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Constructing a Coreset
 Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces, 

Σ୫V୘Y ୊
ଶ ൅ c	 ൌ 1 േ ϵ AY ୊

ଶ, 

where c ൌ A െ A୫ ୊
ଶ does not depend on Y

 Proof: AY ୊
ଶ ൌ UΣ୫V୘Y ୊

ଶ ൅ U Σ െ Σ୫ V୘Y ୊
ଶ

൑ Σ୫V୘Y ୊
ଶ ൅ A െ A୫ ୊

ଶ ൌ Σ୫V୘Y ୊
ଶ ൅ c

Also, Σ୫V୘Y ୊
ଶ ൅ A െ A୫ ୊

ଶ 	െ AY ୊
ଶ

ൌ Σ୫V୘ ୊
ଶ െ Σ୫V୘X ୊

ଶ ൅ A െ A୫ ୊
ଶ െ A ୊

ଶ ൅ AX ୊
ଶ

ൌ AX ୊
ଶ െ Σ୫V୘X ୊

ଶ

ൌ Σ െ Σ୫ V୘X ୊
ଶ

													൑ Σ െ Σ୫ V୘ ଶ
ଶ ⋅ X ୊

ଶ

												൑ σ୫ାଵ	ଶ k ൑ ϵ	σ୫ାଵଶ m െ k ൑ ϵ∑ σ୧ଶ ൑ ϵ A െ A୩ ୊
ଶ	୧∈ሼ୩ାଵ,..,୫ାଵሽ
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Unions of Coresets
 Suppose we have matrices Aଵ, … , Aୱ and construct 

Σ୫ଵ V୘,ଵ, Σ୫ଶ V୘,ଶ, … , Σ୫ୱ V୘,ୱ as in the previous slide, together with cଵ, … , cୱ

 Then ∑୧ Σ୫୧ V୘,୧Y ୊
ଶ ൅ c୧ 	ൌ 1 േ ϵ AY ୊

ଶ, where A is the matrix formed by 
concatenating the rows of Aଵ, … , Aୱ

 Let B be the matrix obtained by concatenating the rows of 
Σ୫ଵ V୘,ଵ, Σ୫ଶ V୘,ଶ, … , Σ୫ୱ V୘,ୱ

 Suppose we compute B ൌ U	ΣV୘ and compute Σ୫V୘ and	 B െ B୫ ୊
ଶ

 Then Σ୫V୘Y ୊
ଶ ൅ c ൅ ∑ c୧୧ ൌ 1 േ ϵ BY ୊

ଶ ൅ ∑ c୧୧ ൌ 1 േ Oሺϵሻ AY ୊
ଶ

 So  Σ୫V୘ and the constant c ൅ ∑ c୧୧ are a coreset for A
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[FSS] Row-Partition Protocol

…

Pଵ ∈ R୬భ	୶	ୢ

Coordinator

Pଶ ∈ R୬మ	୶	ୢ Pୱ ∈ R୬౩	୶	ୢ

 Server t sends the top k/ε + k principal components of P୲, scaled by the top 
k/ε + k singular values Σ୲,	together with c୲

 Coordinator returns c ൅ ∑ c୧୧ and top k principal components of ΣଵVଵ; ΣଶVଶ;… ; ΣୱVୱ 	
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[FSS] Row-Partition Protocol

Problems: 
1. sdk/ε real numbers of communication
2. bit complexity can be large
3. running time for SVDs
4. doesn’t work in arbitrary partition model

This is an SVD-based protocol. Maybe 
our random matrix techniques can 

improve communication just like they 
improved computation? 

[KVW] protocol 
will handle 2, 3, 

and 4
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[KVW] Arbitrary Partition Model Protocol 

 Inspired by the sketching algorithm presented earlier

 Let S be one of the k/ε x n random matrices discussed
 S can be generated pseudorandomly from small seed
 Coordinator sends small seed for S to all servers

 Server t computes SAt and sends it to Coordinator

 Coordinator sends Σt=1
s SAt = SA to all servers

 There is a good k-dimensional subspace inside of SA. If 
we knew it, t-th server could output projection of At onto it
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[KVW] Arbitrary Partition Model Protocol 

Problems:

 Can’t output projection of At onto SA since 
the rank is too large

 Could communicate this projection to the 
coordinator who could find a k-dimensional 
space, but communication depends on n
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[KVW] Arbitrary Partition Model Protocol 

Fix: 

 Instead of projecting A onto SA, recall 
we can solve min

୰ୟ୬୩ି୩	ଡ଼
A SA ୘XSA െ A ୊

ଶ	
 Let Tଵ, Tଶ be affine embeddings, solve 

min
୰ୟ୬୩ି୩	ଡ଼

TଵA SA ୘XSATଶ െ TଵATଶ ୊
ଶ	

(optimization problem is small and has 
a closed form solution)
 Everyone can then compute XSA and 

then output k directions
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[KVW] protocol

 Phase 1:

 Learn the row space of SA

SA

optimal k-dimensional 
space in SA

cost � (1+ε)|A-Ak|F
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[KVW] protocol

 Phase 2:

 Find an approximately optimal space W inside of SA

SA

optimal space in SA

approximate 
space W in SA

cost � (1+ε)2|A-Ak|F
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[BWZ] Protocol

 Main Problem: communication is O(skd/ε) + poly(sk/ε)

 We want O(skd) + poly(sk/ε) communication!

 Idea: use projection-cost preserving sketches [CEMMP]

 Let A be an n x d matrix

 If S is a random k/εଶ x n matrix, then there is a scalar 
c ൒ 0	so that for all k-dimensional projection matrices P: 

SA I െ P ୊
ଶ ൅ c	 ൌ 1 േ ϵ A I െ P ୊

ଶ
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[BWZ] Protocol

 Let S be a k/εଶ x n projection-cost preserving sketch
 Let T be a d x k/εଶ projection-cost preserving sketch
 Server t sends SA୲T to Coordinator

 Coordinator sends back SAT = ∑ SA୲T	୲ to servers
 Each server computes k/εଶx k matrix U of top k left singular 

vectors of SAT

 Server t sends U୘SA୲ to Coordinator

 Coordinator returns the space U୘SA ൌ ∑ U୘SA୲୲ to output

Intuitively, U looks like top k 
left singular vectors of SA

Thus, U୘SA looks like top k 
right singular vectors of SA

Top k right singular vectors of SA 
work because S is a projection-

cost preserving sketch!
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[BWZ] Analysis

 Let W be the row span of U୘SA, and P be the projection onto W

 Want to show A െ AP ୊
ଶ ൑ 1 ൅ ϵ A െ A୩ ୊

ଶ

 Since T is a projection-cost preserving sketch, 

(*)    SA െ SAP ୊
ଶ ൑ SA	 െ 	UU୘SA ୊

ଶ ൅ cଵ ൑ 1 ൅ ϵ SA െ SA ୩ ୊
ଶ

 Since S is a projection-cost preserving sketch, there is a scalar c > 
0, so that for all k-dimensional projection matrices Q, 

SA	 െ SAQ ୊
ଶ ൅ c	 ൌ 1 േ ϵ A െ AQ ୊

ଶ

 Add c to both sides of (*) to conclude A െ AP ୊
ଶ ൑ 1 ൅ ϵ A െ A୩ ୊

ଶ
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Conclusions for Distributed Low Rank Approximation

 [BWZ] Optimal O(sdk) + poly(sk/ε) communication protocol for low 
rank approximation in arbitrary partition model
 Handle bit complexity by adding noise (omitted)
 Input sparsity time
 2 rounds, which is optimal [W]

 Communication of other optimization problems?
 Computing the rank of an n x n matrix over the reals
 Linear Programming 
 Graph problems: Matching
 etc. 
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Course Outline

 Subspace embeddings and least squares regression
 Gaussian matrices
 Subsampled Randomized Hadamard Transform
 CountSketch

 Affine embeddings
 Application to low rank approximation

 High precision regression
 Leverage score sampling
 Distributed low rank approximation
 L1 Regression
 M-Estimator Regression
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Robust Regression

Method of least absolute deviation (l1 -regression)

 Find x* that minimizes |Ax-b|1 =  |bi – <Ai*, x>|

 Cost is less sensitive to outliers than least squares

 Can solve via linear programming
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Solving l1 -regression via Linear Programming

 Minimize (1,…,1) ∙ ( +  )
 Subject to: 

A x   = b
 , ≥ 0

 Generic linear programming gives poly(nd) time

 Want much faster time using sketching!
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