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1 Leverage Score Sampling

1.1 Definitions

Definition. For any n× d matrix U , define function `(i) =
∑d
j=1 U

2
i,j .

Definition. Let (q1, ..., qn) be a distribution satisfying qi ≥ β`(i)
d , where β is a parameter less than

1.

Definition. Define sampling matrix SL = D ·ΩT , where D is k× k and Ω is n× k. Ω is a sampling
matrix, and D is a rescaling matrix. For each column j of Ω, D, independently, and with replacement,
select a row index in [n] with probability of qi, and then set Ωi,j = 1 and Di,i = 1√

qik
.

Definition. Let i(j) denote the index of the row of an orthonormal matrix U sampled in the j-th
trial.

Definition. Let Xj = Id −
UT
i(j)Ui(j)
qi(j)

, where Ui(j) is the j-th sampled row of U .

1.2 Properties

In the last part we have proved that E[Xj ] = 0, |Xj |2 ≤ 1 + d
β , and |E[XTX]|2 ≤ d

β − 1.

1.3 Subspace Embedding

Fact 1. (Matrix Chernoff Bound) Let X1, ..., xk be independent copies of a symmetric random
matrix X ∈ Rd×d with E[X] = 0, |X| ≤ γ, and |E[XTX]]2| ≤ δ2. Let W = 1

k

∑
j∈[k]Xj , then for

any ε > 0,
Pr[|W |2 > ε] ≤ 2d · e−kε2/(δ2+ γε

3 )

where |W |2 = sup |Wx|2
|x|2 , when W is symmetric, |W |2 = sup|x|2=1x

TWx.

Based on this bound, we want to prove Leverage Score Sampling can actually give us a sketching
matrix:

Claim 1. For Leverage Score Sampling matrix SL, Pr[|Id − UTSTSU | > ε] ≤ 2d · e−kε2Θ(β
d

).
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Proof. According to Matrix Chernoff Bound, we plug in γ = 1 + d
β , and δ

2 = d
β − 1 in the bound.

Therefore
1
k

∑
Xj∈[k] = 1

k

∑
j∈[k]

Id −
UTi(j)Ui(j)

qi(j)

= Id − UTSTSU

Hence we can plug in the sum of Xj , so Pr[|Id−UTSTSU |2 > ε] ≤ 2d · e−kε2Θ(β
d

). Set k = Θ(d log d
βε2 ),

then we are done. �

Hence we according Matrxi Chernoff Bound, we can obtain a subspace embedding matrix by leverage
scoring.

1.4 Fast Computation of Leverage Scores

We can always use an naive approach to compute leverage scores using SVD decomposition. Let
S be a subspace embedding matrix for a n × d matrix A. It follows that we can decomposite
SA = QR−1 such that Q has orthonormal columns, with a fairly low cost.

Instead of getting actual `(i), we want to approximate it. More specifically, set `′i = |eiAR|22, where
ei is the i-th base. Note that SAR = Q, therefore it is a rotational matrix which does not change
the norm of vectors, so

|SARx|2 = |x|2
Since S is a subpace embedding matrix, with a high probability,

|SARx|2 ≤ (1± ε)|ARx|2

AR has the same column span of A, and AR = UT−1, it follow that

(1±O(ε))|x|2 = |ARx|2 = |UT−1x|2 = |T−1x|2

Hence we can prove that

`(i) = |eiART |22 = (1±O(ε))|eiAR|22 = (1±O(ε))`′i

Note that it is sufficient to set ε to be a constant here, but there is a problem when we want to
compute AR, which is expensive when A is big. To solve this, let G be a d× O(logn) matrix of
i.i.d. normal random variables. Note that ∀ vector z, Pr[|zG|22 = (1± 1

2)|z|2] ≥ 1− 1
n2 .

After we reduce dimension with G, we instead set `′i = |wiARG|22, and we can now compute ARG
within nnz(A) logn+ d2 logn.

For a regression problem, the total time complexity with precision of 1± ε should be nnz(A) logn+
poly(d logn/ε).
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2 Distributed Low Rank Approximation

Currently we can compute low rank approximation for huge matrices with low time cost, however
we might also want algorithms to scale in a distributed environment.

Suppose we have a huge matrix A, which is distributed among s servers, for t = 1, ..., s. Further,
imagine the server t represents the t− th shop, which has a customer-product matrix for itself, and
we denote server t’s matrix to be At.

The total matrix we want is A = σsi=1A
i, and this model is called arbitrary partition model. This

can actually be more general than row-parition model, where servers only store part of the rows
respectively.

2.1 Communication Model in Arbitrary Partition Model

Suppose there is already Server 1, Server 2, ..., Server s in current setting. Then there is a central
server called Coordinator. Each server should only talk to this Coordinator via 2-way channels.

Assume the capicity of Coordinator is large enough, then we can always simulate a point-t-point
communication up to factor of 2, because we can just use the Coordinator as a middleman for
arbitrary communication pair.

2.2 Communication Cost

We can further formulate the computation process for this distributed low rank approximation
scenario:

Input: A n× d matrix A stored on s servers, and:

1. Server t has one n× d matrix At.

2. A = σsi=1A
i.

3. Assume all the entries in At are O(log(nd))-bit integers.

Output: Each server should output a k-dimensional space W, and:

1. C = σsi=1A
iPW , where APW denotes the projection of A onto W.

2. |A− C|F ≤ (1 + ε)|A−A|F .

The output can further be applied to k-means clustering process.

Resources: Minimize total communication and computation cost. We also want constant rounds
of communication and input sparsity time.

3



2.3 Protocols

There are several protocols designed to solve Distribtured Low Rank Approximation problem, which
is a natural derivation of single machine version of low rank approximation problems.

The first protocol for the row-partition model is proposed in [3]. It requires O(sdk/ε) real numbers
of communication between servers. Note the time complexity does not depend on n here. This
protocol do not analyze the bit comlexity in communication, which can be large during the process.

The second protocol proposed in [4] extend the model to arbitrary partition model, with the
preservation of O(skd/ε) cost.

The third protocol proposed in [2] gives O(skd) + poly(sk/ε) words of communication in arbitrray
partition model with input sparsity time. Note that this matches Ω words of communication lower
bound. The intuition for this lower bound is that, there exists a underlying cost to have all s servers
agree on a piece of O(kd) information for each rank-k approximation.

There are several variants proposed in [1] about kernel low rank approximation, [5] about low
approximation of an implicit matrix, and [2] about sparsity.

2.3.1 Coreset Construction

Let us take a look at the construction of Coreset proposed in [3]. Let an n× d matrix A = UΣV T

UΣV T is an SVD decomposition form. Letm = k+k/ε, where k represents the rank-k approximation
we want to have. Let Σm be the matrix which only preserves the first m diagonal elements in the
matrix Σ (and 0 for diagonal otherwise).

Claim 2. For all projection matrices Y = I −X onto (d− k)-dimensional subspaces,

|ΣmV
TY |2F = (1± ε)|AY |2F + c (1)

where c = |A−Am|2F does not depend on Y .

We can think of S as the corresponding version of UTm so that SA = UTmUΣV T = ΣmV
T is a sketch.

Proof.
|AY |2F = |UΣmV

TY |2F + |U(Σ− Σm)V TY |2F
≤ |ΣmV

TY |2F + |A−Am|2F
= |ΣV TY |2F |+ c
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Also,

|ΣmV
TY |2F + |A−Am|2F − |AY |2F

= |ΣmV
T (I −X)|2F + |A−Am|2F − |A(I −X)|2F

= |ΣmV
T |2F − |ΣmV

TX|2F + |A−Am|2F − |A|2F + |AX|2F
= |AX|2F − |ΣmV

TX|2F
= |(Σ− Σm)V TX|2F
≤ |(Σ− Σm)V T |22 · |X|2F
≤ σ2

m+1k

≤ εσ2
m+1(m− k)

≤ ε
∑

i∈{k+1,...,m+1}
σ2
i

≤ ε|A−Ak|2F
≤ ε|A−X|2F
≤ ε|AY |2F

Therefore we prove that |ΣmV
TY |2F = (1± ε)|AY |2F + c. �
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