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1 Leverage Score Sampling

1.1 Definitions

Definition. For any n x d matrix U, define function #(i) = Z?Zl 2

Definition. Let (qi,...,¢,) be a distribution satisfying ¢; > %(i), where (3 is a parameter less than
1.

Definition. Define sampling matrix S;, = D - QT where D is k x k and Q is n x k. Q is a sampling
matrix, and D is a rescaling matrix. For each column j of 2, D, independently, and with replacement,

select a row index in [n] with probability of g;, and then set €; ; =1 and D;; = ﬁ
ai

Definition. Let i(j) denote the index of the row of an orthonormal matrix U sampled in the j-th
trial.
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Definition. Let X; = I; — %v where Uy(;) is the j-th sampled row of U.
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1.2 Properties

In the last part we have proved that E[X;] =0, | Xj[o <1+ %, and |E[XTX]|2 < % -1

1.3 Subspace Embedding

Fact 1. (Matriz Chernoff Bound) Let X1, ...,z be independent copies of a symmetric random
matrix X € R with E[X] = 0,|X| <, and |E[XT X]]a| < 6% Let W = 1 3,y Xj, then for
any € > 0,

PriW|y > ¢ < 2d- e #/0°+%)

[Wz|2
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Tk when W is symmetric, |W|g = sup|x|2:1xTWa:.

where |W |2 = sup

Based on this bound, we want to prove Leverage Score Sampling can actually give us a sketching
matrix:

Claim 1. For Leverage Score Sampling matrix S, Pr([|I; — UTSTSU| > ¢ < 2d - eke?O(3)



Proof. According to Matriz Chernoff Bound, we plug in v =1+ %, and 62 = % — 1 in the bound.
Therefore

1 1 Uity Uit
= Xjew =7 > la- —E
jelk] %)
=1, - U'STsu

Hence we can plug in the sum of X, so Pr[|I;—UTSTSU|y > €] < 2d-e~H*O(D) . Set k = @(dg)eggd),

then we are done.

Hence we according Matrxi Chernoff Bound, we can obtain a subspace embedding matrix by leverage
scoring.

1.4 Fast Computation of Leverage Scores

We can always use an naive approach to compute leverage scores using SVD decomposition. Let
S be a subspace embedding matrix for a n x d matrix A. It follows that we can decomposite
SA = QR such that Q has orthonormal columns, with a fairly low cost.

Instead of getting actual £(i), we want to approximate it. More specifically, set ¢; = |e; AR|3, where
e; is the i-th base. Note that SAR = @, therefore it is a rotational matrix which does not change

the norm of vectors, so
|SARSC‘2 = |LE|2

Since S is a subpace embedding matrix, with a high probability,
|SARx|2 < (1 £ €)|ARx|2
AR has the same column span of A, and AR = UT ', it follow that
(1+0(e))|z]2 = |ARx|y = [UT x|y = [T 25
Hence we can prove that

U(i) = le;ART[3 = (14 O(e))|e; ARJ3 = (1£ O(e))¢;

Note that it is sufficient to set € to be a constant here, but there is a problem when we want to
compute AR, which is expensive when A is big. To solve this, let G be a d x O(logn) matrix of
i.i.d. normal random variables. Note that V vector z, Pr[[zG|3 = (1+ 1)/} >1— 1.

After we reduce dimension with G, we instead set ¢ = |w; ARG|3, and we can now compute ARG
within nnz(A)logn + d?logn.

For a regression problem, the total time complexity with precision of 1+ € should be nnz(A)logn +
poly(dlogn/e).



2 Distributed Low Rank Approximation

Currently we can compute low rank approximation for huge matrices with low time cost, however
we might also want algorithms to scale in a distributed environment.

Suppose we have a huge matrix A, which is distributed among s servers, for t = 1, ..., s. Further,
imagine the server ¢ represents the ¢ — th shop, which has a customer-product matrix for itself, and
we denote server t’s matrix to be A’

The total matrix we want is A = UleAi, and this model is called arbitrary partition model. This
can actually be more general than row-parition model, where servers only store part of the rows
respectively.

2.1 Communication Model in Arbitrary Partition Model

Suppose there is already Server 1, Server 2, ..., Server s in current setting. Then there is a central
server called Coordinator. Each server should only talk to this Coordinator via 2-way channels.

Assume the capicity of Coordinator is large enough, then we can always simulate a point-t-point
communication up to factor of 2, because we can just use the Coordinator as a middleman for
arbitrary communication pair.

2.2 Communication Cost

We can further formulate the computation process for this distributed low rank approximation
scenario:

Input: A n x d matrix A stored on s servers, and:

1. Server t has one n x d matrix Af.

3. Assume all the entries in A’ are O(log(nd))-bit integers.

Output: Each server should output a k-dimensional space W, and:

1. C =03 A'Py, where APy denotes the projection of A onto W.

2. |A—Clp < (1+€)|A—Alp.

The output can further be applied to k-means clustering process.

Resources: Minimize total communication and computation cost. We also want constant rounds
of communication and input sparsity time.



2.3 Protocols

There are several protocols designed to solve Distribtured Low Rank Approzimation problem, which
is a natural derivation of single machine version of low rank approximation problems.

The first protocol for the row-partition model is proposed in [3]. It requires O(sdk/e€) real numbers
of communication between servers. Note the time complexity does not depend on n here. This
protocol do not analyze the bit comlexity in communication, which can be large during the process.

The second protocol proposed in [4] extend the model to arbitrary partition model, with the
preservation of O(skd/e) cost.

The third protocol proposed in [2] gives O(skd) + poly(sk/e) words of communication in arbitrray
partition model with input sparsity time. Note that this matches 2 words of communication lower
bound. The intuition for this lower bound is that, there exists a underlying cost to have all s servers
agree on a piece of O(kd) information for each rank-k approximation.

There are several variants proposed in [1] about kernel low rank approximation, [5] about low
approximation of an implicit matrix, and [2] about sparsity.

2.3.1 Coreset Construction

Let us take a look at the construction of Coreset proposed in [3]. Let an n x d matrix A = USV7T
UXVT is an SVD decomposition form. Let m = k+k/e, where k represents the rank-k approximation
we want to have. Let ¥,, be the matrix which only preserves the first m diagonal elements in the
matrix ¥ (and 0 for diagonal otherwise).

Claim 2. For all projection matrices Y = I — X onto (d — k)-dimensional subspaces,
SaVTY R = (1£|AY [} +c (1)

where ¢ = |A — A, |% does not depend on Y.
We can think of S as the corresponding version of U/, so that SA = ULUXVT = %,,V7T is a sketch.

Proof.
AY 5 = [USn VY |5 + [U(S = Zm)VIY |7

< |EmVTY‘%7 + |A - Am’%
=[SVIY 3]+ ¢



Also,

S VTY 5+ A = At - |AY [R
= =V = X)|F+ A= Alb - |AU - X))
= 2V F = [SnVTX[E + A - Aplf - AR + [AX R
= |AX [} - [SnVTX[R
= |-V X[}
<|E =SV 1X[E
< ‘712n+1k
< eopii(m—k)
<e Z 0'1-2
i€ {k+1,..m+1}
<elA - Al
< elA- X%
< €elAY [

Therefore we prove that |X,VIY|% = (1 £¢€)|AY]% +c. [
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