ
୙౟ሺౠሻ
౐ ୙౟ሺౠሻ
୯౟ሺౠሻ

, where U୧ሺ୨ሻ is the j-th sampled row of U

 The X୨ are independent copies of a symmetric matrix random variable

 E X୨ ൌ Iୢ െ ∑ q୧
୙౟
౐୙౟
୯౟୧ ൌ Iୢ െ Iୢ ൌ 0ୢ

 X୨ ଶ ൑ Iୢ ଶ ൅
୙౟ ౠ
౐ ୙౟ ౠ మ
୯౟ ౠ

൑ 1 ൅ max
୧

୙౟ మమ

୯౟
൑ 1 ൅ ୢ

ஒ
	

 E X୘X ൌ Iୢ െ 2E
୙౟ ౠ
౐ ୙౟ ౠ
୯౟ ౠ

൅ E
୙౟ ౠ
౐ ୙౟ ౠ ୙౟ ౠ

౐ ୙౟ ౠ
୯౟ ౠ
మ

																							ൌ ∑ ୙౟
౐୙౟୙౟

౐୙౟
୯ ୧୧ െ Iୢ ൑

ୢ
ஒ
∑ U୧୘U୧୧ 	െ Iୢ ൑

ୢ
ஒ
	െ 1 Iୢ, 

where A ൑ B means x୘Ax ൑ x୘Bx for all x

 Hence, |E X୘X |ଶ ൑
ୢ
ஒ
െ 1
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Applying the Matrix Chernoff Bound

 (Matrix Chernoff) Let Xଵ, … , X୩ be independent copies of a symmetric 
random matrix X ∈ Rୢ୶ୢ with E X ൌ 0, X ଶ ൑ γ, and E X୘X ଶ ൑ σଶ. Let W ൌ
ଵ
୩
∑ X୨୨∈ሾ୩ሿ .	 For any ϵ ൐ 0,

Pr W ଶ ൐ ϵ ൑ 2d ⋅ eି୩஫
మ/ሺ஢మାಋಣయ ሻ

(here W ଶ ൌ sup ୛୶ మ
୶ మ

.	Since W is symmetric, W ଶ ൌ sup	x୘Wx	
୶ మୀଵ	

. ሻ	

 γ ൌ 1 ൅ ୢ
ஒ
, and σଶ ൌ 	 ୢ

ஒ
െ 1

 X୨ ൌ 	Iୢ െ
୙౟ ౠ
౐ ୙౟ ౠ
୯౟ ౠ

,	and recall how we generated S ൌ D ⋅ Ω୘: For each 

column j of Ω, D, independently, and with replacement, pick a row index i in 
[n] with probability q୧, and set Ω୧,୨ ൌ 1 and D୨,୨	 ൌ 1/ሺq୧kሻ.ହ				
 Implies W ൌ Iୢ െ U୘S୘SU

 Pr Iୢ െ U୘S୘SU ଶ ൐ ϵ ൑ 2d ⋅ eି୩஫
మ஀ ಊ

ౚ .	Set k ൌ Θሺୢ ୪୭୥ ୢ
ஒ஫మ

ሻ and we’re done. 
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Fast Computation of Leverage Scores
 Naively, need to do an SVD to compute leverage scores

 Suppose we compute SA for a subspace embedding S

 Let SA ൌ QRିଵ be such that Q has orthonormal columns

 Set ℓ୧ᇱ ൌ e୧AR ଶ
ଶ

 Since AR has the same column span of A, AR ൌ UTିଵ

 1 െ ϵ ARx ଶ ൑ SARx ଶ ൌ x ଶ

 1 ൅ ϵ ARx ଶ ൒ SARx ଶ ൌ x ଶ

 1 േ Oሺϵ ሻ x ଶ ൌ ARx ଶ ൌ UTିଵx ଶ ൌ Tିଵx ଶ, 

 ℓ୧ ൌ 	 e୧ART ଶ
ଶ ൌ 1 േ Oሺϵሻ e୧AR ଶ

ଶ ൌ 1 േ Oሺϵሻ ℓ୧′

 But how do we compute AR? We want nnz(A) time
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Fast Computation of Leverage Scores

 ℓ୧ ൌ 	 1 േ Oሺϵሻ ℓ୧′

 Suffices to set this ϵ to be a constant 

 Set ℓ୧ᇱ ൌ e୧AR ଶ
ଶ

 This takes too long

 Let G be a d x O(log n) matrix of i.i.d. normal random variables

 For any vector z, Pr	ሾ zG ଶ
ଶ ൌ 1 േ ଵ

ଶ
z ଶሿ ൒ 1 െ ଵ

୬మ

 Instead set ℓ୧ᇱ ൌ e୧ARG ଶ
ଶ. 

 Can compute in (nnz(A) + dଶሻ log n	 time

 Can solve regression in nnz(A) log n + poly(d(log n)/ε) time 
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Course Outline
 Subspace embeddings and least squares regression
 Gaussian matrices
 Subsampled Randomized Hadamard Transform
 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression
 Leverage score sampling
 Distributed low rank approximation
 L1 Regression
 M-Estimator regression
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Distributed low rank approximation 

 We have fast algorithms for low rank approximation, but 
can they be made to work in a distributed setting?

 Matrix A distributed among s servers

 For t = 1, …, s, we get a customer-product matrix from 
the t-th shop stored in server t. Server t’s matrix = At

 Customer-product matrix A = A1 + A2 + … + As

 Model is called the arbitrary partition model

 More general than the row-partition model in which each 
customer shops in only one shop
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The Communication Model

…

Server 1

Coordinator

• Each player talks only to a Coordinator via 2-way communication

• Can simulate arbitrary point-to-point communication up to factor of 2
(and an additive O(log s) factor per message)

Server 2 Server s
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Communication cost of low rank approximation 

 Input: n x d matrix A stored on s servers
 Server t has n x d matrix At

 A = A1 + A2 + … + As

 Assume entries of At are O(log(nd))-bit integers

 Output: Each server outputs the same k-dimensional space W
 C ൌ AଵP୛ ൅ AଶP୛ ൅	…൅ AୱP୛, where P୛ is the projection onto W
 |A-C|F � (1+ε)|A-Ak|F
 Application: k-means clustering

 Resources: Minimize total communication and computation. 
Also want O(1) rounds and input sparsity time
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Work on Distributed Low Rank Approximation

 [FSS]: First protocol for the row-partition model.
 O(sdk/ε) real numbers of communication
 Don’t analyze bit complexity (can be large)
 SVD Running time, see also [BKLW]

 [KVW]: O(skd/ε) communication in arbitrary partition model

 [BWZ]: O(skd) + poly(sk/ε) words of communication in 
arbitrary partition model. Input sparsity time
 Matching Ω(skd) words of communication lower bound

 Variants: kernel low rank approximation [BLSWX], low rank 
approximation of an implicit matrix [WZ], sparsity [BWZ]
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Outline of Distributed Protocols

 [FSS] protocol

 [KVW] protocol

 [BWZ] protocol
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Constructing a Coreset [FSS]

 Let A ൌ U	ΣV୘ be its SVD

 Let m = k + k/ϵ

 Let Σ୫ agree with Σ on the first m diagonal entries, and be 0 
otherwise

 Claim: For all projection matrices Y=I-X onto (d-k)-dimensional 
subspaces, 

Σ୫V୘Y ୊
ଶ ൌ 1 േ ϵ AY ୊

ଶ ൅ c, 

where c ൌ A െ A୫ ୊
ଶ does not depend on Y

 We can think of S as U୫୘ so that SA ൌ U୫୘ UΣV୘ ൌ Σ୫V୘ is a sketch 
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Constructing a Coreset
 Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces, 

Σ୫V୘Y ୊
ଶ ൅ c	 ൌ 1 േ ϵ AY ୊

ଶ, 

where c ൌ A െ A୫ ୊
ଶ does not depend on Y

 Proof: AY ୊
ଶ ൌ UΣ୫V୘Y ୊

ଶ ൅ U Σ െ Σ୫ V୘Y ୊
ଶ

൑ Σ୫V୘Y ୊
ଶ ൅ A െ A୫ ୊

ଶ ൌ Σ୫V୘Y ୊
ଶ ൅ c

Also, Σ୫V୘Y ୊
ଶ ൅ A െ A୫ ୊

ଶ 	െ AY ୊
ଶ

ൌ Σ୫V୘ ୊
ଶ െ Σ୫V୘X ୊

ଶ ൅ A െ A୫ ୊
ଶ െ A ୊

ଶ ൅ AX ୊
ଶ

ൌ AX ୊
ଶ െ Σ୫V୘X ୊

ଶ

ൌ Σ െ Σ୫ V୘X ୊
ଶ

													൑ Σ െ Σ୫ V୘ ଶ
ଶ ⋅ X ୊

ଶ

												൑ σ୫ାଵ	ଶ k ൑ ϵ	σ୫ାଵଶ m െ k ൑ ϵ∑ σ୧ଶ ൑ ϵ A െ A୩ ୊
ଶ	୧∈ሼ୩ାଵ,..,୫ାଵሽ


