Understanding |PDy]|

2
E[(PDy);] = 0 for each hash bucket i, and E[(PDy);* | = 0 (2) (nl_ﬁlylf,)

Bernstein’s bound: Suppose Ry, ..., R, are independent, and for all j, |R;| < K, and
Var[Y;R;| = o%. There are constants C, ¢, so that for all t > 0,

ct? ct
j

|>t] <C(e o? +e K)
j
Recall (PDy); = ¥;8(h(j) = 1) - 6;- (Dy); , and set R; = §(h(j) = i) - oj- (Dy);

Want |PDy|, = |Dy|., Where |Dy|., € [ﬁ)’%, 10%/P|yl,] with probability > 4/5

2
Sett= % ands = @(n1_5 logn), to get n—lz error probability in Bernstein’s bound

But what is K = max |R;|?
j

Understanding the Large Elements

Recall (PDy); = Z]- 8(h(G) =1i) - oj (Dy)j , and set R; = 8(h(G) =1i) - oj (Dy)j

We will separately handle those R; for which |R;| > % , for a sufficiently small

olylp
logn

constant a > 0. If |R| > %, then necessarily [(Dy);| =

O(|YIp

We call such a j large if |(Dy);| = _F

, otherwise j is small. How many indices j are large?

Recall: |(Dy);] = |y;|/E;"

lyjl
_11 >
p
j

Pr(|(Dy); [is large] = Pr = Togn

p
|vi| (ogP n) b
P 1" (logP n
— 1 —e o(p|y|p S |YJ| (gp)
aPlyly

, SO the expected number of large j is O(logP n)

Understanding the Large Elements

Recall (PDy); = Zj 8(h(G) =1i) - oj- (Dy)j , and set R; = 6(h(G) =1i) - oj- (Dy)j

We have shown the expected number of large j is O(logP n), so by a Markov bound we
have O(logP n) large j with constant probability and we condition on D satisfying this

1
We also condition on |Dy|, € [% 105|y|p] , which held with probability > 4/5
10P

All the large j get perfectly hashed into separate hash buckets by P
We are throwing O(logP n) balls into s > n'=2/P bins

We apply Bernstein for each hash bucket separately
We apply Bernstein on the small indices j inside a hash bucket!

Understanding the Large Elements

2
E[(PDy);] = 0 for each hash bucket i, and E[(PDy)i2 |=0 G) (nl_glylﬁ)

Bernstein’s bound: Suppose R, ..., R, are independent, and for all j, |R;| < K, and Var|};R;] = 2. There

are constants C, c, so thatforallt> 0,
ct? ct

Pr[| ¥;R; — E[X;Rj]|> t] < C (e o7 +e7X)

(PDy); = 2;6(h(j) =1) - 05- (Dy); , and Rj = 6(h(j) =1i) - oj- (Dy);

|Y|p

Can assume K = max |R;] <7 , since there is at most one large j in any hash bucket (PDy);
J

Sett= ly"” ,and s = @(n P log n) in Bernstein’s bound, to get for a bucket (PDy);:
N lyl ogn) 1
Pr[> 8h0) = D oy(Dy);| > =2 o)

< C(—0(ogn) 4 o %To0a) < —
1’12
small j
By a union bound over all the s buckets, the “signed sum” of small j in every bucket will be at most

|Y|p

Wrapping Up

For all i,

|(PDy);| < b it o large indices in i-th bucket

100
|yl
|(PDy);| = |o;(Dy);| + T5-

No bucket contains more than 1 large index j

if exactly one large index j in i-th bucket

1
We conditioned on [Dy|,, € [% 105|y|p]
10P

What is |PDy|e?

|Y|p |Y|p

and IPDYIOO =Z~1 " To0
10P

|Y|p

1
[PDyle < 10|yl + =2

So just output |PDy/|,, as your estimate to |y|,

2 2
Total space is s = O(n"_? logn) words, which is O(n"_? log? n) bits

Outline

Quick recap of #;-regression, and how to speed it up

Introduction to the Streaming Model

Estimating Norms in the Streaming Model

Heavy Hitters in a Stream

Estimating Number of Non-Zero Entries (¢,)

Heavy Hitter Guarantees

|, — guarantee
output a set containing all items j for which |x;| = ¢|xI;
the set should not contain any j with x| < (¢-€) [x];

|, — guarantee
output a set containing all items j for which x,2 > ¢[x|3
the set should not contain any j with sz < (p—9)|x|3

|, — guarantee can be much stronger than the I, — guarantee
Suppose x = (vVn, 1,1, 1, ..., 1)
Item 1 is an |,-heavy hitter for constant ¢, €, but not an I,-heavy hitter
If |%;| = dlxl1, then x? = ¢p2[xI7 = p?[xI3

Heavy Hitter Intuition

Suppose you are promised at the end of the stream, x; = n, and x; € {0,1} for
je{l1,2,..,n}withj #i

How would you find the identity i?

Foreachjin {1, 2, 3, ..., log n}, let A; c [n] be the set of indices with j-th bit in
their binary representation equal to 0, and B; be the set with j-th bit equal to 1

Compute a; = ZieA]- x; and by = Ziij x; foreach jin {1, 2, ..., log n}

Read off the identity of item i

Heavy Hitter Intuition Continued

Suppose you are promised at the end of the stream, x; = 100,/nlog(n), and x; € {0,1} forj €
{1,2,...,n} withj # i

How would you find the identity i?

Foreachjin{1, 2,3, ..., log n}, let A; c [n] be the set of indices with j-th bit in their binary
representation equal to 0, and B; be the set with j-th bit equal to 1

Compute a; = ZieA]_ o; - X; and b; = Ziij o; - x; foreachjin {1, 2, ..., log n}

Read off the identity of item i?

Additive Chernoff bound implies magnitude of “noise” in a count is at most /n log(n) w.h.p.

Remove assumptions: (1) x; = 100,/nlog(n) and (2) and x; € {0,1} for j € {1,2, ...,n} with j # i

CountSketch achieves the |,—guarantee

* Assign each coordinate i a random sign o; € {-1,1}

* Randomly partition coordinates into B buckets, maintain ¢, = .., _; X;* 0j in the
j-th bucket

X1 | X2 |X3 X4 X5 [Xg |X7 |Xg |Xg|Xqg

* Estimate x; as o; - ¢y,

Why Does CountSketch Work?

E[Gich(i)] = Oi Zji":n()=h(") OvXir = Xi

Suppose we independently repeat this hashing scheme O(log n) times
Output the median of the estimates across the log n repetitions
“Noise” in a bucket is 0j * 2/ h(iry=h(i) Oir * Xir

What is the variance of the noise?

2
|X|2

2
E[(Gi ' Zi’iih(i’):h(i) Oy’ 'Xi’) 1= B

* So with constant probability, the noise in a bucket is O(—=

x |2) in magnitude

 Since the log n repetitions are independent, this ensures that our estimate
OiCp(i) Will equal x; & O(| lz) with probability 1-1/poly(n)

* Hence, we approximate every x; simultaneously up to additive error O(| Xl

Tail Guarantee

IIz

CountSketch approximates every x; simultaneously up to additive error O(

But what if x4 is a super large poly(n),and X, = nandx; = ... =x, = 1?

We get a pretty bad approximation to x,

Tall Guarantee CountSketch approximates every x; simultaneously up to additive error

O(514 2), where x_ _B/4 is x after zero-ing out its top B/4 coordinates in magnitude

Proof: with probability at least 3/4, in each repetition the top B/4

coordinates of x in magnitude do not land in the same hash bucket as x;
* Do we need a lot of independence for this?

What happens if x is B/4-sparse?

How to Find the Top k Heavy Hitters Quickly

e There are 2! nodes in i-th level of tree
e Start at the level with 2k nodes

* Each node corresponds to a subset of [n] of
size n/2' with the same i-bit prefix

* Ini-th level, for each i, hash to O(k) buckets repeat
O(log k) times. Like CountSketch, but in each bucket
we run an approximation algorithm to the 2-norm

* In top level our universe has only 2k nodes, so we find
top k just by computing estimate for all of them

Main idea: in next level, we only need to consider the
left and right child of each of the k nodes we found at
the previous level. So only 2k <« n nodes to consider.

Full Binary Tree

Why Care About the £{-Guarantee?

* |, —guarantee
e output a set containing all items j for which |X]-| > Plx|4
* the set should not contain any j with [x|; < (¢-€) [x]4

* |, —guarantee
* output a set containing all items j for WhICh X% = c|)|x|2
* the set should not contain any j with x < (cl) —e)|x|3

* |, —guarantee implies the |, — guarantee

So why care about the |, — guarantee?

* A nice thing about the 1;-guarantee is that it can be solved deterministically!

Deterministic £1 Heavy Hitters

e An s X n matrix S is e-incoherent if
e for all columns S;, |Si|, =1

* for all pairs of columns §; and §;, |(Si, S]-)| <€
 entries can be specified with O(log n) bits of space

 Compute S - xin a stream using O(s log n) bits of space

* Estimate & = S'Sx
* X = Xj=1,.n(Si Sj)%; = |Sil5x; + YT%?XKSi; S| Ixly = x; + €lxly

* Can figure out which |x;| = ¢|x|;and which |x;] < (b — €)[x];

 But do e-incoherent matrices exist?

e-lncoherent Matrices

Consider a prime g = 0((logn)/€). Letd =€ - q =0(log n)

* Consider n distinct non-zero polynomials p4, ..., pp €ach of degree less than d.
e q?-1 >n

* Associate p; with i-th column of S

* Lets= q2 and group the rows of S into q groups of size q

* In j-th group, the i-th column has a single non-zero on the p;(j)-th entry

* pi¢)-th entry is equal to 1/q%/?

* Each column S; has [S;], =1

* §; and S each have the same non-zero in the k-th group iff p; (k) = p;(k)

* Number of such groups kis at most d < €q, so |(Si, Sj)| <€

Outline

Quick recap of £;-regression, and how to speed it up

Introduction to the Streaming Model

Estimating Norms in the Streaming Model

Heavy Hitters in a Stream

Estimating Number of Non-Zero Entries (€;)

Estimating the Number of Non-Zero Entries
* |x|o = |{i such that x; # 0}|

* How can we output a number Z with (1 — €)Z < [x|y, < (1 + €)Z with prob. 9/10?
« Want O((logn)/€?) bits of space

Suppose |x|, = O(eiz). What can we do in this case?

: : . 1
Use our algorithm for recovering a k-sparse vector from last time, k = 0O (6—2)

 What is another way?

But what if |x|y > eiz?

Estimating the Number of Non-Zero Entries

Suppose we somehow had an estimate Z with Z < |x|, < 2Z, what could we do?
Independently sample each coordinate i with probability p = 100/(Z €4)

Let Y; be an indicator random variable if coordinate i is sampled
Let y be the vector restricted to coordinates i for which Y; = 1

100
* Ellylo] = leuchthatx 0 E[Yi] = plxlo =
200
* Var[|y|o] = leuch that x;#0 VarlY;] < 6_2 But we don’t
. . 100] _ Var[lylole* _ 1 know Z...
Prllylo — Ellylo]l > 22| < Y2lle 1
» Use sparse recovery or CountSketch to compute |y|, exactly

* Qutput %

Estimating the Number of Non-Zero Entries

* Guess Z in powers of 2
* Since 0 < |x|y < n, there are O(logn) guesses
* The i-th guess Z = 2! corresponds to sampling each coordinate with

s . 100
probability p = min(1,)

* Sample the coordinates as nested subsets [n] =57 2S5; 25, 2+ 50,

* Run previous algorithm for each guess
 One of our guesses Z satisfies Z < |x|, < 2Z and we should use that guess

e But how do we know which one?

Estimating the Number of Non-Zero Entries

3200
€2

e Use the largest guess Z = 2! for which %O < |ylp <

800 1600 400 3200
. IfE—2 < E[lylo] < = then — < lylp <

—— With probability at least 49/50
. If% < E[lylo] < zg’ then |yl, < 4(_% with probability at least 49/50

1600
e2

* So with probability 48/50, we choose an i for which zg < E[lylo] <

* There are only 4 such indices i, and all 4 of them satisfy |y|, = (1 + €)E[|y|,]
simultaneously with probability 1-4/50. So doesn’t matter which i we choose

 Overall, our success probability is 1-2/50-4/50 > 4/5

What is Our Overall Space Complexity?

* |f we use our k-sparse recovery algorithm fork = 0O (Eiz), then it takes O(log -
2

) bits of space in

log” n

each of log n levels, so O() total bits of space ignoring random bits

62

* How much randomness do we need?

* Pairwise independence is enough for Chebyshev’s inequality

* Implement nested sampling by choosing a hash function h: [n] — [n],
checking if first i bits of h(j) =0

* O(log n) bits of space for the randomness

(log n (log(%)+log log n)

€2

 Canimproveto O) bits. How?

* Just need to know number of non-zero counters, so reduce counters from log n bits to
1 :
O(log (E) + loglogn) to bits

Reducing Counter Size

1

62) counters, each of

* In sampling levels that we care about, we have O (
O(log n) bits

logn

e At most O () prime numbers dividing any of these counters

€2

log nloglog n)
2

* Choose arandom primeq=0 (. Unlikely that g divides any

counters

(loglogn +10g(§))

* Just maintain our sparse recovery structure mod ¢, so O ("

bits per each of O(log n) sparse recovery instances

