Constructing a Coreset

Claim: For all projection matrices Y=I-X onto (d-k)-dimensional subspaces,

$$\left|\Sigma_{\rm m} V^{\rm T} Y\right|_{\rm F}^2 + c = (1 \pm \epsilon) |AY|_{\rm F}^2,$$

where $c = |A - A_m|_F^2$ does not depend on Y

• Proof:
$$|AY|_F^2 = |U\Sigma_m V^T Y|_F^2 + |U(\Sigma - \Sigma_m) V^T Y|_F^2$$

 $\leq |\Sigma_m V^T Y|_F^2 + |A - A_m|_F^2 = |\Sigma_m V^T Y|_F^2 + c$

Also,
$$\left| \Sigma_{m} V^{T} Y \right|_{F}^{2} + \left| A - A_{m} \right|_{F}^{2} - \left| A Y \right|_{F}^{2}$$

$$= \left| \Sigma_{m} V^{T} \right|_{F}^{2} - \left| \Sigma_{m} V^{T} X \right|_{F}^{2} + \left| A - A_{m} \right|_{F}^{2} - \left| A \right|_{F}^{2} + \left| A X \right|_{F}^{2}$$

$$= \left| A X \right|_{F}^{2} - \left| \Sigma_{m} V^{T} X \right|_{F}^{2}$$

$$= \left| (\Sigma - \Sigma_{m}) V^{T} X \right|_{F}^{2}$$

$$\leq \left| (\Sigma - \Sigma_{m}) V^{T} \right|_{2}^{2} \cdot \left| X \right|_{F}^{2}$$

$$\leq \sigma_{m+1}^{2} k \leq \varepsilon \, \sigma_{m+1}^{2} (m-k) \leq \varepsilon \, \sum_{i \in \{k+1, \dots, m+1\}} \sigma_{i}^{2} \leq \varepsilon |A - A_{k}|_{F}^{2}$$

89

Unions of Coresets

- Suppose we have matrices A^1 , ..., A^s and construct $\Sigma_m^1 V^{T,1}$, $\Sigma_m^2 V^{T,2}$, ..., $\Sigma_m^s V^{T,s}$ as in the previous slide, together with c_1 , ..., c_s
- Then $\sum_i \left| \sum_{m=1}^i V^{T,i} Y \right|_F^2 + c_i = (1 \pm \epsilon) |AY|_F^2$, where A is the matrix formed by concatenating the rows of A^1, \dots, A^s
- Let B be the matrix obtained by concatenating the rows of $\Sigma_m^1 V^{T,1}, \Sigma_m^2 V^{T,2}, ..., \Sigma_m^s V^{T,s}$
- Suppose we compute $B = U \Sigma V^T$ and compute $\Sigma_m V^T$ and $|B B_m|_F^2$
- Then $\left| \Sigma_m V^T Y \right|_F^2 + c + \sum_i c_i = (1 \pm \epsilon) |BY|_F^2 + \sum_i c_i = (1 \pm 0(\epsilon)) |AY|_F^2$
- So $\Sigma_{\rm m} V^{\rm T}$ and the constant $c + \sum_{\rm i} c_{\rm i}$ are a coreset for A

[FSS] Row-Partition Protocol

- Server t sends the top k/ϵ + k principal components of P^t , scaled by the top k/ϵ + k singular values Σ^t , together with c^t
- Coordinator returns $c + \sum_i c_i$ and top k principal components of $[\Sigma^1 V^1; \Sigma^2 V^2; ...; \Sigma^s V^s]$

[FSS] Row-Partition Protocol

[KVW] protocol will handle 2, 3, and 4

Problems:

- 1. sdk/ε real numbers of communication
- 2. bit complexity can be large
- 3. running time for SVDs
- 4. doesn't work in arbitrary partition model

This is an SVD-based protocol. Maybe our random matrix techniques can improve communication just like they improved computation?

[KVW] Arbitrary Partition Model Protocol

- Inspired by the sketching algorithm presented earlier
- Let S be one of the k/ε x n random matrices discussed
 - S can be generated pseudorandomly from small seed
 - Coordinator sends small seed for S to all servers
- Server t computes SA^t and sends it to Coordinator
- Coordinator sends $\Sigma_{t=1}^s$ SA^t = SA to all servers
- There is a good k-dimensional subspace inside of SA. If we knew it, t-th server could output projection of A^t onto it

[KVW] Arbitrary Partition Model Protocol

Problems:

- Can't output projection of A^t onto SA since the rank is too large
- Could communicate this projection to the coordinator who could find a k-dimensional space, but communication depends on n

[KVW] Arbitrary Partition Model Protocol

Fix:

- Instead of projecting A onto SA, recall we can solve $\min_{rank-k \ X} |A(SA)^TXSA A|_F^2$
- Let T_1 , T_2 be affine embeddings, solve $\min_{\substack{\text{rank}-k \ X}} \left| T_1 A (SA)^T X SAT_2 T_1 A T_2 \right|_F^2$ (optimization problem is small and has a closed form solution)
- Everyone can then compute XSA and then output k directions /

[KVW] protocol

- Phase 1:
- Learn the row space of SA

cost %
$$(1+\epsilon)|A-A_k|_F$$

[KVW] protocol

- Phase 2:
- Find an approximately optimal space W inside of SA

cost %
$$(1+\epsilon)^2 |A-A_k|_F$$

[BWZ] Protocol

- Main Problem: communication is O(skd/ε) + poly(sk/ε)
- We want O(skd) + poly(sk/ε) communication!
- Idea: use projection-cost preserving sketches [CEMMP]
- Let A be an n x d matrix
 - If S is a random k/ϵ^2 x n matrix, then there is a scalar $c \ge 0$ so that for all k-dimensional projection matrices P: $|SA(I P)|_F^2 + c = (1 \pm \epsilon)|A(I P)|_F^2$

[BWZ] Protocol

Intuitively, U looks like top k left singular vectors of SA

- Let S be a k/ϵ^2 x n projection-cost preserving sketch
- Let T be a d x k/ϵ^2 projection-cost preserving sketch
- Server t sends SA^tT to Coordinator
- Coordinator sends back SAT = $\sum_{t} SA^{t}T$ to servers
- Each server computes k/ε²x k matrix U of top k left singular vectors of SAT

Thus, U^TSA looks like top k right singular vectors of SA

- Server t sends U^TSA^t to Coordinator
- Coordinator returns the space $U^{T}SA = \sum_{t} U^{T}SA^{t}$ to output

Top k right singular vectors of SA work because S is a projection-cost preserving sketch!

[BWZ] Analysis

- Let W be the row span of U^TSA, and P be the projection onto W
- Want to show $|A AP|_F^2 \le (1 + \epsilon)|A A_k|_F^2$
- Since T is a projection-cost preserving sketch,

(*)
$$|SA - SAP|_F^2 \le |SA - UU^TSA|_F^2 + c_1 \le (1 + \epsilon)|SA - [SA]_k|_F^2$$

Since S is a projection-cost preserving sketch, there is a scalar c > 0, so that for all k-dimensional projection matrices Q,

$$|SA - SAQ|_F^2 + c = (1 \pm \epsilon)|A - AQ|_F^2$$

• Add c to both sides of (*) to conclude $|A - AP|_F^2 \le (1 + \epsilon)|A - A_k|_F^2$ 100

Conclusions for Distributed Low Rank Approximation

- [BWZ] Optimal O(sdk) + poly(sk/ε) communication protocol for low rank approximation in arbitrary partition model
 - Handle bit complexity by adding noise (omitted)
 - Input sparsity time
 - 2 rounds, which is optimal [W]
- Communication of other optimization problems?
 - Computing the rank of an n x n matrix over the reals
 - Linear Programming
 - Graph problems: Matching
 - etc.

Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator Regression

Robust Regression

Method of least absolute deviation (I₁ -regression)

- Find x* that minimizes |Ax-b|₁ = Σ |b_i <A_{i*}, x>|
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming

Solving I₁ -regression via Linear Programming

- Minimize $(1,...,1) \cdot (\alpha^{\dagger} + \alpha^{-})$
- Subject to:

$$A x + \alpha^{+} - \alpha^{-} = b$$

$$\alpha^{+}, \alpha^{-} \ge 0$$

- Generic linear programming gives poly(nd) time
- Want much faster time using sketching!