Constructing a Coreset

- Claim: For all projection matrices $\mathrm{Y}=\mathrm{l}-\mathrm{X}$ onto (d-k)-dimensional subspaces,

$$
\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\mathrm{c}=(1 \pm \epsilon)|\mathrm{AY}|_{\mathrm{F}}^{2}
$$

where $c=\left|A-A_{m}\right|_{F}^{2}$ does not depend on Y

- Proof: $|A Y|_{F}^{2}=\left|U \Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\left|\mathrm{U}\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}$

$$
\leq\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}=\left|\Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\mathrm{c}
$$

$$
\text { Also, } \begin{aligned}
& \left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}-|\mathrm{AY}|_{\mathrm{F}}^{2} \\
& =\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}}\right|_{\mathrm{F}}^{2}-\left|\Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{X}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}-|\mathrm{A}|_{\mathrm{F}}^{2}+|\mathrm{AX}|_{\mathrm{F}}^{2} \\
& =|\mathrm{AX}|_{\mathrm{F}}^{2}-\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{X}\right|_{\mathrm{F}}^{2} \\
= & \left|\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T} X}\right|_{\mathrm{F}}^{2} \\
& \leq\left|\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T}}\right|_{2}^{2} \cdot|\mathrm{X}|_{\mathrm{F}}^{2} \\
& \leq \sigma_{\mathrm{m}+1}^{2} \mathrm{k} \leq \epsilon \sigma_{\mathrm{m}+1}^{2}(\mathrm{~m}-\mathrm{k}) \leq \epsilon \sum_{\mathrm{i} \in\{\mathrm{k}+1, \ldots, \mathrm{~m}+1\}} \sigma_{\mathrm{i}}^{2} \leq \epsilon\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}^{2}
\end{aligned}
$$

Unions of Coresets

- Suppose we have matrices $\mathrm{A}^{1}, \ldots, \mathrm{~A}^{\mathrm{s}}$ and construct $\Sigma_{\mathrm{m}}^{1} V^{\mathrm{T}, 1}, \Sigma_{\mathrm{m}}^{2} \mathrm{~V}^{\mathrm{T}, 2}, \ldots, \Sigma_{\mathrm{m}}^{\mathrm{s}} \mathrm{V}^{\mathrm{T}, \mathrm{s}}$ as in the previous slide, together with $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{s}}$
- Then $\sum_{i}\left|\Sigma_{m}^{i} V^{T, i} Y\right|_{F}^{2}+c_{i}=(1 \pm \epsilon)|A Y|_{F}^{2}$, where A is the matrix formed by concatenating the rows of A^{1}, \ldots, A^{s}
- Let B be the matrix obtained by concatenating the rows of $\Sigma_{\mathrm{m}}^{1} \mathrm{~V}^{\mathrm{T}, 1}, \Sigma_{\mathrm{m}}^{2} \mathrm{~V}^{\mathrm{T}, 2}, \ldots, \Sigma_{\mathrm{m}}^{\mathrm{s}} \mathrm{V}^{\mathrm{T}, \mathrm{s}}$
- Suppose we compute $B=U \Sigma V^{T}$ and compute $\Sigma_{m} V^{T}$ and $\left|B-B_{m}\right|_{F}^{2}$
- Then $\left|\Sigma_{m} V^{T} Y\right|_{F}^{2}+c+\sum_{i} c_{i}=(1 \pm \epsilon)|B Y|_{F}^{2}+\sum_{i} c_{i}=(1 \pm O(\epsilon))|A Y|_{F}^{2}$
- So $\Sigma_{m} V^{T}$ and the constant $\mathrm{c}+\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}$ are a coreset for A

[FSS] Row-Partition Protocol

- Server t sends the top $\mathrm{k} / \varepsilon+\mathrm{k}$ principal components of P^{t}, scaled by the top $\mathrm{k} / \varepsilon+\mathrm{k}$ singular values Σ^{t}, together with c^{t}
- Coordinator returns $\mathrm{c}+\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}$ and top k principal components of $\left[\Sigma^{1} \mathrm{~V}^{1} ; \Sigma^{2} \mathrm{~V}^{2} ; \ldots ; \Sigma^{s} \mathrm{~V}^{s}\right]$

[FSS] Row-Partition Protocol

[KVW] protocol will handle 2, 3 , and 4

Problems:

1. $s d k / \varepsilon$ real numbers of communication
2. bit complexity can be large
3. running time for SVDs
4. doesn't work in arbitrary partition model

> This is an SVD-based protocol. Maybe our random matrix techniques can improve communication just like they improved computation?

[KVW] Arbitrary Partition Model Protocol

- Inspired by the sketching algorithm presented earlier
- Let S be one of the $\mathrm{k} / \varepsilon \times \mathrm{n}$ random matrices discussed
- S can be generated pseudorandomly from small seed
- Coordinator sends small seed for S to all servers
- Server t computes SA ${ }^{t}$ and sends it to Coordinator
- Coordinator sends $\Sigma_{\mathrm{t}=1} \mathrm{~s} \mathrm{SA}^{\mathrm{t}}=\mathrm{SA}$ to all servers
- There is a good k-dimensional subspace inside of SA. If we knew it, t-th server could output projection of A^{t} onto it

[KVW] Arbitrary Partition Model Protocol

Problems:

- Can't output projection of A^{t} onto SA since the rank is too large
- Could communicate this projection to the coordinator who could find a k-dimensional space, but communication depends on n

[KVW] Arbitrary Partition Model Protocol

[KVW] protocol

- Phase 1:
- Learn the row space of SA

cost $\%(1+\varepsilon)\left|A-A_{k}\right|_{F}$

[KVW] protocol

- Phase 2:
- Find an approximately optimal space W inside of SA

$\operatorname{cost} \%(1+\varepsilon)^{2}\left|A-A_{k}\right|_{F}$

[BWZ] Protocol

- Main Problem: communication is $\mathrm{O}(\mathrm{skd} / \varepsilon)+\operatorname{poly}(\mathrm{sk} / \varepsilon)$
- We want O(skd) + poly(sk/ع) communication!
" Idea: use projection-cost preserving sketches [CEMMP]
- Let A be an nx d matrix
- If S is a random $k / \varepsilon^{2} \times n$ matrix, then there is a scalar $\mathrm{c} \geq 0$ so that for all k -dimensional projection matrices P :

$$
|S A(I-P)|_{F}^{2}+c=(1 \pm \epsilon)|A(I-P)|_{F}^{2}
$$ left singular vectors of SA

- Let S be a $k / \varepsilon^{2} \times n$ projection-cost preserving sketch
- Let T be a $\mathrm{d} \mathrm{xk} / \varepsilon^{2}$ projection-cost preserving sketch
- Server t sends SA ${ }^{\mathrm{t}} \mathrm{T}$ to Coordinator
- Coordinator sends back SAT $=\sum_{\mathrm{t}} \mathrm{SA}^{\mathrm{t}} \mathrm{T}$ to servers
- Each server computes $\mathrm{k} / \varepsilon^{2} \mathrm{x}$ k matrix U of top k left singular vectors of SAT

Thus, U^{T} SA looks like top k right singular vectors of SA

- Server t sends $U^{T} S A^{t}$ to Coordinator
- Coordinator returns the space $\mathrm{U}^{\mathrm{T}} \mathrm{SA}=\sum_{\mathrm{t}} \mathrm{U}^{\mathrm{T}} \mathrm{SA} \mathrm{A}^{\mathrm{t}}$ to output

Top k right singular vectors of SA work because S is a projectioncost preserving sketch!

[BWZ] Analysis

- Let W be the row span of $U^{T} S A$, and P be the projection onto W
- Want to show $|\mathrm{A}-\mathrm{AP}|_{\mathrm{F}}^{2} \leq(1+\epsilon)\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}^{2}$
- Since T is a projection-cost preserving sketch,
(*) $\quad|\mathrm{SA}-\mathrm{SAP}|_{\mathrm{F}}^{2} \leq\left|\mathrm{SA}-\mathrm{UU}{ }^{\mathrm{T}} \mathrm{SA}\right|_{\mathrm{F}}^{2}+\mathrm{c}_{1} \leq(1+\epsilon)\left|\mathrm{SA}-[\mathrm{SA}]_{\mathrm{k}}\right|_{\mathrm{F}}^{2}$
- Since S is a projection-cost preserving sketch, there is a scalar c > 0 , so that for all k -dimensional projection matrices Q ,

$$
|S A-S A Q|_{F}^{2}+c=(1 \pm \epsilon)|A-A Q|_{F}^{2}
$$

- Add c to both sides of $\left(^{*}\right)$ to conclude $|\mathrm{A}-\mathrm{AP}|_{\mathrm{F}}^{2} \leq(1+\epsilon)\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}^{2}{ }^{100}$

Conclusions for Distributed Low Rank Approximation

- [BWZ] Optimal O(sdk) + poly(sk/ع) communication protocol for low rank approximation in arbitrary partition model
- Handle bit complexity by adding noise (omitted)
- Input sparsity time
- 2 rounds, which is optimal [W]
- Communication of other optimization problems?
- Computing the rank of an $\mathrm{n} \times \mathrm{n}$ matrix over the reals
- Linear Programming
- Graph problems: Matching
- etc.

Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator Regression

Robust Regression

Method of least absolute deviation (l_{1}-regression)

- Find x^{*} that minimizes $|A x-b|_{1}=\Sigma\left|b_{i}-<A_{i^{*}}, x>\right|$
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming

Solving I_{1}-regression via Linear Programming

- Minimize $(1, \ldots, 1) \cdot\left(\alpha^{+}+\alpha^{-}\right)$
- Subject to:

$$
\begin{aligned}
\mathrm{Ax}+\alpha^{+}-\alpha^{-} & =\mathrm{b} \\
\alpha^{+}, \alpha^{-} & \geq 0
\end{aligned}
$$

- Generic linear programming gives poly(nd) time
- Want much faster time using sketching!

